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CHENEY -SHARMA TYPE OPERATORS ON A TRIANGLE
WITH TWO AND THREE CURVED EDGES

OIIEPATOPU THUITY YEWHI - IIAPMHU HA TPUKYTHHUKY
3 IBOMA TA TPbOMA BUTHYTUMHU CTOPOHAMMU

We construct some Cheney—Sharma type operators defined on a triangle with two and three curved edges, their product
and Boolean sum. We study their interpolation properties and the degree of exactness.

ITo6ynoBaHno nesiki oneparopu tuity Yeitni — [llapmu, BU3HaueHI Ha TPUKYTHUKY 3 ABOMA Ta TPhOMA BUTHYTHMH CTOPOHAMH,
BU3HAYCHO IXHii 100yTOK i OyneBy cymy. Takok BUBUEHO iXHi IHTEPIOJALIKHI BIACTUBOCTI Ta CTYIiHb TOYHOCTI.

1. Introduction. There have been constructed interpolation operators of Lagrange, Hermite and
Birkhoff type on a triangle with all straight sides, starting with the paper [5] of R. E. Barnhil,
G. Birkhoff and W. J. Gordon, and in many others papers (see, e.g., [4, 6, 9, 14]). Then, were
considered interpolation operators on triangles with curved sides (one, two or all curved sides), many
of them in connection with their applications in computer aided geometric design and in finite element
analysis (see, e.g, [1-3, 7, 8, 15, 20]).

Also the Bernstein-type operators were used as interpolation operators both on triangles with
straight sides (see, e.g., [10, 13, 17-19]) and with curved sides (see, e.g., [11, 12]).

The aim of this paper is to construct some Cheney—Sharma type operators that have some
interpolatory properties on a triangle with two and three curved edges. They are extension of the
Cheney — Sharma type operators of second type, given by E. W. Cheney and A. Sharma in [16], to
the case of a curved side. There will be studied the interpolation properties and degree of exactness.

Let m € N and 3 a nonnegative parameter. The Cheney — Sharma operators of second kind @, :
C([0,1]) — C(]0,1]), introduced in [16], are given by

(@) () = iqm,m:)f(;), (1.

(1.2)

m) z(x+iB) 1 —2)[1 —z + (m —4)3)m L '

Gm,i(T) = < ; (14 mpB)m—1

2. Triangle with all curved sides. 2.1. Univariate operators. In [12], we have the triangle T,
with all curved sides, which has the vertices Vi = (0, h), Vo = (h,0) and V3 = (0,0), and the three
curved sides v;, 2 (along the coordinate axis), and 3 (opposite to the vertex V3). ~; is defined
by (z, fi(z)), with f1(0) = fi(h) =0, fi(z) <0, for z € [0,h]; 72 is defined by (g2(y),y) with
g2(0) = ga(h) = 0, g2(y) < 0, for y € [0, h] and ~3 is defined by the one-to-one functions f3 and
g3, where g3 is the inverse of the function f3, i.e., y = f3(z) and = = g3(y) with z,y € [0, h] and
f3(0) = g3(0) = h (see Fig. 1). .

Let F' be a real-valued function defined on T}, and (x, f1(x)), (x, f3(x)), respectively, (g2(v), y),
(93(y),y) the points in which the parallel lines to the coordinate axes, passing through the point
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Fig. 1. Triangle T},.

(z,y) € T), intersect the sides 1, 72 and 3. We consider the uniform partitions of the intervals
[92(y)7 93(3/)] and [fl (JJ), fg(i‘)], T,y € [Oa h]
1 =0, m} ,

A%:{m@+¢mw—mm
AV = {fl(x)+jf3(x) — fi(z) ‘jzo,n}.

respectively,

m
n

For m,n € N, a, 8 € R, we consider the following extensions of the Cheney — Sharma operator
given in (1.1):

(Q4F)(z,y) = qm,z-(:c,wF(gz(y) + z%(g’);*"?(y)y) @.1)
=0
with
z — g2(y) sl o\
() B - ) (93(y)—92(y) “5)
qm,z(xvy) i <1+m/3)m_1 X
= g(y) 2= g(y) m— i mot
s 2 [ ey 8]
respectively,
(QF)w.9) = Y- ans(o) F (o fula) 20D e2)
j=0
with
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y — filz) y— fi(z) !
( _ <n> f3(x) — fi(x) <f3($) ~ i) +]a>
qn,j\T, y) . (1 i na)n_l

J
ot N

Theorem 2.1. If F is a real-valued function defined on Ty, then:
D) QnF =F onyUn~s,

2) QnF = F on vy Uns,

3) (Qﬁbew)('xay) = xiyja i=0,1,7€N,

4) (Q%eij)(m,y) =a'yl, ieN,j=0,1.

Proof. 1. We write

X

, v L rmew)
(QnF)(z,y) = (1+m5)m_1{ [1 93(y) —gz(y)] g

z — g2(y) z — g2(y) m—1
") — 02(v) [gs(y) — ) mﬁ} F(g3(y), y)}.

So,

(QrF)(92().y) = F(92(v),v),
(Qr.F)(g3(y),y) = Flgs(y), )

2. We have
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So,
(QuF) (@, fi(z)) = F(z, fi(x)),
(QuF) (@, fs(2)) = F(x, f3(x)).

The proof for conditions 3 and 4 follows by the property dex(Q,,) = 1 (proved in [16]).
Theorem 2.1 is proved.

2.2. Product operators. Let Pl = Q% Qi respectively, P2 = Q1 Q% be the product of the
operators Q%, and Q.
We have
( IL' y :Z Qm,z €,y qn,](wlay>F(xzvfl($z)+.7f3(x2);f1(x2)>a
=0 j=0
25 = ga(y) + ;93(Y) — gz(y),
m
and
-\ 93(5) = 92(y;
i=0 j=0
f3(x) — fi(z
yj = fi(z) +J—f3< )= file)

n

Theorem 2.2. If F is a real-valued function defined on Th, then:
1) (P}rmF)(Vg,) = F(V3), (PT}mF) = F on I's,

2) (PﬁmF)(Vg) = F(V3), (Png) = F on I's.

Proof. The proof follows from the properties

(PrlrmF)(x’O) = (Q%F)(.T,O),
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(PynF) (x, f3(z)) = F(z, f3(z)), =,y €[0,h],
and
(P2.F)(z,0) = (Q%,F)(x,0),
(P2 F)(0,y) = (Q4F)(0,y),
(P2 F)(95(v),9) = Flgs(v),y), @,y € [0,h],

which can be verified by a straightforward computation.
Theorem 2.2 is proved.
2.3. Boolean sum operators. We consider the Boolean sums of the operators Q%, and Q3, i.e.,

Smn = @ © QY = Q, + QY — Q1,Q4,
respectively,
Sam = Q4 ® Q= Q4+ Q, — QUQ.
Theorem 2.3. If F is a real-valued function defined on Ty, then
Sn |3T =F |af
and
Spim ‘a'f =F ‘aT'
Proof. As
(SmnF) (@, fr(@)) = (@, F) (z, fi(2)),
(SmnF) (92(9),9) = (Q4F) (92(), y),
(ShnF) (z, f3(x)) = F(z, f3(x)),

the proof follows.

3. Triangle with two curved sides. 3.1. For fi(z) = 0, = € [0, ], the triangle T}, becomes
a triangle with two curved sides (see Fig. 2).

We suppose that F' is a real-valued function defined on T}, and (g2(y), %), (93(y),y), respec-
tively, (z,0), (x, f3(z)) the points in which the parallel lines to the coordinate axes, passing through

the point (z,y) € T}, intersect the sides 1, 72, and 3.
We consider the uniform partitions of the intervals [g2(y), ¢3(y)] and [0, f3(z)], =,y € [0, h]:

AT = {gQ(y)+i93(y)g2(y) izo,m},

™m
j:O,n}.
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Fig. 2. Triangle T}, with two curved sides.

For m,n € N, a,8 € R, we have the Cheney—Sharma operator ()7, defined in (2.1) and,
respectively,

(@F) ) =3 st )P (. L 1o
=0

with

s (000) = (?) fS?x) <f3$(/x) +ja>j1 <1 (_1 -ngfg)z[ll - f3g(/x) +(n - j)o‘] njl.

Theorem 3.1. If F' is a real-valued function defined on Th, then:
1) QnF =F onyUns,

2) QnF = F on vy Uns,

3) (Quei)(z,y) =2y, i=0,1,j €N,

4) (Qheyj)(z,y) =x'y/, i €N, j=0,1.

Proof. The proof for condition 1 is made in previous section.

2. We have

(QhF)(z,y) = Mla)nl{ <1 - ﬁj@) [1 - % + na] " F(z,0)+

i (5 S 0) (Gt o)

X [1 - - j)a] nijil F(:C, if:&(iﬁ)) +

f3(x)
y y o
+f3(:n) (fg(l‘) +na> F(az,fg(x))}
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So,
(Q%F)(x,O) = F(z,0)),
(Q4F)(x, f3(x)) = F(x, fs()).

Theorem 3.1 is proved.
Let PL,, = Q%,Q%, respectively, P2, = Q»Q%, be the product of the operators Q%, and Q3.
We have

(Pha) ) = 3 3 i)t o) F (. () ).

i=0 j=0

i = goly) + Z.gs(y) _ 92(29),

and

(P ) =33 s (5.2 10)) )5

i=0 j=0

x| g2 <sz3($)> +igg <if3(x)> " (ifg(qj)),jfs(ﬂf)

m n

Theorem 3.2. If F is a real-valued function defined on Tj,, then:
1) (P}rmF)(Vg,) = F(V3), (P,}mF) = F on s,

2) (PL.F)(V3) = F(V3), (P%,F)=F onTs.

Proof. The proof follows from the properties

(P F)(2,0) = (Q5,F)(x,0),
(PrnF) (92(v),9) = (Q4F) (92(v), ),
(PrnF) (x, f3(z)) = F(, f3(z)), =,y €[0,h],
and
(PrmF) (,0) = (Q5,F) (x,0),
(PanF) (92(9),y) = (Q4F) (92(v), ),
(P2 F)(g3(v),y) = Flgs(y),y), @,y €0,

which can be verified by a straightforward computation.
Theorem 3.2 is proved.
We consider the Boolean sums of the operators Q%, and Q3 i.e.,

Sy = @i ® QY% = Q, + QY — Q1,Q%,
respectively,
Sam = Q4 ® Q= Q4 + Qr, — QLQT,.
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Fig. 3. Triangle T}, with two curved sides.

Theorem 3.3. If F is a real-valued function defined on Tj,, then
S |or = Flot
and
Spm |<9T = Flyp-
Proof. As
(SpnF) (@,0) = (@ F) (2, 0),
(SmunF) (@, f5(2) = F(a, f5(x)),

the proof follows.

607

3.2. For g3(y) = 0, y € [0, ], the triangle T}, also becomes a triangle with two curved sides

(see Fig. 3).

Also, we suppose that F' is a real-valued function defined on T}, and (0,y), (g3(y),y), respec-
tively, (x, fi1(x)), (z, f3(z)) are the points in which the parallel lines to the coordinate axes, passing

through the point (x,y) € T}, intersect the sides 71, 72, and ;.

We consider the uniform partitions of the intervals [0, g3(y)] and [f1(x), f3(x)], =,y € [0, h]:

a1 ={ Lt

i:O,m},

f3(z) — fi(z)

’ij,n}.
n

respectively,

st ={nw+
For m,n € N, a, 8 € R, we have
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(@ F) ) =3 i) ().
=0

with
o= ()3 ot ) ) [y o]

respectively, the operator Q}, from (2.2).
Theorem 3.4. If F is a real-valued function defined on Tj,, then:
D) QnF =F onyUn~s,
2) QLF =F on v Uns,
3) (Qhei)(z,y) =2y, i=0,1, j €N,
4) (Qhey)(z,y) =a'y/, i €N, j=0,1.
Proof. 1. We have

(Q%F)(x.y) = (1+mlmm1{ (1 - g;”(y)> [1 - ggi(y) + mﬂ} " 0.+

e (1) 2 (D G e)

X [1 _ gjy) +(m - 1)5} m_i_l F(;gz(y),y) +

T T m—1
o) (93(y) +m6> F(g?’(y)’y)}'

So,

(QrF)(0,y) = F(0,y)),
(Qr.F)(g3(y).y) = Flgs(y), )

The proof for condition 2 is made in previous section.
The product operators will be

(PrnF) (,9) =) am.i(@,y)an,; <1;gs(y)7y> X

i=0 j=0
f3 (;gs(y)> - N (;%(@)

n

<F| L) i () +

and
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(P2 F)(2,9) = > > ami(a,y;)an (2, y) F <7;ga(y), ?Jj) :

i=0 j=0

f3(x) — fi(z)

yy = o) + g2,

Theorem 3.5. If F is a real-valued function defined on Ty, then:
1) (PL,F)(Vs) = F(Va), (PL,F) = F on T3,

2) (P&mF)(Vg) = F(V3), (Png) =FonT;s.

Proof. The proof follows from the properties

(PonF) (, [1(2)) = (@5 F) (@, fi(x)),
(PrnF)(0,9) = (Q4F)(0,y),
(PynF) (2, f3(z)) = F(, f3(z)), =,y € [0,h],
and
(P F) (@, fi(2)) = (QnF) (@, f(x),
(PanF)(0,y) = (Q4F)(0,y),
(P F)(93(v),y) = F(g3(y),y), @,y € [0,h],

which can be verified by a straightforward computation.
For the Boolean sums we have the following theorem.
Theorem 3.6. If F' is a real-valued function defined on T}, then

S |o = Floz
and

Spim |0T = Flog

Proof. As
(SmnF) (2, f1(2)) = (QRF) (z, fi(@)),
(SmnF) (0, 9) = (QUF)(0,y),
(SmnF) (, f3(2)) = F(z, f3(x)),

the proof follows.
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