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SHEN’S L-PROCESS ON BERWALD CONNECTION
L-ITPOIEC IHEHA HA 3B’SA3HOCTI BEPBAJIB/IA

The Shen connection cannot be obtained by using Matsumoto’s processes from the other well-known connections. Hence
Tayebi—Najafi introduced two new processes called Shen’s C' and L-processes and showed that the Shen connection is
obtained from the Chern connection by Shen’s C'-process. In this paper, we study the Shen’s C'- and L-process on Berwald
connection and introduce two new torsion-free connections in Finsler geometry. Then, we obtain all of Riemannian and
non-Riemannian curvatures of these connections. Using it, we find the explicit form of hv-curvatures of these connections
and prove that hv-curvatures of these connections are vanishing if and only if the Finsler structures reduce to Berwaldian
or Riemannian structures. As an application, we consider compact Finsler manifolds and obtain ODEs.

3B’s3HicTh [lleHa HEMOXIIMBO OTPHMATH 3a JOMOMOTOI0 mporecy Mamymoro 3 iHIUX Bimomux mpoueciB. Tomy Taiie6i
ta Hamxadi 3anpornonyBany 1Ba HOBUX mporuecu, HazBaHi C'- ta L-npouecamu Illena, i nokasanu, 1o 3a JOMOMOIO0
C-nponecy Illena i3 3B’s3HOCTi UepHa MoxkHa orpumard 3B’s3HICTH Illena. Mu BuBuaemo C'- ta L-mpouecu Illena
Ha 3B’s13HOCTI bepBanpaa i mponoHyemo AB1 HOBI 06e3TOpcioHHI 3B’s3HOCTI y reometpii DiHcnepa. [ani orpumyemo Bei
piMaHOBI Ta HEpPIMaHOBI KPUBUHU JUIS IIUX 3B’3HOCTEH. 3a JJOIIOMOTOI0 IILOTO 3HAXOJUMO TOUHY (GopMy hv-KpUBHHU JUIS
LUX 3B’S3HOCTEH 1 TOBOMUMO, 10 hvU-KPUBHHHU IS LUX 3B S3HOCTEH € HYIHOBHMH TOII W TUIBKH TOII, KOMH CTPYKTYpHU
®incnepa 3BOIATECS 10 CTPYKTYp bepBanbaa un PiMana. Sk 3acTocyBaHHS po3IIsIa€EMO KOMITAKTHI (DiHCIEpOBI MHOTOBUIU
Ta OTPUMY€EMO 3BHYAlHI AU epeHIIaNbH] PIBHIHHS.

1. Introduction. In [8], Matsumoto introduced a satisfactory and truly aesthetical axiomatic de-
scription of Cartan’s connection in the sixties. After the Cartan connection has been constructed,
easy processes, baptized by Matsumoto “L-process” and “C'-process” (or briefly “M L-process” and
“M C-process”), yield the Chern, the Hashiguchi and the Berwald connections. For other Finslerian
connections, see [3—8] and [14]. The space of all connections makes an affine space modeled on
the space of (1,2)-tensors over pulled-back bundle 7*T'M. It means that adding a (1, 2)-tensor to
a connection makes a new connection. A Finsler metric F' gives us two natural (1,2)-tensors with
components Cijk and L’ k- These two (1,2)-tensors play key role in Matsumoto’s processes. The
C-processes use Cartan tensor, and the L-processes use Landsberg tensor:

. M C-process .
Cartan connection ——— Chern connection

M L-process M L-process
\: b

M C-process
Hashiguchi connection ——— Berwald connection.

It is well-known that vanishing hv-curvatures of Cartan and Berwald connections characterizes
Landsberg metrics and Berwald metrics, respectively.

In [11], Shen introduced a new connection in Finsler geometry, which vanishing hwv-curvature
of this connection characterizes Riemannian metrics. In [9], Muzsnay and Nagy gave an invariant
treatment of Shen connection. The Shen connection can not be constructed by Matsumoto’s processes
from these known connections. Therefore, Tayebi and Najafi introduced two new processes on
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SHEN’S L-PROCESS ON BERWALD CONNECTION 1135

connections, called Shen’s C' and L-processes [17]. For the sake of simplicity, we use “.SC-process”
and “S L-process” instead of Shen’s C'-process and Shen’s L-process, respectively. Let (M, F') be a
Finsler manifold. Suppose that V is a connection with connection forms w; Define
V= wl — O WP
J J gk
Then &' are connection forms of a connection 6, that is called the connection obtained from V by

J
Shen’s C'-process. Similarly, one can define

(I); = w;- - Lijkw”+k.
Then (Z); are connection forms of a connection 6, that is called the connection obtained from V by
Shen’s L-process. Tayebi and Najafi showed that the Shen connection is obtained from the Chern
connection by Shen’s C'-process.

In this paper, we are going to study the connections which obtain by Shen’s C'- and L-process
on Berwald connection. In Section 3, we study the connection obtained by Shen’s L-process on the
Berwald connection, call it by D, and prove the existence and uniqueness of this connection. In
Section 4, we show that the hv-curvature of D vanishes if and only if F' is a Berwald metric. Let
Pij o = Pz.j w(z,y) and Pg W= Pij klyi denote the hv-curvature and contracted hv-curvature of D,
respectively. In Section 5, we prove that on a compact Finsler manifold the contracted hv-curvature
of D is vanishing if and only if F' is a Landsberg metric. In Section 6, we study the connection
obtained by Shen’s C'-process on the Berwald connection, call it by V, and prove the existence and
uniqueness of this connection. Finally, in Section 7, we show that the hv-curvature of V vanishes if
and only if F' reduce to a Riemannian metric.

2. Preliminaries. Let M be an n-dimensional C* manifold. Denote by 7, M the tangent
space at x € M, and by T'M := |, To M the tangent bundle of M. Each element of TM has
the form (z,y), where x € M and y € T, M. Let TMy = T'M \ {0}. The natural projection 7 :
TM — M is given by m(z,y) := x.

The pull-back tangent bundle 7*T'M is a vector bundle over 7'M, whose fiber 7, T'M at v €
€ T'My is T, M, where 7(v) = . Then

T*TM = {(w,y,v)’ y € T, My, ve TmM}.

Some authors prefer to define connections in the pull-back tangent bundle 7*7T'M. From geometrical
point of view, the construction of these connections on 7*T'M seems to be simple because here
the fibers are n-dimensional (i.e., 7 (T'M), = TryM Yu € TM) thus torsions and curvatures
are obtained quickly from the structure equations. When the construction is done on 7'(7'M) many
geometrical objects appear twice and one needs to split 7'(T'M) in the vertical and horizontal parts
where the latter is called horizontal distribution or nonlinear connection. Nevertheless we do not need
to split 77 M. Indeed the connection on 7*(T'M) is the most natural connection for physicists. In
order to define curvatures, it is more convenient to consider the pull-back tangent bundle than the
tangent bundle, because our geometric quantities depend on directions.
For the sake of simplicity, we denote by
n
x> }i:l

{8¢|v = (v, i
oz’
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1136 M. FAGHFOURI, N. JAZER

the natural basis for 7 7M. In Finsler geometry, we study connections and curvatures in (7*7'M, g),
rather than in (7'M, F'). The pull-back tangent bundle 7*T'M is very special tangent bundle.

A (globally defined) Finsler structure on a manifold M is a function F': TM — [0,00), with
the following properties:

(i) F' is a differentiable function on the manifold 7'M, and is continuous on the null section of
the projection 7: TM — M;

(ii) F: TM — [0, 00) is a positive scalar function;

(ii1) F is positively 1-homogeneous on the fibers of tangent bundle 7'M ;

(iv) the Hessian of F'? with elements

(915) i= ([QF} )

is positively defined on T'Mj. Given a manifold M and a Finsler structure F' on M, the pair (M, F)
is called a Finsler manifold. F' is called Riemannian if g;;(x,y) are independent of y # 0.
The Finsler structure F' defines a fundamental tensor g: 7*TM ® 7*TM — [0,00) by the

formula g(9;lv, 9j]v) = gij(z,y), where v = y* . Let
x

oz?
Gij (:L‘,y) = FFyiyj + Fyi e

F
where Fi = v Then (7*T'M,g) becomes a Riemannian vector bundle over 7'Mj.
Y
Put
1 8gij

Clearly, A;j is symmetric with respect to i, j, k. The Cartan tensor

A: " TM Q" TM @ m*TM — R

is defined by
A(Bilv, Ojlv, Oklv) = Aij(z,y),

.0 . Aijk . .
where v = y'—| (see [15, 19]). In some literature Cj;), = 2k s called Cartan tensor. Rieman-
nian manifolds are characterized by A = 0. The homogeneity condition (iii) holds in particular for
positive A. Therefore, by Euler’s theorem we see that

z%(

_ Y9 _ x99 _
$,y) - y] 8yk (1’,11) =Y 8yk (fﬁ,y) =0.
We recall that the canonical section £ is defined by

yi 8_yi8__~8

£="tay) = F(x,y) 0z~ Foxi Oz

Put ¢; := gijﬁj = Fy. Thus the canonical section ¢ satisfies

Yy
g(£7£) = gijff =1
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SHEN’S L-PROCESS ON BERWALD CONNECTION 1137

and
O Aijy = P Agj = (" Ay, = 0.
Thus, A(X,Y, ) = 0.
Given an n-dimensional Finsler manifold (M, F'), then a global vector field G is induced by F'
on T'My, which in a standard coordinate (z°,y*) for T My is given by

0

i 0
ozt 2G* (2, y)

G=y oy

where G* = G¥(x,y) are called spray coefficients and given by the following:

L[ P op
4 Oxk oyt oxt |-

G is called the spray associated to F.

Define By, : T,M @ T,M ® T, M — T, M by B, (u,v,w) := B’jkl(y)ujvkwl@ K where

; PG &N
gkl *— Ay Oy oy - oykoyt”

By (u,v,w) is symmetric in u, v and w. From the homogeneity of spray coefficients, we have
B,(y,v,w) = 0. B is called the Berwald curvature. Indeed, L. Berwald first discovered that the
third order derivatives of spray coefficients give rise to an invariant for Finsler metrics. F' is called a
Berwald metric if B = 0 [16]. In this case, G are quadratic in y € T, M for all z € M, i.e., there
exists [, =T, (z) such that

G =Ty

There is another equal definition for a Berwald metric as follows. A Finsler metric F' is called a
Berwald metric if the Cartan torsion of F’ satisfies the following:

Agjrpn =0,

where the and ”,” denote the horizontal and vertical covariant derivatives with respect to the
Berwald connection.
For y € T, M, define the Landsberg curvature L, : T, M @ T, M @ T, M — R by

”|”

1
Ly(“v ’U,’U)) = _igy (By(%%w)v y) .

In local coordinates, Ly (u, v, w) := L ;i (y)u‘viw”, where
1
Liji, = _§lelijk'

L, (u,v,w) is symmetric in w, v and w and Ly(y,v,w) = 0. L is called the Landsberg curvature.
A Finsler metric I is called a Landsberg metric if L, = 0 [12]. Equivalently, a Finsler metric " is
called a Landsberg metric if the Cartan torsion of F satisfies the following:

Aijrimy™ = 0.
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1138 M. FAGHFOURI, N. JAZER

It is easy to see that, every Berwald metric is a Landsberg metric.

2.1. The bundle maps. In [1], Akbar-Zadeh developed the modern theory of global Finsler
geometry by establishing a global definition of Cartan connection. For this aim, he introduced two
bundle maps p and u. Here, we give a short introduction of these bundle maps. Let TT'M be the
tangent bundle of 7'M and p the canonical linear mapping

p: TTMy — 7TM,

X — (z,w*(f()) :

where X € T.T M, and z € T' M. The bundle map p satisfies

0 0
()0 (3)-

Let V,T'M be the set of vertical vectors at z, that is, the set of vectors tangent to the fiber through
z, or equivalently V,TM = ker p, called the vertical space.
By means of these considerations, one can see that the following sequence is exact:

0 VIM - TTM 25 ©*TM — 0,

where ¢ is the natural inclusion map.
Let V be a linear connection on 7*T M, that is V : T, T My x #*TM — w*TM such that V :
(X,Y) = VY. Let us define the linear mapping

fy: T.TMy —  TeoM,

A~

X — VXFE,

where X € T.T M. For a torsion-free connection V the bundle map . satisfies

0 0 0 0

where Nf = FT};07 and T'}; are Christoffel symbols of V.
Let us put

50

0
= — NF
dxt "~ Oxt b Oyk

J
() o

The connection V is called a Finsler connection if for every z € T'My, p, defines an isomorphism
of V. T My onto T, M. Therefore, the tangent space 77T My in z is decomposed as

Then

T.TMy=H,TM & V,TM,

where H,TM = ker u, is called the horizontal space defined by V. Indeed any tangent vector
X € T,TMj in z decomposes to
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SHEN’S L-PROCESS ON BERWALD CONNECTION 1139
X=HX +VX,
where HX € H,TM and VX € V,TM. Thus p restricted to HT'M is an isomorphism onto

m*TM, and p restricted to VT'M is the bundle isomorphism onto 7*7T'M.
The structural equations of the Finsler connection V are

Tv(X,Y): =V Y - VX —p[X,Y],

VX, Y)Z =VyVyZ =VyVZ = V57,
where X = p(X), Y = p(Y) and Z = p(Z). The tensors Tv and  are called, respectively, the
torsion and curvature tensors of V. They determine two torsion tensors defined by

S(X,Y) :=Te(HX,HY), T(X,Y):=Te(VX,HY)
and three curvature tensors defined by

R(X,Y):=QHX,HY),

Q
P(X,Y):=QHX,VY),

QX,Y):=Q(VX,VY),

where X = p(X) and Y = pu(X).

3. Shen’s L-process on Berwald connection. In this section, we are going to study the
connection obtained by Shen’s L-process on the Berwald connection. For this aim, we give a short
and exact definition of the Berwald connection.

In 1926, L. Berwald introduced a connection and two curvature tensors. The Berwald connection
is torsion-free, but is not necessarily metric-compatible [2]. It was Berwald who first successfully
extended the notion of Riemann curvature to Finsler spaces. He also introduced a notion of non-
Riemannian quantity called Berwald curvature.

The Berwald connection introduced by the following properties:

Berwald connection: Let (M, F') be an n-dimensional Finsler manifold. Then the Berwald
connection ® is a linear connection in 7*71' M, which has the following properties:

(i) D is torsion-free, i.e., for all X, Y € C™ (T(TMy)),

T(X,V) =D ¢p(YV) - Dyp(X) —p ([X,Y]) =0. (3.1)
(ii) ® is almost compatible with F' in the following sence:
(D29)(X,Y) = Zg(X,Y) — g(D,;X,Y) — g(X,D,Y) = 52
— 2P AU(Z), X, Y) — 24(p(2), X, V),

where X, Y € C®°(x*TM) and Z € T, (T My).

In [17], Tayebi and Najafi did not consider the Shen’s C'-process on Berwald connection. Here,
we apply Shen’s C'-process on Berwald connection and find a new torsion-free connection. First, we
prove the existence of this linear Finslerian connection.
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1140 M. FAGHFOURI, N. JAZER

Theorem 3.1. Let (M, F') be an n-dimensional Finsler manifold. Then there is a unique linear

connection D in 7T M, which has the following properties:
(1) D is torsion-free in the sense of (3.1);
(i) D is almost compatible with the Finsler structure in the following sense: for all XY €

€ C°(x*TM) and Z € T,(TMy),
(Dz9)(X,¥) 1= =24 (p(2), X, ) + 2P [4 ((2), X, V) + 4 (0(2), X Y)]. 33
Proof. In a standard local coordinate system (2%, %) in T My, we write
Do 0 = I} 0k, D2 9= F: 0.

Clearly, (3.1) and (3.3) are equivalent to the following:

Tk =T%, (3.4)
FE=o, (3.5)
0(gi; ] .
é;,z) = Thigi; + Thjga — 24556 + 2T}, 1™ (A + Ay;j), (3.6)
8 .. . . .
ézllg) = kagsj + F,fjgis + 2F 1(Aijk + A”k) — QF;:ZklmAijk. (3.7)

Note that (3.5) and (3.7) are just the definition of A;;;,. We must compute Ffj from (3.4) and (3.6).
Then making a permutation to ¢, 7, k in (3.6), and, by using (3.4), we obtain

T = vk + A% + ¢ {Th (Aumij + Amig) = T (Amgt + Amiy) = T (Amit + Amit) } £, (3.8)

where

k ._1 Kl agjl 99 _ 09i;
AT W + Oxd  Oxl (39

and Afj = gklAiﬂ. Multiplying (3.8) by ¢ implies that

TEO =~k — (AR + AF Tl (3.10)
Contracting (3.10) with #/ yields

T 0000 = A% ot (3.11)

By putting (3.11) in (3.10), one can obtain

Tipl” = yipl” — OV (A + Apy). (3.12)
Putting (3.12) in (3.8) gives us the following:

I =~k + Al + g {Vﬁf(Amij + Amig) = Y (At + Amig) = Vs (Amir + Amil)} O+
Pl { (AT + AT (Ab, + Ab) + (AT + AT (AL, + Af,)-
—(Ab, + Ak (A + A ]

This proves the uniqueness of D. The set {T'¥ FZ’; = 0}, where {I‘fj} are given by (3.1), defines a

ijo
linear connection D satisfying (3.1) and (3.3).
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SHEN’S L-PROCESS ON BERWALD CONNECTION 1141

4. Curvatures of the connection D. The curvature tensor €2 of D is defined by

QX,Y)Z =Dy DyZ — Dy Dy Z — D 112,

where X,Y € O®(T(TMy)) and Z € C®°(x*TM). Let {e;}?, be a local orthonormal (with
respect to g) frame field for the vector bundle 7*T' M such that g(e;,e,) =0,i=1,...,n— 1 and

" F  F(x,y) 0z

Let {w'}™ , be its dual co-frame field. These are local sections of dual bundle 7*T'M. One readily

finds that
n . oF

T 01t
which is the Hilbert form. 1t is obvious that w(¢) = 0.
Now, let us put

w

= lidet = w,

p=w®e;, De; = w ®@ej, Qe; = 207 ® e;.

{Qij } and {wij } are called the curvature forms and connection forms of D with respect to {e;}.

We have p := DF{ = F{w,! + d(log F)&!} ® ;. Put w™* := w,’ + d(log F').,. It is easy to
see that {w®,w" T}, is a local basis for T*(T'My). By definition p = w' ®¢;, p=Fuw"" ®e;.
Using the above formula for Theorem 3.1, it then re-expresses the structure equation of the new
connection D as follows:

dw' = w! A wji, 4.1)
da:: = qrw: (R 9A o L (A A TR 4.2
9i5 = GkjW; +gk1w] kW + ( ijk + zyk)w . ( . )
Define g;; and g;;. by
dgij — gkjwik - gikwjk = gij\kwk + gz’j.kw"+k,

where g;; and g, are, respectively, the vertical and horizontal covariant derivative of g;; with
respect to the connection D. This gives

Gijlk = —24;j1,
gijr = 2(Aiji + Aiji).
It can be shown that 5;|S =0 and 5;_5 =0, thus (gijgjk)‘s =0 and (g"jgjk).s = 0. So,
=248, g =24 + AY)
Moreover, torsion freeness is equivalent to the absent of dy* in {wji} namely
wji = F;k(x, y)da®,

which is equivalent to
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1142 M. FAGHFOURI, N. JAZER
J k J_0J
dw;” —w;" Nwy = Q7. 4.3)

Since the (2 j" are 2-forms on the manifold 7'My, they can be generally expanded as

A . 1
07— 5Ri]klwkz /\wl + P)ijklwk Awn-&-l + 5Qijklwn-i-k’ /\wn—f—l_ (4‘4)

)

The objects R, P and () are respectively the hh-, hv- and vv-curvature tensors of the connection D.
Let {&;, é;}1, be the local basis for (T M), which is dual to {w?,w" ™}, ie., & € HT'M, é; €
€ VT M such that p(€;) = e;, u(é;) = Fe;. Let us put

R(ey,e)e; = R, e, P(e, é)e; = P ej, Qe €1)e; = Q.7 €;-

The connection defined in Theorem 3.1 is torsion-free. Then we have () = 0. First Bianchi identity
for R is given by

Ry + Ryl )+ Ry, =0
and
Py =Dy (4.5)
Exterior differentiation of (4.3) gives the second Bianchi identity
dQ; —wF A Q) +w! Ak =0, (4.6)
We decompose the covariant derivative of the Cartan tensor on 7'M
dAij — Agjrw;’ — Ailkwjl — Ay = Az‘jkuwl + Ayt 4.7)
Similarly, for Aijk, we get
dAZ]k — Aljkwil — Ailkwjl — Az’jlwkl == Aijk“wl + Aijk.lwn+l‘ (4.8)

It is easy to see that, A;n, Aijki, Az‘jk\l and Aijk:.l are symmetric with respect to indices 4, j and
k.
Put Az’jk = A(ei, €4, ek). Then

Aijin = Aijk-
By (4.7) and (4.8), we get
Apjrn =0, and - Apjrs = —Ajw,
Anjku =0, and Anjk,l = —Ajkl.

Theorem 4.1. Let (M, F) be a Finsler manifold. Suppose that D is the linear torsion-free
connection obtained by Shens L-process on Berwald’s connection. Then the hv-curvature of D
vanishes if and only if F' is a Berwald metric.
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SHEN’S L-PROCESS ON BERWALD CONNECTION 1143

Proof. Let (M, F') be a Finsler manifold. Differentiating (4.2), and using (4.1), (4.2), (4.3), (4.7)
and (4.8) leads to

dw’ = W A w}, 4.9)
dgij = grjwi + griw§ — 2A;50" + 2(Agje + Ajr)w™ . (4.10)
By differentiating of (4.10), we get
0= dgl-kwf + gikdwf + dgjrwf + gjrdwl + 2(dA;j + dAir)w"TF+
+2(Aiji + Agjr)dw™ — 2d A;jpw® — 2A;5pdw".

Using (4.4), (4.6) and (4.7), one can obtain

Riji + Rjim = =245 R 1y — 245555 1y — 4A 1, (4.11)
Pijii + Pjing = =245 — 2(Agjun + Aijl|k) — 2(Aijs + Aijs) P, (4.12)
Aijkeom + Az’jk.m =0. (4.13)

Permuting ¢, j, k in (4.12) yields
Pt + P = —2A 550 — 2(Ajp + Ajai) — 2(Ajes + Ajis) P31 (4.14)
Ppiji + Pinji = —2Aij0 — 2(Agay; + Agirgy) — 2(Ais + Aris) P (4.15)

From (4.12), (4.14) and (4.15), we get

Pijri = — Ay — [(Aijlwf + Agun) + (A + Ajagi) — (Agaj + Akil\j)} -
(g + A B+ (A + Ae) Py — (ks + Ais) Pt (4.16)
Taking a vertical derivation of Aijkyi = 0 with respect to y' implies that
Ay’ = —Aju. 4.17)
Multiplying (4.17) with 37 yields
Agriy'y? = 0. (4.18)
By contracting (4.16) with ¢’ and considering Agji wyt =0, (4.18) and (4.17), we get
Prjrt = —Ajrt — (Ajis + Ajis) Pl - (4.19)
On the other hand, multiplying (4.12) with g%y’ implies that P,,;; = 0. Thus, by (4.5), we have
Prpny = 0. (4.20)
Contracting (4.12) with 37y* yields
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Pipni + Primt = 0. (4.21)

By (4.20) and (4.21) it follows that
Phini = 0. (4.22)

Putting (4.22) in (4.19) implies that
Poir1 = —Ajn. (4.23)

Let F' be a Berwald metric. Thus from (4.23), we get P, ;i = 0 or, equivalently, Pq{ = 0. By
putting it and A;;;,; = 0 in (4.16), we get P = 0.

Conversely let P = 0. By (4.23), it follows that Ajkl = (. By assumption, (4.16) reduces to
following:

Aijry = — (A + Aijl\k) — (Aji + Ajkl|i) + (Apay + Akil|j)- (4.24)
Permuting ¢, j, k in the above identity leads to
Ajii = —(Ajwyi + Ajagi) — (Agayy + Arargy) + Aijgs + Aijign)- (4.25)
(4.24), (4.25) yields
Ak + Aijl|k = Ay + Akzil|j~ (4.26)

Contracting (4.26) with y* implies that

Aijl = _Aijl- (427)

Since Ajk:l = 0, then (4.27) reduces to Aijk = 0. Putting it and P = 0 in (4.12) imply A;j;z; = 0.
This means that F' is a Berwald metric.

5. Compact Finsler manifolds. Let ¢ denote the unique vector field in HTM such that
p(f) = £. We call ¢ the geodesic field on T My, because it determines all geodesics and it is called a
spray.

Let ¢ : [a,b] — (M, F) be a unit speed C*° curve. The canonical lift of ¢ to T'M) is defined by

d d
¢ = £ € T'My. It is easy to see that p ((;) = {;. The curve c is called a geodesic if its canonical

lift ¢ satisfies % = (;, where / is the geodesic field on T My, i.e., ¢ € HTM, p(f) = ¢.

Let I, M = {v € T; M, F(v) = 1} and IM = {J,¢ps Iz M. The I, M is called indicatrix, and
it is a compact set. We can show that the projection of integral curve ¢(t) of £ with ¢(0) € IM is
a unit speed geodesics ¢ whose canonical lift is ¢(t) = (t). A Finsler manifold (M, F') is called
complete if any unit speed geodesic ¢ : [a,b] — M can be extended to a geodesic defined on R. This
is equivalent to requiring that the geodesic field ¢ restricted to IM is complete.

Let (M, F') be a Finsler manifold and ¢ be a unit speed geodesic in M. A section X = X (¢) of
7*'I'M along ¢ is said to be parallel if D%X = 0. For v € T'Mj, let us define

A~

||A||v = SupA(Xa Y7 Z)a

where the supremum is taken over all unit vectors of 7;TM. Put ||Al|, = sup,erar [|Allo- Then we
have the following theorem.
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Theorem 5.1. Let (M, F') be a compact Finsler manifold. Then F is a Landsberg metric if and
only if

A=o. (5.1

This means that, on compact manifolds Py ;i; = 0 if and only if F' is a Landsberg metric.
Proof. Letus fix X, Y, Z € 7*T'M at v € I, M. Suppose that ¢c: M — R is the unit speed

d
geodesic with d—j(O) = v. Let X(t), Y(t) and Z(t) denote the parallel sections along ¢ with
X(0)=X,Y(0)=Y and Z(0) = Z. Put

By definition, (5.1) implies that

. dA . dA

Therefore, from (5.1) and (5.2), we have
dA
— =0.
dt

Then
A(t) = tA(0) + A(0).

Since M is compact then it is complete and ||A|| < co. Then by letting ¢ — —o0 or t — oo, we get

A(0) =A(X,Y,Z)=0.

Thus, F' is a Landsberg metric.
Remark 5.1. Suppose that F satisfies (5.1). This equation is equivalent to that for any linearly
parallel vector fields u, v, w along a geodesic c, the following holds:

d

-
The geometric meaning of this is that the rate of change of the Landsberg curvature is constant along
any Finslerian geodesic [22].

An (o, 8)-metric is a Finsler metric defined by F' := a¢(s), s = /a, where ¢ is a smooth
function on a symmetric interval (—bg,bg) with certain regularity, « is a Riemannian metric and
B is a 1-form on the base manifold (see [13, 20, 21]). There is a special class of («, 3)-metric,
namely Randers metrics. A Randers metric /' = o+ 3 on a manifold M is just a Riemannian metric
« perturbated by a one form 8 on M such that the Riemanninan length of 3% is less than 1 (see
[10, 18]).

In the proof of the main theorem in [22], the authors used the condition g%/ Lijsy® = 0 and
proved that every Randers metric with closed one form § is a stretch metric if and only if it is
Berwaldian. Then, we get the following corollary.

[Aé(u,v, w)} =0.

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 8



1146 M. FAGHFOURI, N. JAZER

Corollary 5.1. Let (M, F) be a Finsler— Randers manifold equipped with the Finsler connection
D. Then F' is a Berwald metric if and only if Py = 0.

The Corollary 5.1 can be considered as an extension of Theorem 5.1. We delete the condition
“compact” and replace the Randers manifold instead of arbitrary manifold.

6. Shen’s C-process on Berwald connection. In this section, we are going to study the
connection obtained by Shen’s C'-process on the Berwald connection.

Theorem 6.1. Let (M, F') be an n-dimensional Finsler manifold. Then there is a unique linear

connection V in 7T M, which has the following properties:
(i) V is torsion-free in the sense of (3.1);
(i) V is almost compatible with the Finsler structure in the following sense:

(V29)(X,Y) =2 [A(p(2), X, V) = A(p(2), X,Y)| +2F 1 A(u(2), X,Y),  (6.1)

where X,Y € C®(r*TM) and Z € T,(T My). o
Proof. In a standard local coordinate system (x*,y") in 7'My, we write

V_o 9; =T};0, v%aj = FLoy.
yl

ozt

The equations (3.1) and (6.1) are equivalent to

Iy =Tk, (6.2)
Ff =0, (6.3)
09ii) _pt g s L + 2(Agjr — Ag) + 2T I A (6.4)
ka = L kiG51 k]glz ijk ijk km ijly .
9(9i5) -
aylg = Fz‘lkglj + F]ijgli + 2F 1Aijk + QF&klmAijl. (6.5)

Then making a permutation to , j, k in (6.4), and by using (6.2), we obtain

TF =0 — (AF — A5 + g™ {AijmITly — ATy — T A } €,
where 'yfj defined by (3.9). By the same argument used in Theorem 3.1, we get

Ff} = ’szj - (Afj - AZ) + " L iVl — Ajimy — Atim"jy } O+

+ {A’? AT 4 AR AT Ak Am} SN (6.6)

gm*iis im*rjs sm* g

This proves the uniqueness of V. The set {Ffj, FZ’; = 0}, where {Ff]} are given by (6.6), defines
a linear torsion-free and almost compatible connection V satisfying (3.1) and (6.1).

Here, we remark that the connection V can be expressed by the following equations

dw' = wl A wji, (6.7)
dgij = greiw;” + gipw;™ + 2(Aijr — Agje)w® + 24,00 (6.8)
Thus,
gijik = 2(Aijk — Aijr), Gij.k = 2Aijk-

By a simple calculation, we get the following theorem.
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Theorem 6.2. The new connection V can be obtained from the Shen connection by Matsumoto s

L-process.
Thus we get the following diagram:

. SC-process .
Chern connection —— Shen connection

M L-process M L-process
1 1

. SC-process .
Berwald connection ——— the connection V.

7. Curvatures of the connection V.

Theorem 7.1. Let (M, F) be an n-dimensional Finsler manifold. Suppose that NV is obtained
from the Berwald connection by Shen'’s C-process. Then the hv-curvature of NV vanishes if and only

if I is Riemannian.

Proof. Let (M, F') be a Finsler manifold. Differentiating (6.8), and using (6.7), (6.8), (4.3), (4.7)

and (4.8) leads to
dw® = Wl A wj-,
dgi; = W g 2 A — A W 240"
ij 9kjW; GkiW; ( ijk z]k:)w + ijkW .
By differentiating of (7.2), we get
dgikwf + gikdwf + dgjkwf + gjkdwf + 2(d A1, — dAijk)wk—l-
+2(Aijk — Aijk)dwk + 2dAijkwn+k + 2Az‘jkdwn+k =0.
Putting (4.4) in (7.3) implies that
Rijri + Rjipg = —2A45s Ry, 1y,
Piji + Pjimt = —2Aij50 + 2(Aijea — Aiji) — 24355 Piras
Aijrr = Aiji k-
Permuting ¢, 7, k in (7.5) yields
Pt + Prjit = =245 + 2(Ajris — Ajagi) — 24515 P 4,
Priji + Pinji = —2Apij0 + 2(Apija — Apayj) — 2Akis P’ -
From (7.5), (7.7) and (7.8), we have
Pijrt = —Aijpa + Aijrs — (Aijur + Ajragi — Aragj) —
—Aijs Py 1y — AjksPp o + Aris Py j1-
Therefore,

P = —Aj.

(7.1)
(7.2)

(7.3)

(7.4)
(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

By (7.9) and (7.10), it follows that the hv-curvature of F' is vanishing if and only if F' reduces

to a Riemannian metric.
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