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INTEGRAL EQUATIONS INVOLVING

GENERALIZED MITTAG-LEFFLER FUNCTION

IHTEI'PAJIBHI PIBHAHHSA, IO MICTATDH Y3ATAJIBHEHY ®YHKIIIO
MITTATI'-JIE@DJIEPA

The paper deals with solving the integral equation with a generalized Mittag-Leffler function quﬁ(z) that defines a kernel
using a fractional integral operator. The existence of the solution is justified and necessary conditions on the integral
equation admiting a solution are discussed. Also, the solution of the integral equation is derived.

> gamiore i ; ; : 7,4
Po3mis71a€Thest PO3B’SA3HICT IHTErPaTbHOTO PIBHAHHA 3 y3aranbHeHoo dynkuiero Mirrar-Jleddaepa E7'%(z), wo usna-
Yae sIpo 3 BUKOPUCTAHHAM APOOOBOro iHTErpaibHOro oreparopa. [cHyBaHHS po3B’s3Ky OOIPyHTOBaHO, OOTOBOPIOIOTHCS
HEOOXiJHI YMOBH JUIsl iHTETPaJIbHOTO PIBHSHHS, IO JOIYCKAIOTh PO3B’s30K. Tako)K HaBEIEGHO PO3B’SI30K TAKOIO iHTErpalib-
HOTO PiBHSHHS.

1. Introduction and preliminaries. The Mittag-Leffler function was defined by the Swedish mathe-

matician, G. Mittag-Leffler [5], by

oo
ZTL

Ea(Z) :Z()W, (1)

where z is a complex variable and o > 0 that occurs as the solution of fractional order differential

equations. The Mittag-Leffler function is a direct generalization of exponential function, hyperbolic

functions, and trigonometric functions as E;(z) = e, F3(2?) = cosh z and Ey(—2%) = cos z. For

0 < a <1 and|z| <1, it interpolates between the exponential function e* and a geometric function
1 0 L

1—2 Zk:ﬂ =

Due to its vast involvement in the field of physics, engineering and applied sciences, many authors

defined and studied different generalizations of Mittag-Leffler function, namely, £, g(z) introduced
by Wiman [16], E ;(z) suggested by Prabhakar [6], E%(2) defined and studied by Shukla and
Prajapati [9], etc.

Shukla and Prajapati [9] defined the generalization of (1) as Eg:qﬁ(z), for a, 8,7 € C, Re (),
Re (), Re(y) >0, and ¢ € (0,1) U N, in the form

BV (z) = i (’7)(1” 2" )
o,B vt T'(an+ B) n!’
T
where (7)gn = M denote the generalized Pochhammer symbol, which in particular, reduces
! NG
-1
to gi" szl <W> if ¢ € N, and, moreover, it is the generalization of the exponential
n

function as Ellll(z) = exp(z). Also, Eill(z) =FE, (z), Eilﬁ(z) = E, 5(z) and Egé(z) =FE] 5(2).
Further, Shukla and Prajapati [10] studied some properties of the generalized Mittag-Leffler-type
function and generated integral operator
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T

B J@) = [ o= 0 B w(e - 0"} o) )
a
for a, B,v,w € C, Re(a), Re(B), Re(y) >0, and ¢ € (0,1) UN.

Fractional integral operators play an important role in the solution of several problems of science
and engineering. Many fractional integral operators like Riemann- Liouville, Weyl, Kober, Erde-
lyi—Kober and Saigo operators are studied by various authors due to their application in physical,
engineering and technological sciences such as reaction, diffusion, viscoelasticity, etc. A detailed
account of these operators can be found in the survey paper by Srivastava and Saxena [13]. Various
properties of family of Mittag-Leffler functions using fractional integral operators have been obtained
by many researchers (see, for example, [1-3, 8, 10, 14, 15]).

In this paper, we apply the results obtained by Shukla and Prajapati [10] to prove the existence
and uniqueness of the solution of the following integral equation, involving generalized Mittag-
Leffler function (2). For «, 5,7, A € C, Re(«),Re (5),Re(y),Re(A) >0, ¢ € (0,1) UN and for
any real number a > 0,

x
/($ — )P BNz — 1)} () dt = g(x). (4)
a
In Section 2, integral on left-hand side of (4) is considered as an operator and its existence is justified.
In Section 3, properties of the integral operator are derived. In Section 4, necessary condition for
the solution is obtained and the integral equation (4) is solved. In Section 5, we discuss the integral
equation
b
[ =2 B - 0%} ) = gl )
T
for a, 5,7,A € C, Re(a),Re(5),Re(v),Re(y) > 0, ¢ € (0,1) UN and for any real number
0<a<xz<hb.

In the sequel that follow, some additional properties of Eg% are derived, and we enumerate some
terminologies and definitions, required in the investigation.

Definition 1.1. Lebesgue measurable functions [7]: L(a,b) denote the linear space of real (or
complex) valued functions f(x) on [a,b] for b > a, i.e., f is L-integrable if

b
L@mz‘ﬂme/mmw<w

Definition 1.2. Riemann— Liouville fractional integrals of order p [4): Let f(x) € L(a,b),
b>a, peC, Re(p) > 0. Then

[ f(w) = oIV f(x) = T, f(z) = r(lﬂ) / - / (;)1_u dt, w>a, ©)

is called fractional integral of order u. I" is bounded. Also I"f = 0 = f = 0. Hence, inverse
operator exists on subspace L, of L. Similarly,
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b
1 f(®)
JEf(x) = I f(z) =1 f(x) = / —dt, x <b.
We intend to maintain following properties of £ [10], which are employed to prove theorems
in this paper.
If Re(a), Re(B), Re(v), Re(A\) > 0, Re(u) > 0, and ¢ € (0,1) U N, then

1 Y4 .q a
F(“t/ (=)' s =) ELLNs — 1)} ds = (@ — ) EDL L (M= — 1)}

and
! 4 o —p—17,q o
w/ (s = 9 (@ - )BT (w9 ds = (@~ 0 ELS, (A - 1)

2. The integral operator. We employ the operator £ o fxatrd (x), defined by (3) to repre-
sent left-hand side of the integral equation (4) and, hence, forth denote it as I(a, 3,7,q; A) f(x).
Therefore,

xT

I, 8,7, g N (@) = B 5 o (@) = / (2= 0" EPS A - 0} JOdt. ()

a

We may often use I(f3) instead of I(«v, 3,7, q; \) owing to reason that, in the operator I(«, 3,7, q; A),
all other parameters remain unaltered except [3.

In the later part of the paper we discuss the integral equation (5) for which we define the operator
as follows:

b

(o, B,7, ;M) f(x) = / (t— a:)ﬁflEg;%{/\(x — 1)} f(t)dt. (8)

T

To justify the existence of the integral defined by the left-hand side of the equation (4), we
employ the following theorem from [10].

Theorem 2.1 (existence of the operator). Let f € L(a,b), b > a; o,83,7,\ € C, Re(«),
Re (), Re(y), Re(A) >0, and g € (0,1) UN. Then

T

/ (2 — )P B (A — 1)°} ()t

a

defines a function in L. Moreover, it is bounded on L and

[ (e, 8,74 M £, < Bl fln,

where

‘(7) n’ ’/\(b — CL)Re(a)|n
— (- )@Y y '
B=C-a0™" ) Wan T BlRe(ain 1 Re@]
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3. Properties of the operator.
Theorem 3.1 (composition property). If «,3,v,5 A € C, ¢ € (0,1) UN, Re(a), Re(8),
Re (v), Re(A\), Re(B') > 0, then the relation

Io, 8,7, NI (o, 8,7 ¢ N) =T (o, B+ 8,7+, ¢; A) ©)

is valid for any summable function f € L(a,b). In particular,

I, 8,7, s NI (o, B9, @A) fa) = TP f (). (10)

Proof. Let f € L and = € (a,b). Then

(o, 8,7, ;M (o, B9 s A) f(2) =

_ / (2 — w)P EMIA(z — u)du / (u— 1) LB A — 1) f ().

a a

Changing the order of integration, which is justified by Fubini’s theorem, we get

o, 8,7, ¢ NI (0, 8,79, ¢: N) f(z) =

_ /f(t)dt/ (0= 1) N — w)P B (M — 0)*} ELS (M — )} du.

Further simplification yields

_ P (o N (g — )OO (am 4+ B)T (an + 3)
_ 5 B—1 _
= (@=0" ZZ am—l—ﬁ oj”L—I—B’) m!n!T(a(m +n) + 5+ 5) N

= (z— t)6+6 —1E'y+“/ 'q {)\( £)e }

which leads to (9). On substituting v/ = —~ in (9), this reduces to (10), in accordance with the
following remark.

Remark3.1. It should be noted that for v = 0, the operator defined by (7), coincides with the
Riemann - Liouville fractional integral of order S,

I(e, 3,0, \) f(z) = I° f (). (11)

Similarly, under same techniques, used in Theorem 3.1, we prove commutative property.
Theorem 3.2 (commutative property). If a, 3,7, u, A € C, g € (0,1) UN and Re (a), Re (5),
Re (7), Re () > 0, then, for almost all x belongs to (a,b) and f € L,

"I(8)f(x) = 1(8) " f(x), (12)

that justifies that the operator 1(3) commutes with IT*.

One can easily prove this theorem by using the results (6) and (7). Hence, details are avoided.
Further, we will need the following property given by Shukla and Prajapati [10] to obtain the solution
of the integral equation (4).
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Theorem 3.3 (shifting property). Let o, 3,v,u, A € C, ¢ € (0,1) UN, Re(u) > —Re(5) and
Re(a) >0, Re(B) > 0, Re(vy) >0, Re(A) >0, Re(u) > 0. Then

"I, B, 7, q; A) = I, B+ 1,7, G5 A). (13)

It can be observed that the composition of fraction integral operator [# and the operator I(/3)
result in to shifting of the second parameter 8 of (7) by the order of fraction integral operator u,
where as all other parameters remain unaltered. Thus, we call this property as a shifting property.

4. Solution of the integral equation. To obtain the solution of integral equation (4), we need
to prove the following lemma.
Lemma 4.1. For o, 3,v,A € C, Re(a),Re (8),Re(v),Re(X) >0, and f € L,

T

IPI(e, By, 4 M f (2) = f(2) + a)(y)q / (¢ — 0" B @ — )%} f(t)dt.
Proof. By shifting property (13), we get

xT

I'"PL(e, 8,7, ¢ N f () = I(o, B+ 1= 8,7, ¢; N f() = /Elj‘f Az — 1)} f(t)dt.

a

Therefore,

xT

I 8,70 ) @) = ' [ B (e~ 0} sty =

12 [ B OG- 07} st =

T

—1° [ (), B3 (0w = 0% e — 07 (1)t =

a

T

— P | 1) + aA(y), / (= ) BT (A — 1)°} f(t)dt|. (14)

a

Lemma 4.1 is proved.
Theorem 4.1 (the necessary condition for existence of solution). The existence of I Pg in L is
a necessary condition for the integral

xT

/ (z— ) BT (M@ — )} f(D)dt = g(t) (15)

a

to admit a solution f in L .
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Proof. Suppose the integral equation (15) has a solution f € L. Then the equation (14) can be
written as

T

I, By, a; A (@) = 17 | f(2) + aA(7), / (& = )" BN M@ — 0} f()dt | = g(2).

(16)

For f € L and by Theorem 2.1, it can be observed that the integral in (16) exists in L. Consequently,
I8¢ exists in L. This completes the justification.

Once the necessary conditions are justified, inwhat follow is the solution of the integral equa-
tion (4).

Theorem 4.2 (the solution). If Re (u) > Re(8) > 0 and I™*g exists in L, then the integral
equation

T

/ (2 — P B (A — £)°} F()dt = (1), (17)

a

for a < x < b, possesses a solution or a class of equivalent solutions f € L given by

T

f@) = [ =0 B N - 0" g0t (18)

a

Proof. The equation (17) can be written as
(e, 8,7, 4 M) f(x) = g(x). (19)
On writing equation (18) as
o, = B, =y, a; I g(x) = f(). (20)
Substituting for f(x) from result (20) to the left-hand side of result (19), we get
e, By, ;N f (@) = (e, B,7, ¢s NI (e, p = B, =, ¢ NI g(z). @21
By composition property (9), we write
(e, 8,7, ¢ A) f() = I(ev, 1,0, ¢; M) T g ().
By the Remark 3.1 and invoking (11), we arrive at
(e, 8,7, ;M) f () = IMTHg(x) = g(x).

Thus, f(x) as defined in (18) is proved to be a solution of the integral equation (4).
Corollary 4.1. Under the conditions of the above theorem, (17) and (18) imply each other.
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It can be easily verified by Theorem 3.2 that the operator I (3) commutes with I#. Now, to prove
(17) imply (18), we substitute the value of g(x) from (19) to the left-hand side of (20), we have

I(a7 H— ﬁ7 -, 4, A)Iilu-[(aa ﬂ777 q; A)f('r)

By commutative property (12), above result becomes

I(aau - ﬁ)_’)/aq; A)I(aaﬁa’}/?q; )‘)Ii‘uf(x)

On applying result (21), we obtain f(x).
The converse can also be proved in a similar manner.

Remark4.1. 1If ¢ = 1, Theorem 4.2 reduces to the solution of integral equation due to Prab-
hakar [6].

Remark4.2. For « =1, a = 0 and 7 is a positive integer, Theorem 4.2 yield the transform pair
due to Wimp [17].

5. The integral equation (5). The integral operator defined in (8), assists in discussing (5). Actu-
ally, it can be verified that all results analogous to Theorems 2.1, 3.1 and 3.2 hold for I*(a, 3,7, ¢; M),
because J# plays the same role as I* does for I(«a, 8,7, q; A).

Theorem 5.1. The existence of J Pg in L is a necessary condition for the integral

b
(o, By, 43 0) = /(t —a) T EL{Ma — 1)} f(8)dt = ()

x

to admit a solution f in L. Whereas, the existence of J~"g for Re (r) > Re(8) > 0 is a sufficient
condition for equation (5) to admit a unique solution.

Theorem 5.2. If Re(r) > Re(B) > 0 and J~"g exists in L, then the integral equations

b
/ (t—2) " EYU N — )} f()dt = g() (22)
and

b
f(z) = / (t—2) P B (At — 2)°} T g(t)dt

imply each other.
Owing to the similarity of the proof to Theorem 4.1 and Corollary 4.1, details are avoided.

Remark5.1. For ¢ = 1, result of integral equations becomes an apparent special case due to
Prabhakar [6].

Remark5.2. When o = 1, and parameters are specialized, (22) reduces to the integral equations
due to Srivastava [11, 12].
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6. Some additional result for E_'}.
Theorem 6.1. If o, 3,7 € C, Re(a),Re(8),Re(y) >0, and q € N, then

d
(qzdz n 7) EJ4(2) = vET5(2). 23)
Proof. We have
d z” )(v+1) q 2" 1
- n — ~prtha
<qzd +7> ZFom—i-ﬁ n' Z I'(an + ) B " (2):

Remark6.1. On setting ¢ = 1 in (23), this gives result due to Prabhakar [6] and for ¢ = 1,

~v = 1 yields relations proved by Wiman [16].

7. Conclusion. Since long the integral equations with special functions are not studied, in this

paper, we obtained some properties of integral equation through generalized Mittag-Leffler function.
This work may be useful in the study on integral equation and special functions.
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