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ON THE THEORY OF INTEGRAL MANIFOLDS FOR SOME DELAYED
PARTIAL DIFFERENTIAL EQUATIONS WITH NONDENSE DOMAIN

J1O TEOPII IHTETPAJIbHUX MHOTOBUIB JIJISI JEAKUX
JUOEPEHIIAJIBHUX PIBHAHD I3 3AINIBHEHHAM
Y HEIIJIBHIN OBJIACTI

Integral manifolds are very useful in studying dynamics of nonlinear evolution equations. In this paper, we consider the
nondensely-defined partial differential equation
du

i (A+ B(®))u(t) + f(t,ut), tEeER, (1)

where (A, D(A)) satisfies the Hille - Yosida condition, (B(t)):cr is a family of operators in £(D(A), X) satisfying some
measurability and boundedness conditions, and the nonlinear forcing term f satisfies || f (¢, @) — f(¢,¥)|| < o(®)||l¢—2]lc;
here, ¢ belongs to some admissible spaces and ¢, i € C := C([—r,0], X). We first present an exponential convergence
result between the stable manifold and every mild solution of (1). Then we prove the existence of center-unstable manifolds
for such solutions.

Our main methods are invoked by the extrapolation theory and the Lyapunov — Perron method based on the admissible
functions properties.

[HTErpanbHi MHOTOBHIM MAIOTH BEJIMKE 3HAYCHHS MPU BUBYCHHI IWHAMIKU HETIHIHHUX €BONIOMIMHUX PiBHAHb. MU pO3IIIi-
JIa€EMO HEIIUIBHO BU3Ha4YeHe qudepeHiiiajgbHe PiBHSAHHS 3 YACTUHHUMH HOXiTHUMH

W — (A4 BOWW + [(tw), TR M
e (A, D(A)) sagoBombrsie ymosy Ximta—Hocimn, (B(t)):er € cim’ero oneparopis y £(D(A), X), sika 3a10B0bHsE AesKi
YMOBH BUMIPIOBAaHOCTI Ta 0OMEKEHOCTI, a HeJliHiiHMiA fonanok f 3amoBonbHse yMoBy || f (¢, &) — f (¢, ¥)|| < o(®)|lp—2|lc,
1€ © HAJeKHUTH 0 IESKUX JOIyCTUMHX mpocTtopiB i ¢, ¥ € C := C'([—r, 0], X ). Mu Hacammepe MpOMOHYEMO IEsKAi
PE3YIIBTaT, M0 CTOCYEThCS CKCIOHCHINANBHOI 301KHOCTI MK CTIHKMM MHOTOBHIOM Ta OyIb-SIKHM CIA0KHM PO3B’SI3KOM
piBasiHESA (1). Janmi My TOBOIMMO iCHYBaHHS IIEHTPAIBHUX HECTIHKMX MHOTOBHIIB JJISI TAKHX PO3B’S3KiB.

Hammi metogn moBeqeHHS MOCHIAIOTHECS B OCHOBHOMY Ha TEOpil0 eKcTpanomsmii Ta meron Jlsmynosa —Ileppona, oo
6a3y€eThCs HA BIACTHBOCTSX JOMYCTUMHUX (DYHKIIIH.

1. Introduction. In this paper, we study some integral manifolds properties of the abstract delayed
Cauchy problem

CC%‘ — (A+ B)u(t) + f(t,u), t>s, (L.1)

us =® € C,

where (A, D(A)) is a nondensely defined linear operator on a Banach space X, B(t), t € R is a
family of linear operators in L(D(A), X), f: RxC — X is a nonlinear operator, C := C([—r,0], X)
and the history function w; is defined for § € [—r,0] by u(6) = u(t + 0). Throughout all this work,
we suppose that A is a Hille— Yosida operator, that is
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(Hy) There exists w € R and M > 1 such that (w,+o0) C p(A) and
IR\, A)"| < M forall neN and A>w, (1.2)
(A —w)r
where p(A) denotes the resolvent set of A and R(\, A) = (A — A)~! for A\ > w. Without loss
of generality, one assumes that M = 1. Otherwise, we can renorm the space X with an equivalent
norm for which we obtain the estimation (1.2) with M = 1.

Integral manifolds theory plays an important role in the understanding of evolution equations
dynamics. Many works on various types of equations were done in the literature (see, for example,
[1, 4, 10]). Regarding the case of partial differential equations without delay, we refer the reader, for
instance, to [3], where authors investigate invariant manifolds for flows in Banach spaces, by virtue
of the Lyapunov — Perron method. This subject was also of great interest in the case of delayed partial
differential equations. We quote, for example, [2], where the authors investigate inertial manifolds
for retarded semilinear parabolic equations by the Lyapunov — Perron method.

Nevertheless, it is sometimes more convenient in applications, in many contexts, to consider
equations with nondense domain such as in diffusion phenomena and population dynamics. For
instance, we refer the reader to [5, 16, 22, 23]. Concerning the nonautonomous case, several results
about the existence and behaviour of solutions have been studied (see [9, 17, 21] and references
therein). Particularly, many results on the existence of integral manifolds were developed in the
context of the following differential equation:

du

= = AMu(t) + f(tur), € [s,+00),

us = P,

where A(t), t € R, is a family of possibly unbounded linear operators on a Banach space X and
f:R xC — X is a continuous function. The fixed point theory based on the uniform Lipschitzness
of the nonlinear term f was the most powerful tool to investigate such problems. Unfortunately, in
real situations such as some complicated reaction-diffusion phenomena, the function f which can
represent the population size or the source of a material is frequently depending on time (see, for
instance, [19, 20]).

In recent years, authors have established interesting results in the case of densely defined diffe-
rential equations without delays (see [6, 11, 12]), by investigating the existence of integral manifolds
in view of the Lyapunov — Perron method and the contribution of admissible spaces, without needing
the uniform Lipschitzness of f. More recently, the existence of integral manifolds for densely defined
and delayed differential equations were studied by [7, 8]. Note that the investigation of integral
manifolds for delayed differential equations with nondense domain and where the nonlinear operator
f 1s not uniformly Lipshitzian was not studied until the author, in [14], investigates the existence
of unstable manifolds for (1.1) and states an attraction result for such unstable manifolds. Then, he
investigates in [15] the existence of stable and center-stable manifolds for (1.1) on the positive half
line.

Motivated by all these works, we aim to prove an attractiveness result between the mild solution
and the stable manifold of (1.1) on the whole line R. Furthermore, we prove the existence of a
center-unstable manifold for (1.1).
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2. Admissible spaces, mild solutions and integral manifolds. We first recall the following
notions and properties of admissible spaces.

Definition 2.1 [8, 13]. Let B denote the Borel algebra and \ the Lebesgue measure on R. A
vector space E of real-valued Borel-measurable functions on R (modulo A-nullfunctions) is called
a Banach function space (over (R,B,\)) if

1) E is Banach lattice with respect to a norm ||.||g, i.e., (E,|.|g) is a Banach space, and if
¢ € E and 1 is a real-valued Borel-measurable function such that |{(.)| < |o(.)|, A-a.e., then

¥ € Eand |[¥]p < |[l¢lle,

2) the characteristic functions xa belong to E for all A € B of finite measure and
SUPier HX[t,t+1}HE < 00, and infier HX[t,tH} e >0,

3) E <= Ly 10c(R), i.e., for each seminorm py, of L 1oc(R) there exists a number (3,, > 0 such
that pn(f) < Bp, | fllE for all f € E.

Definition 2.2 [8, 13]. The Banach function space E is called admissible if

(i) there is a constant M > 1 such that for every compact interval |a,b] € R we have

b
M(b—a
/ ot))ar < 1O=Dy o
J ol

t+1
(ii) for ¢ € E, the function ©1¢ defined by ©1p(t) = / o(7)dr belongs to E,
t
(ii) E is T - and T -invariant, where T and T are defined for T € R by

Tro(t) =gt —7) for tER,
Trot)=wlt+71) for teR.
Moreover, there are constants Q, R such that ||| < Q, |T7 || < R for all T € R.

t+1
Remark2.1. If S(R) := {5 € L1 1oc(R): supteR/ |E(T)|dT < oo} endowed with the norm
t

t+1
€lls == supser |€(7)|dT and E' is an admissible Banach function space, it is easy to show

t
that £ — S(R).

Proposition 2.1 [8, 13]. Let E be an admissible Banach function space. Then the following
assertions hold.:

(@) Let ¢ € Ly 10c(R) such that ¢ > 0 and ©1¢p € E, where ©1 is defined as in Definition
2.2 (ii). For T > 0 we define ©).¢ and ©”p by

t

Oplt) = [ T Ipls)ds,

—+oo
Oplt) = [ T ().

t
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t+1
Then ©”_p and ©1p belong to E. Particularly, if sup,cg / lo(0)|do < oo (this will be satisfied
t
if ¢ € E (see Remark 2.1)), then ©_p and © ¢ are bounded. Moreover, we have

[[SAris

<Ol and (O] <

< = 1019

(b) E contains exponentially decaying functions 1)(t) = e=* for t € R and any fixed constant
a> 0.

(c) E does not contain exponentially growing functions f(t) = el for t € R and any constant
b> 0.

Definition 2.3 [8, 13]. Let E be an admissible Banach function space and p be a positive
function belonging to E. A function f: R x C — X is said to be p-Lipschitz if f satisfies

() It 0)]l < p(t) for all t € R,

(i) [ £(t, 61) — F(t, 02)| < @(B)l|é1 — dollc for all t € R and all ¢, s € C.

Remark?2.2. One can remark that if f(¢, ) is ¢-Lipschitz then || f(¢, )| < o(t)(1 + ||¢||c) for
allp e Candt € R.

In the following, we will assume that

(H2) f:R xC — X is p-Lipschitz, where ¢ is a positive function belonging to an admissible
space E.

We now introduce the following concept.

Definition 2.4. A family of bounded linear operators {U (¢, 3)} >, On a Banach space X is a
strongly continuous, exponential bounded evolution family if

(i) U(t,t) =Id and U(t,r)U(r,s) =U(t,s) forall t > r > s,

(ii) the map (t,s) — U(t, s)x is continuous for every x € X,

(iii) there are constants K, ¢ > 0 such that |U (t, s)z|| < Ke®*=%)||z|| for all t > s and = € X.

Let

(H3) t — B(t)x is strongly measurable for every = € X := D(A) and there exists a function
I € L (R) such that | B(.)|| <I(.).

By [9], if we consider the homogeneous equation

au(t) = (A+ B(t))u(t), t>s, u(s)=uze X, (2.1)
then ¢ — Up(t, s)z is the unique mild solution on [s, +00) of the initial value problem (2.1). Note
that {UB (t, 5)}t>s is an evolution family on Xj. Now, let

Cai={®eC:0(0) e D(A)}.

The following result gives a representation of mild solutions of (1.1) in terms of the evolution family

{UB(tv S)}tZS'
Theorem 2.1 [14]. Assume that (Hy) — (H3) hold. Let s € R and ® € C4. Then equation (1.1)
has a unique mild solution v € C([s, +o0[, Xy), given by

t
u(t) = Ugp(t,s)®(0) + /\hj(olo Up(t,T) AR\, A) f(T,ur)dr for t>s, 2.2)

S

us = P.
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¢
Furthermore, for every t > s, lim)ﬁoo/ Up(t, ) AR\, A) f(1,u.)dr € Xy exists uniformly on

compact sets in R.

Note that we have the following notion of exponential trichotomy for evolution families.

Definition 2.5 [18]. An evolution family {U(t, 3)}t>s on the Banach space X is said to have
an exponential trichotomy on R if there are three families of projections {Pj(t)}, t € R, j = 1,2, 3,
and positive constants L, v, ¢ with v < ( satisfying the following conditions:

(i) K :=sup,cp ||Pj(t)]| < o0, j =1,2,3;

(i) Pi(t) + Po(t) + P3(t) = Id for t € R and Pj(t)P;(t) = 0 for all j # i;

(ii)) P;(t)U(t,s) =U(t,s)Pj(s) fort > s and j =1,2,3;

(iv) U|(t,s) are homeomorphisms from Im P;(s) onto Im P;(t), for all t > s and j = 2,3,
respectively;

(v) forallt,s € R and x € X,

U (¢, 8)P3(s)all < L1 Py(s)z ],
and, if t > s and v € X, we have
U, 8)Pi(s)all < Le || Py(s)a]l,

1[U}(¢, )] Pa(t)al| < Le= ") Py(t)a].

The projections {Pj(t)}, t € R, j = 1,2,3, are called the trichotomy projections, and the
constants L, v, ( are the trichotomy constants.

Note that the evolution family {U (t, s)} >, 1s said to have an exponential dichotomy if the
family of projections Ps(t) is trivial. That is, P3(t) = 0 for every ¢ € R.

We now give the following concept of integral manifolds for (1.1) on the whole line R.

Definition 2.6 [14, 15]. 4 set M C R x C4 is said to be an unstable (respectively, a stable)
manifold for solutions of (1.1) if, for every t € R, the phase space C4 is decomposed into a direct
sum Co = ImP(t) ® Ker P(t) such that

sup [|P(#)]| < oo,
teR

and there exists a family of Lipschitz continuous mappings
Gi: ImP(t) —» Ker P(t), teR,

with Lipschitz constants Lip(G;) independent of t such that
a) M ={(t,£+ G (&) e Rx ImP(t) dKerP(t)) | t € R, £ € ImP(t)}, and we denote

My = {E+G(&): (1€ +Gi(€)) € M},

b) My is homeomorphic to Im P(t) for all t € R,

¢) for each s € R and £ € Mg, there corresponds one and only one solution u(t) of (1.1) on
(—o0, s](respectively, on [s — r,+00)) satisfying the conditions that us = & and sup,< ||utllc <
< 00 (respectively, sups, ||uillc < o0); furthermore, any two solutions i (t) and us(t) of (1.1)
corresponding to diﬁ’erent_ initial functions &1, &3 € M attract each other exponentially in the sense
that, there exist positive constants v and C,, independent of s such that for t < s (respectively,
t>s)

[ure = uaelle < Coe*[(P()€1)(0) = (P(5)€2)(0)]],
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d) M is invariant under equation (1.1); that is, if u(t), t € R, is a solution of (1.1) satisfying the
conditions that us € My and sup,< ||ut]|c < oo (respectively, sup;s ||ut]|c < 00), then up € My
forallt € R. - N

Now, suppose that

(Hi) The evolution family {Ug(t,s)},.  has an exponential dichotomy with projections Pp(t),
t € R and constants L p > 0.

In that case, the corresponding Green function I'(t, s), (t,s) € R?, given by

PB(t)UB(t,S>, t>s,
FB(tvs) = 1
—[U|B(s,t)} (Id— Pg(s)), t<s,
satisfies

Ts(t,s)|| < L+ K)e sl forall t+#s.
[Ts(ts)[| < LA+ K)

In order to construct unstable and stable manifolds for (1.1), we have considered in [14, 15] the

families of projections (Pp(t)), , and (]53(75)) defined on C4, respectively, by

teR teR4

(PE(1)E)(0) = [Up((t,t +6)] " (I — Pp(t))E(0) forall 6 € [—r,0]
and
(Pp(t)€)(0) = Up(t — 0,t)Pp(t)£(0) forall 6 € [—r,0].

Let us collect some results about the existence and uniqueness of solutions for (1.1) related to the
choice of the family of projections on C4.
Theorem 2.2 [14]. Assume that (H1)-(Hy) hold. Set

L(1+ K)e"(Q + R)[©1¢]/oo
1—eH ’

H =

(2.3)

Then, if H < 1, there exists one and only one solution of equation (1.1) on (—o0, s] given by
u(t) = U (5,00 o+t [ Tt ) AR, A) (01 10)do
—00

for some g € Ker Pg(s) such that sup,< ||ui]|c < oo. Besides, for any two solutions u(t), v(t)
corresponding to different initial functions £ & € ImPg(s), we have the following estimate:

lue = ville < Coe™ED)€1(0) = &(0)| forall t<s,
where v is a positive constant satisfying
O<v<p+In(l-L(1+K)e"(Q+ R)|O14] ),

and

Let™
L+ K)e'(Q + R)|[O19]oc
1— e_(N_V)

C, =
1—
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Remark?2.3. We can prove in a similar way as in Theorem 3.5 of [15] that if we consider
Pp(t) defined on the whole line R then we have under the same assumptions of Theorem 2.2, more
precisely, under conditions (H1)—(H,) and if H < 1, defined by (2.3), the existence and uniqueness
of the solution for equation (1.1) on [s, +00) given by

+o0
u(t) = Up(t, s)po + )\li_{glo / Lp(t,0) AR\, A) f(o,uy)do

for some 49 € Im Pp(s) such that sup,s [|[ut/|c < oo, and we have the following estimate for any
two solutions u(t), v(t) corresponding to different initial functions & & € Im Pp(s):

e = ville < Cue™)|[€1(0) — &2(0)]| forall ¢ > s,

where v and C,, are defined as above.
To get the existence of stable manifolds for (1.1) on the whole line R, we prove the following
result, which shows that property (d) of Definition 2.6 holds.
Proposition 2.2. Let (P(t))ier be a family of projections on the phase space C4. Let Gy, t € R,
be defined by
+00
G.(6)(0) = lim / Tt — 0, 0)\R(N, A) f(0,up)do forall 0 € [—r,0],

A—00
t

where P(t)u; = &, and let E = {£+ G(€) € (ImP(t) & Ker P(t)), t € R}. Then E is invariant
under (1.1). That is, if u(t), t € R, is a solution of (1.1) satisfying us € E and sup;s ||u]|c < 0o,
then uy € E for all t € R. -

Proof. First, let t > s. Then the result follows analogically as in Theorem 3.7 of [15], by taking
s € R. Now, let t < s, then, for t —r <7 <t < s, we have according to Remark 2.3

+o0
ur(—=0) =Up(T — 0, 7)o + ,\h—{{.lo / Ip(r—0,0) AR\, A)f(0,us)do for g € Im Pg(T).

Furthermore, it follows from Theorem 2.1 that
¢
u(t) = Up(t, T)u(r) + /\lim Up(t,0)AR(\, A) f(o,uy)do =
— 00
+oo
=Up(t,7) | po + /\lim / Lp(1,0)AR(N, A) f(o,us)do | +
—00
t
+ )\lim Up(t,0) AR\, A) f(0,uy)do
—00

T

for Mo € ImPB(T) = UB(t,T),LLQ—
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+oo
~Ug(t,7) )\li_g)lo /[UB(U, 7')]_1(] — Pp(0))AR(\ A) f(o,us)do+

¢
+ )\lim Up(t,0)\R(X, A) f(0,us)do =
—00

T

=Up(t,T)po — AILH;O/UB(t’ 0)(I — Pg(0))AR(\, A) f(o,us)do—

+o0
— lim [ [Up(o, )] 7N (I — Pp(a))AR(\, A) f (0, uy )do+

A—00
o

t
+ )\lim Up(t,0) AR\, A) f(0,uy)do =
—00
+oo
= Up(t, 7)o + Jim / (6, OB, A) (0, 1y )do.
—00

T

Proposition 2.2 is proved.
Consequently, by virtue of Proposition 2.2 and [14, 15], the following result yields.
Theorem 2.3. Assume that (Hy)—(Hy) hold. Let

ehr

where H is defined as in (2.3). Then, there exist a stable and an unstable manifold for solutions of

equation (1.1) on the whole line R.
3. On the exponential attractiveness of stable manifolds. With the established theory of

stable manifolds for the differential equation (1.1) (see Theorem 2.3), we aim to prove that the stable
manifold S = {S; }+cr exponentially attracts all mild solutions of (1.1).
Theorem 3.1. Assume that (H1) - (Hy4) and (2.4) hold. Let

a:= Le" (Lip(Gs)(1 + LK) + a(1+ K)) < 1,

where a is a constant taking according to properties of admissible spaces. Then the stable manifold
S = {Si}ier exponentially attracts all mild solutions of (1.1). In the sense that for every mild
solution u(.) of (1.1) with initial condition s, there exists a solution u(.) in S (that is, u; € S,
for all t > s) and constants « B > 0, such that

lue — @elle < ae P |lug — Ggllc forall t>s.
Proof. For s € R, we define the following space:

Cou :={x € C([s — r,00), X) such that sup =)z (8)|| < 00},
t>s—r
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equipped with the norm ||, := sup;>,_, e"t=9)||2(t)||. Clearly that Cs ,, is a Banach space. To find
our desired result, we will prove that there exists @(.) = u(.) + w(.) such that w € C; .
One can see that @(.) is a solution of (1.1) if and only if w(.) is a solution of the equation

w(t) = Up(t, s)w(s) + )\ILH;O Up(t, ) AR\, A)(f(T,ur +w;) — f(7,ur))dT. (3.1)

s

f(t,us), we can show that f: R x C — X is o-Lipschitz.

Putting f(t,w;) = f(t, 1) —
Hence, we rewrite equation (3.1) as

U + w
Moreover, we have f (t,0) = 0.

w(t) =Ug(t, s)w(s) + Ali_)n(r)lo Up(t, ") AR\, A) f (1, w,)dT (3.2)

It follows from Remark 2.3 that solutions of (3.2) are bounded on [s — r, +00) if and only if

+oo
w(t) = Up(t, s)po + Jim / Tyt AR, A) (7, ws)dr (33)

s

for some 19 € Im Pp(s) and t > s.
Now, let us find 19 € Im Pp(s), such that @5 = us + ws € Ss. This means

(Pas) (s + w4)) (8) = Go(( = Pi(s)) (s + 1)) (6), (34)
which gives

po = (Pp(s)ws)(0)Gs((I — Pp(s))(us + ws))(0) — Pp(s)u(s). (3.5)

In order to look for u(.) satisfying (1.1) and us € Ss, we will find solutions for the following
system in the Banach space C; ,:

Us(t,s) (Go((I = Pi(s))(us +w,))(0) = Po(s)u(s)) +
—|—)\lim = Lp(t,7)AR\, A) f(T,w,;)dr for t> s,
(Cwyt) = s )
Up(2s — t, 5) (gs((f — Pp(s))(us + ws))(0) — PB(s)u(s)) +
+ lim e I'p(2s —t, ) AR\, A) f(r,w,)dr for s—7r<t<s.

A—o0 Jg

Taking s —r <t < s, we have

I (Cw) ()] < M [Up(25 — ., ol +
+e09 tim [ (25 = £ DARO A)Vf () dr <
—00
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< L) o |+

25—t 00
+L(1+ K)e' |w|, / 672“(87t)<p(7')d7' + / eiZﬂ(T*S)go(T)dT
s 25—t

Using the fact that ¢ belongs to some admissible spaces, it yields that there exists a > 0 such that,
forall s —r <t <s,

I (Cw)@)]| < Lllpol| + aL(1 + K)e |uwl,,.
Concerning t > s, we get

e |(Cw) ()] <

+o00o
< U (E s)pol| + ™) lim / ITB(t, T)AR, A) f (7, w,)||dr <
—00

t “+o0o
< Llloll + L1 + K)e ), /var+/e”W%wvmf <

s t
< Llluoll + aL(1 + K)e w],.
Consequently, we obtain
Cwl, < Llipoll + a1 + K)e uwl,.

Furthermore, by virtue of the Lipschitz condition on G, we have in view of (3.5)

kol < 11Gs((I — Pp(s))us)(0) — Pr(s)u(s)||l+

HIGs (I = Pp(5)) (us +ws))(0) = Gs((I — Pp(s))us)(0)] <
< IGs((I = Pp(s))us) — Pp(s)us|le +Lip(Gs) (1 + LK) |wl,.
Hence,
|Cwl, < L||Gs((I - ]SB(S))uS) — Pg(s)usl|c + LLip(Gs)(1 + LK)e'|w|,+
FaL(l+ K)e|w], <
< L||Gs((I = Pp(s))us) — P(s)uslc + alwl,. (3.6)

This means that Cw belongs to Cs ;.
Now, we propose to prove that C' is a contraction. Let v, w € Cs, and ¢ € [s — r, 5], then

eH=)[(C)(E) — (Cw)(B)] < LeHt=)emED)]leg — Gol|+

+0o0
+L(1+ K)e”(t_s) / e_”“us_t_7|g0(7')||vf — wr||edr <

S

< Llleo — ol + aL(1 + K)et v — w],.
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For t > s,
e =)[(Cv)(t) — (Cw)(t)]| < Llleo — Gol|+
“+oo
+L(1+ K)e”’(t_s) / e_”lt_T‘cp(T)HUT — wr||edr <
S
< Llleg — ol + aL(1 + K)e' v — w],.
Consequently,
|Cy = Cuwly < Lileg = Gol| + aL(1 + K)e""|v — w|,.
Furthermore,

leo = Goll = 195 (1 = Pi(s)) (15 +v4)) (0) = Go((I = P(s)) (s + w,))(0)]] <
< Lip(G,)II(T = Pp(s)) (v, = w,)lle < Lip(Go) (1 + LK)t v = wl,.
Hence, we get
|Cv — Cw|, < LLip(Gs)(1 + LK)e* v — w|, + aL(1 + K)e! v — w|, <
< Le" (Lip(Gs)(1 + LK) + a(1 4+ K))|v — w|,.

Since a < 1, C' is a contraction on C,, and so, it has a unique fixed w, which belongs to Cj .
Using (3.6), it follows that

L lG, (1 = Ba(s))us) — Ps(s)us

1—-a

‘w’u <

n
Consequently, we obtain from (3.4)

| — urlle = |Jwelle < e M=) ], <

L

< eHr e 1(t=s)
- —a

(IGs((1 = Pp(s))is) = Gs((I = Pp(s))us)lle + | Pp(s)(@s — us)lle) <

L . _ _
< e M) = (Lip(Gs) (1 + L) |fus — @slle + LA |us — ) <

< e’”e_“(t_s)% (Lip(Gs)(1 + LK) + LK) |lus — ts|c
forall ¢ > s.

Theorem 3.1 is proved.

4. On the existence of center-unstable manifolds. This section is devoted to investigating the
existence of center-unstable manifolds for solutions of (1.1), in the case that the evolution family
{U B(t, s)} +>, has an exponential trichotomy on R and the nonlinear term f is ¢-Lipschitz. In the
following, we assume that

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 6



ON THE THEORY OF INTEGRAL MANIFOLDS FOR SOME DELAYED PARTIAL ... 787

(Hs) The evolution family {U B(t, s)} >, has an exponential trichotomy with the trichotomy
projections Pgp ;(t), t € R, j =1,2,3, and constants L, vy, ¢ > 0.

Using the trichotomy projections Pg ;(t), t € R, j = 1,2, 3, we define the families of projections
{Pp;(t)}, teR, j=1,2,3, on Cy as follows:

(Ppj()€)(0) = [Up(t,t +60)) " (I — Pp;(t))é(0) forall §€[-r0] and €€Ca. (4.1)

Now, we give our main result of this section, which proves the existence of center-unstable manifold
for solutions of (1.1).
Theorem 4.1. Assume that (Hy) - (Hs) and (Hs) hold. Set

K :=sup{||Pp;():t>0 j=23}, L = max{L,2LK} (4.2)
and
. L+ K)e' (Q + R)[[016]o
’ 1—e R
elr
for some [i fixed below. Then if H < min {1, H—E} for each fixed p > -y, there exists a center-

unstable manifold CU = {(t,CUt)}teR C R x C4 for solutions of (1.1), which is represented by a
family of Lipschitz continuous mappings

G : Im(IP’BVQ(t) D IPB,g(t)) — ImIP’BJ(t)

with Lipschitz constants independent of t such that CU; satisfies the following conditions:

a) CUy is homeomorphic to Im(Pp2(t) + Pp3(t)) for all t € R.

b) To each & € CUSs, there corresponds one and only one solution of (1.1) on (—oo,s] such
that e~ 7+ (0) = £(0) for § € [—r,0] and sup,<, e ™ uy(.)|le < oo, where T = Py

Furthermore, for any two solutions u(t) and v(t) of equation (1.1) corresponding to different initial
Sfunctions &1, &2 € CU, there exist positive constants v and C,, independent of s € R such that

lut — velle < Coel™E2)||(Pp(s)61)(0) — (Pr(s)E)(0)]| for t>s,

where Pp(t) = Ppa(t) + Pp3(t).

¢) CU is invariant under equation (1.1). That is, if u(t), t € R, is a solution of (1.1) such that
e Ty, € CUs and sup,< ||e” ™ uy(L)||e < oo, then e Ty () € CUy for all t € R.

Proof. Put Pp(t) := Pp2(t) + Pp3(t) and Qp(t) := Ppi(t) = Id — Pp(t) for t € R.
Then Pp(t) and Qp(t) are projections complemented to each other on X,. We then define the
corresponding projections {Pp ;(t)}, t € R, j = 1,2,3, on C4 as in equality (4.1). Let Pp(t) :=
= ]P’Bg(t) + ]P’B73(t) and QB,t = ]P’BJ(t) =1Id— PB(t) for t € R. Hence, PB(t) and QB(t) are
complemented on C4 for each ¢t € R. Now, consider the following evolution family:

Ug(t,s) = e "¢ )Up(t,s) forall t>s.

Let us prove that the evolution family Ug(t,s) has an exponential dichotomy with the dichotomy
projections Qp(t), t € R. In fact, we have, for ¢ > s,
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Qp()Ug(t,s) = e ™) P (1)Up(t, s) =
= e "UR(L, s)Ppa(s) = Up(t, s)Qp(s).

Since Up|(t, s) is a homeomorphism from Im Pp ;(s) onto Im Pp ;(t), j = 2,3, then it is a home-
omorphism from Im Pp(s) onto Im Pg(t). As Im Pp(s) = KerQp(s), s € R, then Up(t,s)
is a homeomorphism from Ker Qp(s) onto Ker Qp(t¢). By using the definition of exponential tri-
chotomy, we obtain

1Ts(t,5)Qp(s)x|| < Le T Qp(s)a| forall t>s,
besides
[Ug(t, 8)] " Pe(t)a| = e 7)|[Up(t, 5)]~  (Ppa(t) + Ppa(t)z]| <
< Le 70 (e | Py o (t) Po(t)z|| + €| Py 5(t) Po(t)]|)

forall £ > s and = € Xj. By (4.2), we obtain

pP—

|[Tp(t, s)] " Pp(t)z|| < 2LKe "2 79| Pg(t)x]].

Consequently, Ug(t, s) has an exponential dichotomy with the dichotomy projections Pp(t), t € R,
and constants L, fi := P

2
Set z(t) := e "u(t) and let the mapping G : R x C — X be defined by
G(t,&) = e T f(t,e™"e() for (t,€) eRxC.

It is easy to show that G is also @-Lipschitz. Hence, equation (2.2) can be rewritten as

t

z(t) =Up(t, s)z(s) + )\lim Up(t,0)AR(\, A)G(0, 2,)do forall t > s,

—00
S
(4.3)
z() = eTEHB() e Ca.
efr
By virtue of Theorem 2.3, we obtain that, if H < min {1, HE}’ then there exists an unstable

manifold M for solutions of (4.3). Returning to equation (2.2), by the relation u(t) := €™z(t), in
view of Theorems 2.2 and 2.3, it is easy to check properties of CU. Therefore, Clf is a center-unstable
manifold for solutions of (1.1).
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