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BOUNDS FOR THE RIGHT SPECTRAL RADIUS
OF QUATERNIONIC MATRICES *

I'PAHUYHI ONIHKHA AJIS1 ITIPABOT'O CIIEKTPAJIBHOI'O PAJITYCA
MATPHUIIb KBATEPHIOHIB

In this paper, we present bounds for the sum of the moduli of right eigenvalues of a quaternionic matrix. As a consequence,
we obtain bounds for the right spectral radius of a quaternionic matrix. We also present a minimal ball in 4D spaces
which contains all the GerSgorin balls of a quaternionic matrix. As an application, we introduce the estimation for the right
eigenvalues of quaternionic matrices in the minimal ball. Finally, we suggest some numerical examples to illustrate of our
results.

3HaiiIecHO rpaHUYHI OIIHKH JJIsi CYM MOJYJIIB MPaBUX BIACHUX 3HAYCHb KBATCPHIOHHHX MAaTPHIlh. SIK HACIIIOK OTPHMAHO
OL{HKH IS TIPaBOTO CIEKTPAIBHOIO pajiiyca TaKUX MaTpullb. Y YOTHPUBUMIPHHX IPOCTOPAX 3HANICHO MiHIMAIbHUI 11ap,
SIKMIA MICTUTB BCi mapu ['epiropina MaTpuii KBaTepHiOHIB. SIK 3aCTOCYyBaHHS 3alPOITIOHOBAHO OLIHKY JAJIS IPABUX BIACHUX
3Ha4YeHb MaTpUIlb KBaTepHiOHIB. Takok HaBeAEHO MPHUKIAAN IS UIFOCTpanii X pe3ysIbTaTiB.

1. Introduction. The problems over a quaternion division algebra have received much attention in
the literature due to their applications in pure and applied sciences, such as the quantum physics,
control theory, altitude control, computer graphics and signal processing (see, for example, [1, 2,
4-6, 12, 14, 20-22] and the references therein). There are many research paper published on the
location and estimation of the left and right eigenvalues of a quaternionic matrix [8, 16, 20, 22,
23]. The stability of linear difference/differential equations with quaternionic matrix coefficients is
based on the location of right eigenvalues of their corresponding quaternionic block matrices [10, 11,
15]. The upper bound for the left and right spectral radius of a quaternionic matrix has proposed by
F. Zhang [22] in terms of the operator norm of a quaternionic matrix. Bounds for the sum of the
left eigenvalues norms are derived with the help of localization theorems for left eigenvalues of a
quaternionic matrix [8]. The first attempts to locate the zeros of quaternionic polynomials were given
by G. Opfer [9] by direct calculation.

In the first part of the paper, we present bounds for the sum of the absolute values of right
eigenvalues of a quaternionic matrix. We further discuss bounds for the right spectral radius of
a quaternionic matrix by applying the above theory. In the second part of the paper, we provide
a minimal ball which contains all the GerSgorin balls of a quaternionic matrix. Then we give
localization theorems for right eigenvalues of a quaternionic matrix with the help of the above
minimal ball.

The paper is organized as follows. Section 2 reviews some existing results. Section 3 discusses
upper bounds for the sum of the right eigenvalues norms and the right spectral radius of a quaternionic
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724 I. ALI

matrix. Finally, Section 4 presents a minimal ball and location for right eigenvalues of a quaternionic
matrix.

2. Preliminaries. Throughout the paper, R and C denote the fields of real and complex numbers,
respectively. The set of real quaternions is defined by

H:={q¢=q0+ qi+ ¢j+ ak: qo,q1,92,93 € R}

with i2 = j2 = k? = ijk = —1. This relation implies that ij = —ji = k, jk = —kj = i,
ki = —ik = j. The conjugate of ¢ € H is § := qo — ¢11 — g2j — g3k and the modulus of ¢ is
lg| == /@ + q} + a3 + ¢3. 3(a) denotes the imaginary part of a € C. The real part of a quaternion
q = qo + q1i + q2j + gsk is defined as R(q) = qo. Let p,q € H. Then (a) |q| = [g| and pg = 7p;
() |pa| = lap| = Ipllal; () je =Tj or jej =¢ forevery c € C; (d) p~' = ’p% if p # 0, and
[0 ppl = |p| for all p € H\ {0}

The collection of all n-column vectors with elements in H is denoted by H". For z € K", where
K € {R,C,H}, the transpose of = is 7. If x = [21,...,x,]T, then the conjugate of z is defined as
Z = [T1,...,T,)" and the conjugate transpose of z is defined as 2/ = [Z7,...,Z,]. For x,y € H",
the inner product is defined as (x,y) := y" 2 and the norm of z is defined as ||z|| := \/(x, z). The
sets of m X n real, complex, and quaternionic matrices are denoted by M., xn(R), Myxn(C), and
M, sn (H), respectively. When m = n, these sets are denoted by M, (K), K € {R,C, H}.

For A € M,,«n(K), the conjugate, transpose, and conjugate transpose of A are defined as
A = (@5) € Mpmxn(K), AT = (aj;) € Mypxm(K), and A7 = (AT € M, (K), respectively. A
square matrix A € M, (H) is said to be Hermitian if A” = A. We define the Frobenius norm on
A e M,(H) by

| AllF = (trace A™ A) 12

Let p,q € H. Then p and q are said to be similar, denoted by p ~ ¢, if

p~qe30#reH suchthat p=r"lqr. €))
The set

[p]:={ucH:u=p'pp for all 0#pcH} ()
is called an equivalence class of p € H.

For any quaternionic matrix A = B + Boi+ Bsj+ Bk € M, (H), By € M,(R), k =1,2,3,4,

A can be uniquely expressed as A = (By + Bai) + (B3 + B4i)j = A1 + Agj, A1, Ay € M, (C).
Define a function ¥ : M, (H) — M>,(C) by

A Ay

Uy = I
—Ay Ay

The matrix W 4 is called the complex adjoint matrix of A. Unlike the complex matrix, there are two
types of eigenvalues of a quaternionic matrix, namely left and right.
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BOUNDS FOR THE RIGHT SPECTRAL RADIUS OF QUATERNIONIC MATRICES 725

Definition 2.1. Let A € M, (H). Then the left, right, and the standard right eigenvalues, re-
spectively, are given by

AN(A):={N e H: Az = Az for some nonzero x € H"} |

A (A):={X € H: Az = z\ for some nonzero x € H"}
and
As(A) :={A € C: Ax =z for some nonzero x € H", J(\) > 0}.
Definition 2.2. Let A € M, (H). Then the right spectral radius of A is defined as
pr(A) = max {[A]: A € A,(A)}.

Definition 2.3. Let A € M, (H). Then A is said to be n-Hermitian if A = (A" | where
A" =t An and n € {i, ], k}.

Definition 2.4. A4 matrix A € M, (H) is said to be invertible if there exists B € M, (H) such
that AB = BA = I,,, where I, is the n X n identity matrix.

Definition 2.5. Let A € M, (H). Then A is said to be a central closed matrix if there exists an
invertible matrix T such that T~ AT = diag(u1, p2, - - . , pin), where p; € R, 1 < i < n.

We recall the following results for the development of our theory.

Lemma 2.1 [19]. Let A € M, (H) be a central closed matrix and suppose that the standard
right eigenvalues of A are pi1, 2, . . ., fin. Then trace(A) = le 14 -

Theorem 2.1 ([13], Theorem 3.1). Let A = (ai;) € M,(H) be a central closed matrix. Then
all the standard right eigenvalues of A are located in the following ball:

_ trace(4)
n

G(A):{zeH: ‘z ‘s&(A)},

where

€)=/ oo W;IHW— L F(a),

trace(A)
n

2
n— (HAH% - ) F(A) = [AA7 % — | A%

Let A := (ai;) € M,,(H). Then define the deleted absolute row sums of A as

n

TZ(A) = Z ]aij], 1 < 1 <n.
=1, j#i

We also define the n GerSgorin balls as follows:

GZ(A) = {ZGHZ |Z—an'| §7”1(A)}, 1< <n.
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726 I. ALI

3. Bounds for the sum of the right eigenvalue norms for a quaternionic matrix. In view of
Definition 2.2, one can compute the right spectral radius of a quaternionic matrix by means of the
following simple procedure.

Let A € M, (H).

Factorize A = Ay + Agj, where Ay, A € M, (C).
A A

Write the complex adjoint matrix U 4 := -
—-Ay Ay

Find A(W4) = {u1, - fons BLy -« i }-

Divide A(¥4) into two sets Aj, Ay such that Ay U Ay = A(¥4), the eigenvalues with po-
sitive imaginary part belong to A; and the elements of As are the conjugates of the ones of Aj.
Consequently, from Definition 2.1, A; is the set of the standard right eigenvalues of A.

Then the right spectral radius of A is given as

pr(A) := max {|pil : pi € As(A) == Ay} 3)
One can also compute all the right eigenvalues of a quaternionic matrix with the help of standard

right eigenvalues of that matrix. In view of the above points, we can obtain the right spectrum of A

as follows:

A(A) = Ul i € As(A) = Ar.

i=1
The GerSgorin theorem for right eigenvalues of a quaternionic matrix has proved by F. Zhang
[22] which is as follows.
Lemma 3.1 ([22], Theorem 7). Let A := (ai;) € M, (H). For every right eigenvalue 1 of A

there exists a nonzero quaternion (3 such that 3~ 3 (which is also a right eigenvalue) is contained
in the union of n Gersgorin balls G;(A) :=={z € H: |z — a;;| < ri(A)}, 1 <i < n, that is,

{7z O#zeH}ﬂ(ZUlG );A@

In particular, when (i is real, it is contained in a Gersgorin ball.

First, in this section, we derive bounds for the sum of the absolute values of right eigenvalue of
a quaternionic matrix with the help of Theorem 3.1 which are as follows.

Theorem 3.1. Let A := (a;5) € My(H). If \; (1 <i < n) are right eigenvalues of A such that
they lie within n distinct Gersgorin balls G;(A), respectively, then we have the following inequalities:

Z|A1<ZZI%I (4)

=1 j=1

SIYES D) SIS o (*

i=1 j=1,j#1

+ |trace(A)|. (5)

)

Moreover, if pu;, 1 < i < n, are standard right eigenvalues of A, then we have the following
inequalities:
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BOUNDS FOR THE RIGHT SPECTRAL RADIUS OF QUATERNIONIC MATRICES 727

Zluzl < ZZI%I (6)

i=1 j=1

Zw<2 > |am|+z(

1=1 j=1,j#i

+ |trace(A)]. (7)

)

Proof. Inequality (4): Since \;, 1 < i < n, are n right eigenvalues of A such that they lie
within n distinct GerSgorin balls G;(A) = {z € H: |z — a;;| < 1i(A)}, respectively. Now, without
loss of generality, we can consider as follows:

Xi € Gi(A) and G;(A) #Gj(A), 1<i,5<n, i#].

By applying Theorem 3.1, we have

n
|Ni — ai| < Z laijl, 1<i<n.
j=1j#i
This implies that
Al < faii| + Z |ai;| = Z |aijl.
Jj=1,j#i
Therefore,
Z\A B S
=1 j=1

Inequality (5): The GerSgorin balls G;(A) = {z € H: |z — a;| <1i(A)}, 1 < i < n, have the
centres a;;, respectively. Based on the particle and centre gravity theorem, each G;(A4), 1 <1i < n,
can be considered as a particle or a rigid body. Then the centre of all particle or rigid body is

n

1 trace(A)
- E aj; = ————.
n 4 n

=1

Now, we get

- trace(A) ' I trace(A) ’ < s — ag] + |asi — trace(A) ' 7
n n n
N trace(A) ' < ri(A) + las - trace(A)‘
n n
This implies that
il < ri(A) + |asi — trace(A) ’ trace(A) ‘
n n
Therefore, we obtain
- - - trace(A) " |trace(A)
Ail < i(A i —.
Sl 3o+ 3 (Joa = )+ 30|
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Thus, we have the following desired result:

SYES D) SIS o (

=1 j=1,j#i

+ |trace(A)] .

)

Inequality (6): Since \;, 1 < i < n, are right eigenvalues of A, so from Lemma 3 of [3] there
exist p; € H\ {0}, 1 < i < n, such that pi_l)\ipi = p;, where p. 1 <7 < n, are the standard right
eigenvalues of A. This implies that \; = pi,uipi_l. From the inequality (4), we get

Z |pz,uzpl | < ZZ |az]|

=1 j=1

. _ . n n n
Since |pipip; | = |pil, 1 <4 < n. Therefore, Zi:l lpi| < Zi:l ijl |agj]-
Similarly, from the inequality (5), we have the desired inequality (7), that is,

Zw<2 3 \awz( - et )

i=1 j=1,j%#i

+ |trace(A)].

Theorem 3.1 is proved.
Now, from Theorem 3.1, we make the following observations for upper bounds of the right
spectral radius:

From (3), we can easily see that p,.(A4) < Zn . ||, i € As(A). By applying inequality (6),
i=
we have upper bound of the right spectral radius of A which is as follows:

A) < Z;Z; |aijl.
i=1 j=

By applying inequality (7), we obtain upper bound of the right spectral radius of A in terms of
the trace of A which is as follows:

CE S OES 9 (7

i=1 j=1,j#i

+ |trace(A)|.

)

The upper bound of the left and right spectral radius of a quaternionic matrix has derived in [22]
in terms of the spectral norm of the quaternionic matrix. However, the spectral norm of a quaternionic
matrix is expensive to compute. Here, our bounds are in terms of moduli of entries and trace of a
quaternionic matrix which are much easier to compute than the spectral norm.

W. Junliang and Z. Yan [8] have been given Schur’s inequality for right eigenvalues of a quater-
nionic matrix which is as follows.

Lemma 3.2 ([8], Corollary 2.1). Let A := (a;j) € My (H) and p1, p2, . . ., pon, be standard right
eigenvalues of A. Then we have the following inequality:

Dol < AR =)0 lal (®)
i=1

i=1 j=1
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BOUNDS FOR THE RIGHT SPECTRAL RADIUS OF QUATERNIONIC MATRICES 729

From Lemma 3.2, it is clear that the inequalities (6) and (7) are different from the inequality (8).
As applications of Theorem 3.1 and Lemma 3.2, we derive sharper estimations of the right spectral
radius in terms of the trace and the Frobenius norm.

Let u,,, be a standard right eigenvalue of maximum modulus. Then, from inequality (6), we can

be written as
n n n
] <D0 agl = > |l
i=1 j=1 i#m
By applying the arithmetric-geometric mean inequality, we obtain

n n n )
| < ZZVMH —(n—-1) H |pi| 7T <

=1 j=1 i#m
H |/M|" !
=D NI EICRIE et
i=1 j=1 |Nm|" 1

From [21] (Theorem 8.1(4)), we have

n_n (14]g) 7=
| <D laigl = (n = 1)——— =
== (Zizl ijl |aij|> o=

where |A|, is the g-determinant of the quaternionic matrix A. The definition of the right spectral
radius gives

—~ (|Aq )z
A) <N aggl = (n—1) - —-—- )
i=1 j=1 (Zi:1 Zj:1 |aij|) n—1

Similarly, inequality (7) yields

pr(A) < & — (n— )M, (10)
(§1)m1

n n n trace(A
where §; = Zi:l ijljj# |aij| + Zi:l (’aii - n)D + [trace(A)|.

From the above procedure, Lemma 3.2 yields

1 q1/2
IR — (0 — 1) ( Ay ) . an
JAIZ

Let A € M, (H). Then the discrete-time quaternionic system w(t + 1) = Aw(t) is said to be
asymptotically stable if and only if A,(A) C Sy = {g € H: |¢| < 1}. We present application of
bounds of the right spectral radius for the stability of a discrete-time quaternionic system. From the
above definition, if p,(A) < 1, then the system w(t + 1) = Aw(t) is asymptotically stable.

We now give a numerical example to verify our theoretical results.

pr(A) <
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241 k j
Example3.1. Let us consider a quaternionic matrix A= | 0 —i j . It is clear that
0 0 14}
2 +1i, —i and 1 + j are three right eigenvalues of A. Thus the standard right eigenvalues of A are
241, iand 1+ i. Here, we obtain

3 3 3
Z])\i!:1+\/§+\/5§22\%\:4+\f2+\/5.

i=1 i=1 j=1

Furthermore, we also get
3
24/19 2
3 Al :1+\/§+\/5§3+\/1o+\ﬁ;”f=5,
i=1

3 3 3 trace(A)
where § = Zi:l ijl’j# lagj| + Zi:l ( Qij =~
is verified.

We next verify the results of the right spectral radius. The right spectral radius and the ¢-

determinant of A are

D + |trace(A)|. Thus, Theorem 3.1

pr(A) =22361 and |A|, = 10,

respectively. From (9), we have

3 3 1
ZZ aij| — (14]a)* = 6.3644.
= <Zz 1 Z ‘CLU )

Thus, the inequality (9) is verified. From (10), we obtain

N[

, ) 3 trace(A)
where & = Z¢:1 ZFIJ# \ainZi:l < G Ty

(10) is verified. Since || A]|% = 11, so, from (11), we get

171/2
Al 2
JAI% - ) (,‘ i ) ] _ 30155,

Finally, the inequality (11) is verified.
4. Location of right eigenvalues of a quaternionic matrix. Firstly, in this section, we find a
minimal ball in 4D spaces which containing all the GerSgorin balls of a quaternionic matrix.
Theorem 4.1. Let A := (a;;) € M,(H). Then there must be a minimal ball in 4D spaces
containing all the Gersgorin balls of A

D + |trace(A)| . Hence, the inequality

o) = {aem fo- Tl

< max [ri(A) +
n

1<i<n

-]

n
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BOUNDS FOR THE RIGHT SPECTRAL RADIUS OF QUATERNIONIC MATRICES 731

Proof. From Theorem 3.1, we have the following n GerSgorin balls for A:
Gi(A):{qEHi |q—ai¢]§m(A)}, 1<1<n.

Based on the particle and centre gravity theorem, each G;(A), 1 < i < n, can be treated as a particle

1 trace(A
or a rigid body. Then the centre of all particles or rigid bodies is — Y - i = trace(4) 1 find
n 1= n

the smallest ball, we set the following model:

t A
min [q — race()’ such that |¢; — ai| < 7i(4), 1<i<n.
Since
trace(A) trace(A) trace(A)
G — | = | — Qi T i — < g — aii| + |aii — )
n n n
trace(A trace(A
qi — ( >‘_Ti(A)+ Qi ( )‘7
n n
the solution to the above model is that
‘ trace(A) ‘ trace(A) ’
g— ———>| = max |¢ — ,
n 1<i<n n
t A t A
'q — race()‘ < max [Ti(A) + |ai; — race( )H =R
n 1<i<n n

Thus, all the GerSgorin balls of A must belong to the smallest ball with radius R and center at
trace(A)

. If we denote smallest ball by 7(A), then
n

n(A)={q€H: ‘q—tmce(A)‘S

n

Theorem 4.1 is proved.
Now, we turn to locate the right eigenvalues in the minimal ball 7(A). In fact, a right eigenvalue
is not necessarily contained in a minimal ball 1(A). For example, consider a quaternionic matrix

A= [(1) ﬂ . Here, —i is a right eigenvalue of A but it is not contained in minimal ball n(A), that

is,
. i+j 1
—-i¢n(A):= {qGH: q—T'] < 2\/5}
Fortunately, we have the following theorem for right eigenvalues of a quaternionic matrix.
Theorem 4.2. Let A := (a;;) € M,(H). For every right eigenvalue X\ of A there exists a
nonzero quaternion o such that o *\a (which is also a right eigenvalue) is contained in the
minimal ball n(A), that is,

{a"a:0#£acH Nn(A) £ 2.

Proof. The proof follows from Theorems 3.1 and 4.1.
By definitions, Hermitian and n-Hermitian matrices have all the real diagonal entries. 7-
Hermitian matrices arise widely in applications [7, 17, 18]. Thus, we present the following result.
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Theorem 4.3. Let A := (a;j) € M, (H) and a; € R for all i. Then all the right eigenvalues of
A are contained in n(A).

Proof. Since all the right eigenvalues of a quaternionic matrix with all real diagonal entries are
contained in the union of n GerSgorin balls G;(A), 1 < i < n. Therefore, the proof follows from
Theorem 4.1.

We now provide a numerical example to show the effectiveness of our result.

1 j k
Example4.1. Let us consider a quaternionic matrix A = |1 +1 2 i+ j| . Then the
1-j j+k 4
complex adjoint matrix of A is given as

1 0 0 0 1 i
141 2 i 0 0 1

o, |1 0 4 -1 14i 0
0 ~1 i 1 0 0

0 0 -1 1-i 2 —i

1 ~14+i 0 1 0 4 |

The spectrum of W 4 is A(V4) = {3.7627+1.0148i, 2.6089+0.9307i, 0.6283+ 0.6807i, 3.7627 —
— 1.0148i, 2.6089 — 0.9307i, 0.6283 — 0.6807i}. Therefore, the right spectrum of A is A, (A) =
= [3.7627 + 1.0148i] U [2.6089 + 0.9307i] U [0.6283 + 0.6807i]. From Theorem 4.1, we obtain

n(A)={q€H:‘q—m;(A)‘ aii_tracs(A)H}7

By Theorem 4.3, we know that all the right eigenvalues of A should be contained in n(A). It is
clear that all the standard right eigenvalues p; = 3.7627 4+ 1.0148i, ps = 2.6089 + 0.9307i and
w3 = 0.6283 4+ 0.68071 are contained in 1(A). Here, we can also easily see that

U(A):{QEH:‘Q—;‘< max [1076\/5+1 6v2+ 5

~1<i<n | 3 3 3
71 6vV2+5
n(A)z{qu:‘q—g‘gg }

A U P N D N N R
PM1P3—M12, H2 3—/1227
. 7 7
BB — 3| =|us— 5| Vp a8 €H\ {0}

Hence all the right eigenvalues of A are contained in 7(A). Thus, Theorem 4.3 is verified.
We are now ready to establish some results on a quaternionic matrix. In general, similar quater-
nionic matrices may have different traces follows from the following example.

.1 1,
. . 1— Ek 51
Exampled.2. Let A = [(1) _1} and B = ) . Then B = U AU, where
—=i —i— -k
2 2
1 |1 —i
U=—|". is an unitary matrix but trace(A) = 0 while trace(B) = —k.
5157 y (4) @
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However, the following result is true.

Theorem 4.4. Let A := (a;j) € M, (H) be a central closed matrix. If A is similar to quater-
nionic matrix B. Then B is also a central closed matrix. Moreover, trace(A) = trace(B).

Proof. Since A is similar to B, then there exists a nonsingular quaternion matrix P such that
A = PBP~'. Also A is central closed matrix, then there exists a nonsingular quaternionic matrix
Q such that A = QDQ!, where D = diag(A1, A, ..., \,) with the real standard right eigenvalues
;. From the above, we have

QDQ '=PBP!'=B=P'DQ'P.

Setting P~'Q = T, then we obtain B = TDT~'. Hence, B is also a central closed matrix.
n
For second part: From Lemma 2.1, we have trace(4) = Z'—1 A; = trace(D). Moreover,

trace(B) = Zn A= trace(D). It follows from the above that trace(A) = trace(B).

Theorem 4.5. Let A := (a;j) € M, (H) be central closed matrix. If B1, B, . .., By are similar
to A, then we can derive a minimal ball in 4D spaces which contain all Gersgorin balls of at least
one matrix among Bi, B, ..., Bs and A. That is,

t A t A
Gnin(4) = {q € H: ‘q— race()’ < min {max [ri(A) + |a; — ﬂ() },
n 1<k<s | 1<i<n n
max |:rz(Bk) + by — 7‘31‘&06(/1) H }
1<i<n n
Proof. Since Bi, Bo, ..., Bs are similar to A, then from Theorem 4.4, we have trace(By) =
= trace(A4), 1 < k < s. It reveals that the balls 7(B1),n(B2),...,n(Bs) and n(A) are concentric

t A
balls whose centers at &(). Therefore, it only needs us to find the ball with the smallest radius
n
from s + 1 concentric balls.

If we denote Gpin(A) a ball with the smallest radius, then we have

A A
Gmin(4) = {q € H: ‘q— trace()’ < min {m,ax [T@(A) + |aj; trace(4) },
n 1<k<s | 1<i<n n
A
max [mBk) - trace()” }

From the above it is clear that the radius and center of the smallest ball can be determined by entries
of B1,Bs,...,Bs and A.
Theorem 4.6. Let A := (a;j) € M, (H) be central closed matrix and \i, X2, ..., \, be n right
eigenvalues of A. If By, Ba, . .., Bs are similar to A, then A1, \a, ..., \, are contained in Gyyin(A).
Proof. Since central closed quaternionic matrices have all real right eigenvalues, then, from
Theorem 3.1, all the right eigenvalues of A are contained in Uil Gi(A). Therefore, from Theorem
4.5, we have the required result. "

1 —i —j k
. . . i 1 -2k ]
Example4.3. Consider a central closed quaternionic matrix A = j ok . et

-k —j i 1
Then the complex adjoint matrix of A is given as
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1 —i 0 0 0 -1 i

i 1 0 0 0 1 -2 1

0 0 7 —i 1 2i 0 0

Ty = 0 0 i 1 -i -1 0 0
0 0 1 i 1 i 0 0

0 -1 -2i -1 i 1 0 0

-1 2i 0 0 0 0 7 i

—i 1 0 0 0 0 -i 1

The spectrum of ¥4 is A(V4) = {—1,1,2,8}. Consequently, the right spectrum of A is A,(A4) =
= {-1,1,2,8}. Since A is a central closed matrix, so A is similar to the diagonal matrix D =
= diag(—1,1,2,8). From Theorem 4.6, we get

5 9 11 73111
. — . — 2| < mi it - Z - =
Gimin (A) {qEH- ‘q 2‘ _mm[g%{T 5 ,9},1@%{2,2,2, 5 H}

5 11
Gnin(4) = {q c H: ’q— 2‘ < }
Here, all the right eigenvalues of A are contained in Gp,in(A). Hence, Theorem 4.6 is verified.

Finally, we present a numerical example which shows that our inclusion region G,in (A) (defined
in Theorem 2.1) is potentially sharper than the inclusion region G(A) (defined in Theorem 4.5) for
some quaternionic matrices.

Example4.4. Let us consider a central closed quaternionic matrix

1 3+9i—12j+ 10k  13i— 10j — 7k
A= |3-9i+12j — 10k 3 5i— 7j + 6k
—13i+10j + 7k —5i+7j — 6k 2

Then, the complex adjoint matrix of A is given as

Tl 3+ 9i 13i 0 —12+4+10i —10 — 7i]
39 3 51 12 — 10 0 —7+6i
g, | 1 -5 2 10 + 7i 76 0
0 124+10i 10-7i 1 3 9i —13i
~12 - 10i 0 T4+61  3+09i 3 —5i
| —10+71 —7-6i 0 13i 5 2 ]

The right spectrum of A is A, (A) = {—25.3430, 1.4493,29.8937}. We can easily see that A is sim-
ilar to D := diag(—25.3430, 1.4493,29.8937). From Theorems 2.1 and 4.6, we have the following
balls:

G(A)={z€H: |z —2| <31.8957} and Gpin(A) ={z € H: |z — 2| < 27.8937}.

From the above balls, it is clear that Ginin(A) C G(A). Thus our estimation is could be sharp for
some quaternionic matrices.
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