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A MATRIX APPLICATION OF POWER INCREASING SEQUENCES
TO INFINITE SERIES AND FOURIER SERIES

MATPHUYHE 3ACTOCYBAHHS 3POCTAIOYUX CTEIIEHEBUX
MOCJIIOBHOCTEM IO HECKIHUEHHUMX PSIIIB I PSAIIB ®YP’€

The aim of the paper is a generalization, under weaker conditions, of the main theorem on quasi-o-power increasing
sequences applied to |A, 0,|, summability factors of infinite series and Fourier series. We obtain some new and known
results related to basic summability methods.

Meroro 1aHoi poOOTH € y3araJbHEHHs OCHOBHOI TEOPEMH IIPO 3aCTOCYBAHHS 3POCTAIOYMX KBa3i-0 -CTENIEHEBHX IOCIIIOB-
HocTel 0 KoedilieHTiB miacymoByBanus |A, 0, |, HeckiHueHHHX psiaiB i psaiB Dyp’e mpu cnabumx ymoBax. OTpuMaHo
JIesIKi HOBI Ta BiZIOMi Pe3yJIbTaTH, IO BiTHOCATHCS 1O 0a30BUX METOMIB IiICYMOBYBAaHHSI.

1. Introduction.

Definition 1.1. A positive sequence (by,) is said to be an almost increasing sequence if there
exists a positive increasing sequence (cy) and two positive constants M and N such that Mc, <
< b, < Ney, (see [1)).

Definition 1.2. A positive sequence (X,,) is said to be quasi-o-power increasing sequence if
there exists a constant K = K (o, X) > 1 such that Kn®X,, > m°X,, for all n > m > 1.

Every almost increasing sequence is a quasi-o-power increasing sequence for any nonnegative
o, but the converse is not true for o > 0 (see [13]). For any sequence (),) we write that A2\, =
= AN, — A1 and AN, = A, — Apt1

Definition 1.3. The sequence () is said to be of bounded variation, denoted by (\,) € BV,
> 1AM <.

Let Z a, be a given infinite series with the partial sums (s,,). By u& and t% we denote the nth
Cesaro means of order «, with o« > —1, of the sequence (s,,) and (na,), respectively, that is (see

(8])

n n

1 — 1 —
o a—1 o a—1
Un = o E Ar" sy, and t) = 1o E AL vay,
v=0 v=0
where

Aa:(a+1)(a+2)...(a+n):O(na)’ A —0 for n >0,

" n!

Definition 1.4. The series Z ay, is said to be summable |C, o, k > 1, if (see [10, 12])

o0 > 4
> g = 3 2l < o
n=1 n=1
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If we take o = 1, then |C, a|; summability reduces to |C,1|; summability. Let (p,) be a
sequence of positive real numbers such that
n
Pn:va—M)o as n—oo (Pj=p_;=0, i>1).
v=0

The sequence-to-sequence transformation

1 n
Wy = Fn q}zopvsv

defines the sequence (w,) of the Riesz mean or simply the (N,p,) mean of the sequence (s,)
generated by the sequence of coefficients (p,) (see [11]).
Definition 1.5. The series Z an, is said to be summable |N,py|., k > 1, if (see [2])

0 k—1
P
g ( n) Wy, — wn_1|F < oo,

n=1 Pn

In the special case when p,, = 1 for all values of n (resp., k = 1), |N, py|  summability is the
same as |C, 1|, (resp., | N, p,|) summability.

2. Known results. The following theorem is dealing with |, p,| . summability factors of
infinite series under weaker conditions.

Theorem 2.1 [7]. Let (X,,) be a quasi-o-power increasing sequence. If the sequences (X,,),
(An) and (py,) satisfy the conditions

AmXm =0(1) as m — oo, (2.1)
Zan|A2)\n] =0(1) as m — oo, (2.2)
n=1

m Pn

> = =0(Py), (2.3)

n

n=1
~ Pn |tn]*
Z PX’“|—1 =0(X;,) as m — oo, (2.4)
n=1""n
i " =0(Xy) as m— oo (2.5)
n=1 nXﬁ_l " ’ .

then the series Z an\p, is summable \N,pn|k, k>1.

3. An application of absolute matrix summability to infinite series. Let A = (a,,) be
a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the
sequence-to-sequence transformation, mapping the sequence s = (s;,) to As = (A,(s)), where

n
An(s) = Zamsv, n=0,1,....
v=0

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 5



A MATRIX APPLICATION OF POWER INCREASING SEQUENCES TO INFINITE SERIES ... 637

Definition 3.1. Let (0,,) be any sequence of positive real numbers. The series Z Gy, is said to
be summable |A, 0|k, k > 1, if (see [14, 15])

Zeﬁ* ’AAn(s)‘k < 00,
n=1

where

AAL(s) = An(s) — Ap—1(s).

P,
If we take 6, = —, then we obtain |A, p,|; summability (see [16]), and if we take 6,, = n,
n

P,
then we have |A[, summability (see [18]). Also, if we take 6,, = — and apy = %’, then we have
Pn n
%) and p, = 1 for all values of n,
then |A, 0, | summability reduces to |C, 1|, summability (see [107?|). Finally, if we take 6,, = n and

|N, pnl, summability. Furthermore, if we take 0,, = n, a,, =

Any = %}, then we obtain |R, p, |, summability (see [3]).

4. M?lin results. The Fourier series play an important role in many areas of applied mathematics
and mechanics. Recently some papers have been done concerning absolute matrix summability of
infinite series and Fourier series (see [5, 6, 19—21]). The aim of this paper is to generalize Theorem
2.1 for |A, 6,|; summability method for these series.

Given a normal matrix A = (a,,), we associate two lower semimatrices A = (@) and A=
= (Gpy) as follows:

n
ELnU:E ani, m,v=0,1,...,
1=v
and

&00 = apo = apo, &nv = Qpy — ELn—l,m n= 17 27 s

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then we have

An(s) = Zamsv = Zamav 4.1)
v=0 v=0
and
AAp(s) = anya. (4.2)
v=0

Using this notation we have the following theorem.
Theorem 4.1. Let k > 1 and A = (any) be a positive normal matrix such that

=1, n=01,..., (4.3)
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Up—1,p = Qpy for n>v+1, (4.4)
n—1 1
> o1 = Olann). (4.5)
v=1

Let (X,,) be a quasi-o-power increasing sequence and let (0,,a,y) be a non increasing sequence. If
the sequences (X,,), (An) and (py) satisfy the conditions (2.1)—(2.3) of Theorem 2.1, and

|k
Zek ! ,mXZ =0(X;) as m— oo, (4.6)
- w1 Ital®
(Hnann) k1 —O(Xm) as m — 00, 4.7)
n=1 nAn

then the series Z an\p is summable |A, 0, |k, k > 1.

_ P, .
It may be remarked that if we take A = (N, p,) and 6,, = —, then the conditions (4.6), (4.7)

are reduced to (2.4), (2.5). Also, the condition (4.5) satisfied by ggndition (2.3). Therefore, we have
Theorem 2.1.

We need the following lemmas for the proof of our theorem.

Lemma 4.1 [17]. From the conditions (4.3) and (4.4) of Theorem 4.1, we have

n—1

Z |Aam}| < ann,

v=0
&n,v—l-l Z 0;

m+1

> nwr1 = O(1).

n=v+1

Lemma 4.2 [4]. Under the conditions of Theorem 2.1 we have that

nXp|AX,| =0O(1) as n — oo,

an|A)\n\ < 0.

n=1

Proof of Theorem 4.1. Let (I,,) denotes the A-transform of the series g = . anAn. Then, by
n=
(4.1) and (4.2), we have

n
Aln = Z Qnply Ay
v=1

Applying Abel’s transformation to this sum, we obtain

AIn—Zamav v ZA(GM U)Zrar G A anaT—
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Gt S n+1
=> A <”> (v + Dty + GnpAn ——tn =
v n
v=1
n—1 n—1 n—1
v+1 v+1 n+1
= Z Aty Aty + Z an,v+1 Aty + Z an v+1)\v+1— + apnAntn =
v v n
v=1 v=1 v=1
= in,1 + In,2 + In,3 + In,4-
To complete the proof of Theorem 4.1, by Minkowski’s inequality, it is sufficient to show that
o0
S 0 <o for r=1,2,34.
n=1
. . s . o , 1 1
First, by applying Holder’s inequality with indices k and &', where £ > 1 and — + — = 1, we get

kK

k
+1
v ‘{Aamﬂ)\ ]|tv|} =

m+1 m+1
Zekz 1|In1|k < Zek I{Z

v=1

m+1

1)y or 1Z|Aam} Aol [t |k{Z}Aam, }k_l.

n=2

By using

Aanv = Qpy — Anow+l1 = Qpy — Zln—l,v - 5Ln,v—i—l + dn—l,v—‘rl = Qpy —

and (4.3) and (4.4), we have

an—1v,

n—1 n—1 n—1
Z ‘Aanv| = Z |anv - = Z(an—l,v - anv) =
v=1 v=1 v=1

n—1 n
= E Gp—1,9 — An—1,0 — § Any + Apo + Apn =
v=0 v=0

=1- ap—1,0 — 1+ ano + ann < ann.
By using Z |Aam;| < ayy, We obtain

m+1 m+1

S0l = 0) Y ek I{Z'A“””'A e 'k}

n=2 n=2

m—+1

ZM P [t D (Onann)*H Adn| =

n=v+1

m+1

v=1
Z Oy ayy) k 1’/\ ‘k 1‘)‘ |[2o |k Z ‘Aanv| =

v=1 n=v+1
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i 0, avv Xi_l |)‘U||tv|kavv =
v=1 v
sy 1k |telf Elgk |tv
1)ZA|>‘U|Z‘9T aerkf |>‘m|ze -
v=1 r=1 r

m—1
D) Y AXIX, + O1)| A | X = O(1) a8 m — oo,
v=1

by virtue of the hypotheses of Theorem 4.1, Lemmas 4.1 and 4.2. Also, we have

m+1 m+1

v+1
Skt < Sk 1{21 st [AN um} _

m—+1 n—1 X k
2 6" {Z &n,v+1|mv\|thz} -
n=

v=1
m+1 n—1 k—1
Z Qk ! {Z G, v+1‘A)\ |X Xk|t ’k} {Z&n,v+1‘A)\v|Xv} =
n=2 v=1 v=1
m+1 n—1 m—1 k—1
=0(1) Y ok taky 1{Zam+1\m | X, Xk!m’“}{Z\AAv!XU} =
n=2 v=1 v=1
m 1 m+1
=0(1 )ZU|A)‘0’ - |tv|k Z (Qnann)k_ldn,wrl =
v=1 Xo n=v+1
m 1 m+1
(1)) " (Bvave)* 0| AN | —— e yt P bnw =
v=1 U n=v+1
Zv@awk 1\A)\] X 1]t =
v=1
S S tr[* tr]*
=0(1) Y A@AN]) D (Orar)" ! X -+0(1 mymm\z ) )gk_l -
v=1 r=1 r=1 r
m—1
DY 1AW AN Xy + O(1)m| A X =
v=1
m—1 m—1
=0(1) Y 0X, AN+ 0(1) Y Xy|AN | + O(1)m| ANy | Xy, =
v=1 v=1

=0(1) as m — o0,
by virtue of the hypotheses of Theorem 4.1, Lemmas 4.1 and 4.2.
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Furthermore, as in I,, 1, we get

v=1

m+1 m+1 n—1 |t ‘ k
S O < 3 {z el } _
n=2 n=2 v

m—+1 |t ’k n—1 1 k-1
Z ek ! {Z an7v+1|)‘v+1|k:}} {Zl Udmv-i-l} =
V=

v=1

m+1

n—1 | ‘k
(DY 0 an > Dot ot e =
n=2 v=1 v

m m+1

Z v Xk ot o] Z (Ontnn)* 41 =

v=1 n=v+1

+1
S k1|75\ <

v
v U’U v Xk, 1 ’Av—i—l’ § an o+l =
U:1 n=v+1

(1)) (Opau)” X1 —— X
v=1

v

2 I’“

=0(1) as m — o0,

by virtue of the hypotheses of Theorem 4.1, Lemmas 4.1 and 4.2.
Again, as in [,, 1, we obtain

m
>0
n=1

F=0M)> 05 ag Ml ltal” = O(1) > 05 ag, Al A [t =
n=1 n=1

m

=0(1)> 0rtak X’“'A alltalF =0(1) as m — oo,

n=1

by virtue of hypotheses of the Theorem 4.1, Lemmas 4.1 and 4.2.
Theorem 4.1 is proved.

5. An application of absolute matrix summability to Fourier series. Let f be a periodic

function with period 27 and integrable (L) over (—m, 7). Without any loss of generality the constant
term in the Fourier series of f can be taken to be zero, so that

o0

f(x) ~ Z(an cosnx + by sinnz) = Z Chn(x)

n=1
where

™

_% ] F(z)d, an:% /Tr F(z) cos(nz)dz, bn:% / F (@) sin(na)da.

—T
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We write

{fla+t)+ fle-1)],

DN =

o(t) =

Pa(t) = %

; (t —u)*Yo(u)du, o >0.

o _

It is well-known that if ¢;(t) € BV(0, ), then t,(x) = O(1), where ¢, (x) is the (C, 1) mean of
the sequence (nC,(x)) (see [9]).

Using this fact, Bor has obtained the following main result dealing with the trigonometric Fourier
series.

Theorem 5.1 [7]. Let (X,,) be a quasi-o-power increasing sequence. If ¢1(t) € BYV(0,7)
and the sequences (pn), (A\n), and (X,) satisfy the conditions of Theorem 2.1, then the series
ZCn(x))\n is summable |N,py|y., k > 1.

By using the above theorem, we have obtained the following result for | A, ,, |, summability.
Theorem 5.2. Let A be a positive normal matrix satisfying the conditions of Theorem 4.1. Let
(Xn) be a quasi-o-power increasing sequence. If ¢1(t) € BV(0, ) and the sequences (py,), (An),

and (X,,) satisfy the conditions of Theorem 4.1, then the series Z Ch(x) A, is summable |A, 0|,
k> 1.

6. Applications. We can apply Theorems 4.1 and 5.2 to the weighted mean in which A = (a;,)
is defined as a,, = % when 0 < v < n, where P, = py +p1 + ...+ p,. We have

n

So, the following results can be easily verified.

7. Conclusions.

P,
1. If we take #,, = — in Theorems 4.1 and 5.2, then we have a result dealing with |A, p,,|x
p
summability. !

2. If we take 6, = n in Theorems 4.1 and 5.2, then we have a result dealing with |A|j
summability.

3. If we take 6,, = ]]93: and a,, = %}L in Theorems 4.1 and 5.2, then we have Theorems 2.1 and
5.1, respectively.

4. If we take 0,, = n, apy = %Z and p,, = 1 for all values of n in Theorems 4.1 and 5.2, then
we have a new result concerning |C, 1|;, summability.

5. If we take 0,, = n and a,, = %] in Theorems 4.1 and 5.2, then we have |R, p, |, summability.
n
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