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VARIABLE HERZ ESTIMATES FOR FRACTIONAL INTEGRAL OPERATORS
3MIHHI OIIHKH I'EPHA JJIAA JPOBOBUX IHTET'PAJIBHUX OIIEPATOPIB

In this paper, the author study the boundedness of fractional integral operators on a variable Herz-type Hardy space
H I'(;((f))’q(.) (R™) by using the atomic decomposition.

3a IOMOMOTOI0 aTOMapHOI AEKOMITO3UIIii BUBYAETHCS OOMEKEHICTh JPOOOBUX IHTETpaJbHUX ONEPaTopiB y 3MiHHOMY HpO-
cropi Tapni HK;’(("))’Q(') (R™) Tuny Tepua.

1. Introduction. Function spaces with variable exponents have been intensively studied in the recent
years by a significant number of authors. The motivation to study such function spaces comes from
applications to other fields of applied mathematics, such that fluid dynamics and image processing
(see [2, 13]).

Herz spaces K:;‘("’)’ and K;’(’g with variable exponent ¢ but fixed « € R and p € (0,00] were
recently studied by Izuki [6, 8]. These spaces with variable exponents «(-) and ¢(-) were studied in
[1], where they gave the boundedness results for a wide class of classical operators on these function
spaces. The spaces K:;‘((_'))’p O (R") and I'(;)((_'))’p O)(R™), were first introduced by Izuki and Noi in
[9]. In [5], the authors gave a new equivalent norms of these function spaces. See [14], where new
variable Herz spaces are given. For more details, we refer the reader to the reference [4].

H. Wang, L. Zongguang and F. Zunwei [16] considered variable Herz-type Hardy spaces H K;(’_’;
with variable ¢, were the boundedness of fractional integral operators and their commutators on these
spaces are obtained.

H. B. Wang and Z. G. Liu [15] studied Herz-type Hardy spaces H Kg‘((f))’p with variables o
and ¢, but fixed p, where the authors introduced the anisotropic Herz spaces and established their
block decomposition, also they obtain some boundedness on the anisotropic Herz spaces with two
variable exponents for a class of sublinear operators. D. Drihem and F. Seghiri in [5] introduce a
new Herz-type Hardy spaces with variable exponent, where all the three parameters are variables.

This paper is organized as follows. In Section 2, we give some preliminaries where we fix some
notations and recall some basic facts on function spaces with variable integrability. In Section 3, we
give some key technical lemmas needed in the proofs of the main statements. Finally, in Section 4,
we present main results. In particular we will prove the boundedness of fractional integral operators
and their commutators on Herz-type Hardy spaces, where all the three parameters are variables.

2. Preliminaries. As usual, we denote by R" the n-dimensional real Euclidean space, N the
collection of all natural numbers and Ny = N U {0}. The letter Z stands for the set of all integer
numbers. For a multiindex a = (a,...,a,) € Njj, we write |a| = oy + ... 4+ . The Euclidean
scalar product of x = (z1,...,2,) and y = (y1,...,yp) is given by -y = x1y1 + ... + T yn. The
expression f < g means that f < cg for some independent constant ¢ (and nonnegative functions
f and g), and f ~ g means f < g < f. As usual for any = € R, [z] stands for the largest integer
smaller than or equal to z.
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For x € R™ and r > 0, we denote by B(x,r) the open ball in R™ with center x and radius r.
By supp f we denote the support of the function f, i.e., the closure of its non-zero set. If £ C R" is
a measurable set, then | F| stands for the (Lebesgue) measure of E and y g denotes its characteristic
function.

The symbol S(R™) is used in place of the set of all Schwartz functions on R™ and we denote by
S'(R™) the dual space of all tempered distributions on R™.

The variable exponents that we consider are always measurable functions on R" with range in
[c, 00 for some ¢ > 0. We denote the set of such functions by Py(R™). The subset of variable
exponents with range [1,00) is denoted by P. For p € Py(R"), we use the notation

p~ =ess inf p(x), pT = ess sup p(z).
TeR™ PASING
Everywhere below we shall consider bounded exponents.

Let p belongs to Py(R™). The variable exponent Lebesgue space LP()(R™) is the class of all

measurable functions f on R"™ such that the modular

0y (f) = / (@) P de
Rn

is finite. This is a quasi-Banach function space equipped with the norm

1
[ £llp(y = inf {u >0 o) (#f) < 1}.

If p(x) = p is constant, then LP()(R") = LP(R") is the classical Lebesgue space.

A useful property is that g,y (f) < 1 ifand only if || f|[,,.) < 1 (unit ball property). This property
is clear for constant exponents due to the obvious relation between the norm and the modular in that
case.

We say that a function g : R™ — R is locally log-Hélder continuous, if there exists a constant
Clog > 0 such that

Clog
— <
l9(z) — g(y)| < (e £1/|z — g))
forall z,y € R". If
Clog
—g(0)] < ——°8
o)~ 9(0)| < s

for all x € R"™, then we say that g is log-Holder continuous at the origin (or has a log decay at the
origin). If, for some go. € R and ¢j,; > 0, there holds

Clog

|9(2) = goo| < m

for all z € R"™, then we say that g is log-Holder continuous at infinity (or has a log decay at infinity).

By P(l)og(R”) and PXE(R") we denote the class of all exponents p € P(R"™) which have a
log decay at the origin and at infinity, respectively. The notation P'°(R™) is used for all those
exponents p € P(R™) which are locally log-Holder continuous and have a log decay at infinity,
with pog := limy|_,00 p(x). Obviously, we get P8(R") C P(l)og(R”) N PL8(R™). Here, p’ denotes
the conjugate exponent of p given by 1/p(-) + 1/p/(-) = 1. Note that p € P°8(R") if and only if
P’ € P8(R"), and since (p')oo = (Poo)’ We write only p/, for any of these quantities.
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1036 R. HERAIZ

Let p, ¢ € Py. The mixed Lebesgue-sequence space £4)(LP()) is defined on sequences of LP()-
functions by the modular

Qm() r( ((fv)v) = Zinf {)\U >0: Op(") <)\1J;Z()> < 1} .

v

The (quasi)norm is defined from this as usual:
. 1
1(fo)ullgacr (poery = Inf § 16> 02 0pat) (o0 ;(ffu)v <1lg.
Since g7 < oo, then we can replace by the simpler expression

0000y (Lr()) Z H|fv|q

Furthermore, if p and ¢ are constants, then ¢9)(LP()) = ¢4(LP). It is known that ¢4(

"U
~

')isa

(Lr
norm if ¢(-) > 1 is constant almost everywhere (a.e.) on R" and p(-) > 1, or if ﬁ + 7)

a.e. on R orif 1 < ¢(z) < p(z) < co a.e. on R™.

Very often we have to deal with the norm of characteristic functions on balls (or cubes) when
studying the behavior of various operators in Harmonic Analysis. In classical LP spaces the norm
of such functions is easily calculated, but this is not the case when we consider variable exponents.
Nevertheless, it is known that for p € P°¢ we obtain

IxBllpe)IxBlly ) = |Bl. (2.1

Also,
1
IxBllp) ~ |B]?@,  z € B, (2.2)

for small balls B C R" (|B] < 2™), and

_1
IxBllpe) = [Blres (2.3)

for large balls (|B| > 1) with constants only depending on the log-Hélder constant of p (see, for
example, [3], Section 4.5). Let LLOC (R™) be the collection of all locally integrable functions on R”.
Recall that the space BMO(R™) consists of all locally integrable functions f such that

1
Ifll5310 = sup ! (@) — foldz < oo,

1
where fg = @ /Q f(y)dy, the supremum is taken over all cubes () C R™ with sides parallel to

the coordinate axes.
We refer the reader to the recent monograph [3] (Section 4.5) for further details, historical remarks
and more references on variable exponent spaces.
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3. Basic tools. In this section, we present some results which are useful for us. The following
lemma plays an important role in the proof of the main results of this paper, is given in [1], where is
a generalization of (2.1), (2.2), and (2.3) to the case of dyadic annuli.

Lemma 3.1. Let p € PX5(R™) and R = B(0,r) \ B(O7 g) If |R| > 27", then

1 1
IXRllpe) = [RIP® = ||

with the implicit constants independent of r and x € R.

The left-hand side equivalence remains true for every |R| > 0 if we assume, additionally, that p
belongs to P(I)Og(R”) N PRE(R™).

The next lemma is a Hardy-type inequality which is easy to prove.

Lemma 3.2. Let 0 < a < 1 and 0 < q < oo. Let {e}};,c; be a sequence of positive real
numbers such that

H{ek}kezHeq =1 <oo.

. _ k—j~. . _ j—k .
Th;n the sequences {5k: D0k =D <k 0 ]sj}kez and {nk. Mk =D ok @ gj}kez belong to 14,
an

{0k kezllea + [Hmdrezlln < e

with ¢ > 0 only depending on a and q.
For convenience, we set

By, := B(0, 2’“), Ry, := By, \ Biy—1 and Xt = XR,, keZ.

Definition 3.1. Let p, q belong to Pyo(R"™) and o : R™ — R with o € L>®(R"). The inhomoge-
neous Herz space K;((.'))q(.) (R™) consists of all f € L{gz (R™) such that

< oQ.

a() = y + [ (2k0)
HfHKp((-)),q(-) Hf XBo Hp( ) H ( f Xk) £4C)(Lp())

k>1

Similarly, the homogeneous Herz space KZ‘((.'))q(.) (R™) is defined as the set of all f €
e LPY) (Rm\ {0}) such that

Loc

< 0.
a(+) (LP(‘))

Iz, = || (201 )

keZ

If o and p, g are constant, then I'(qa((f))’p ¢ (R™) is the classical Herz spaces K" (R™).
The following proposition is very important for the proof of the main results it is from D. Drihem
and F. Seghiri in [5].
Proposition 3.1. Let o € L™(R"), p,q € Po(R™). If a and q are log-Hélder continuous at
infinity, then

a(')vQ(') ny __ Qoo G0 n
Kyey ™ (RY) = K57 (RY).

Additionally, if o and q have a log decay at the origin, then

-1 1/4(0) 0o 1/qoo
a 0 Qoo )
£l = ( SR <0>f><k||g§;> + (kzomk kang(.)) .

k=—o00

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 8



1038 R. HERAIZ

Let ¢ belongs to C§° (R™) with supp ¢ C By, / o(z)dz # 0 and ¢; () =t~ "¢ (;) for any
R’ﬂ
t > 0. Let M_(f) be the grand maximal function of f defined by

Mo (f)(z) = sup e » f(@)]

We will give the definition of the homogeneous Herz-type Hardy spaces H K;((.'))’q(').

Definition 3.2. Let p, q belong to Po(R™) and a: R" — R with a € L*°(R™). The homo-
geneous Herz-type Hardy space H K;Y((.'))’Q(') (R™) is defined as the set of all f € S'(R™) such that
M/ (f) € K;“((f))’q(') (R™) and we define

£l 4 greriaer = [[Mp ()|l ot ac)-
HK K
p(-) p(-)
It can be shown that, if p,q, and « satisfy the conditions of definition, then the quasinorm
7l HECOa0) does not depend, up to the equivalence of quasinorms, on the choice of the function
p(+)

¢ and, hence, the space H K;‘((_'))’q(')(R”) is defined independently of the choice ¢. If p belongs to

PE(R™) N PRE(R™) with
n _ " n
—— <a <a"<n-——
p p
and ¢ € Pyp(R™), then
a(),a() mny _ 7re(),a() mn
HE ™ (RY) = Ky (R,
If o () =0,p() =q(), then HK )" (RY) and K57 (R?) coicide with LPO)(R™).
One recognizes immediately that if «, p and ¢ are constants, then the spaces H K,?’q are just the
usual Herz-type Hardy spaces were recently studied in [11, 12].
Now, we introduce the basic notation of atomic decomposition.
Definition 3.3. Let o € L*°(R"), p € P(R"), ¢ € Po(R"™) and s € Ny. A function a is said to
be a central (a(-),p(-))-atom, if

(i) suppa C B(0,7) ={zx e R": || <r}, r >0,
(i) Jlall,y < B0, )~/ 0 <r<1,
(111) HG’Hp() < |B(O7T)‘7aoo/n7 T2 17

(iv) ZPa(z)dr =0, |3 < s.
R’VL

A function a on R"™ is said to be a central («(-), p(+))-atom of restricted type, if it satisfies the
conditions (iii), (vi) above and suppa C B(0,r),r > 1.

If r = 2% for some k € Z in Definition 3.3, then the corresponding central (a(-), p(-))-atom is
called a dyadic central (a(-), p(-))-atom.

Now we establish characterizations of the spaces H Ks((_'))’q(') (R™) in terms of central atomic
decompositions, which make it convenient to study the boundedness of operators on these spaces. In
[5], we have the following the atomic decomposition characterization of spaces H K;((_'))’q(') (R™).
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Theorem 3.1. Let o and q are be log-Hélder continuous, both at the origin and at infinity and

p € P8(R™) with 1 < p~ < p+ < co. Forany f € HKS(("))’q(') (R™) , we have

F=> Max,
k=—o00

where the series converges in the sense of distributions, A\, > 0, each ay, is a central (a(-),p(-))-
atom with supp a C By and

—1 1/(1(0) o0 1/QO0
( ) |Ak|q<°>> + (Z rmqw) < Cllfll ot
k=0 p(+)

k=—o00

1 1
Conversely, if a(-) > n (1 — _) and s > [oﬁ +n <_ — 1” , and if holds, then f belongs to
p p
HK;()’q() (Rn) , and

)
-1 1/4(0) 0o 1/¢oc
||f||HKa(<»)>,q<»> ~ inf ( > |>\k|Q(O)> + (ZAH%") :
o

k=—o00 k=0

where the infimum is taken over all the decompositions of f as above.

The following lemma is from [9] (Lemma 2.9), see also [16] (Lemma 0.5).

Lemma 3.3. Let p belongs to P'°8 (R"™), k be a positive integer and B be a ball in R™. Then,
forall b€ BMO(R™)and all i,j € Z with j > i, we have

- 1 ! k
—||b <sup—||(b—10 N <cllb ,
c | HBMO 5 HXB”p(-)”( B) XBHp() | HBMO

k . \k k
”(b - sz) XB, ||p() < C(] - Z) ||b||BMO ||XBj ||p() :
Given 0 < o < n, for an appropriate function f, the commutator with m-order of fractional

integral operators I, m = 1,2,..., is defined by
5 ()= [ PO g)ay,
A

We denote I, by [b, I,] and I, by the fractional integral operator I, respectively.
The next two lemmas are from [5] treat the case when m = 0,1 for I;.

1 1
Lemma 3.4. Suppose that p1, p2 belong to P°8(R") with pj < D oand —— — -7
o

pi() p2A) n

Then, for all f € LP() (R™), we have
HIa(f)HpQ(.) <c ||f||p1(.) :

1
Lemma 3.5. Suppose that py, ps belong to P'°8(R™) with pi < ﬁ, — =
o pi()  p2()
b€ BMO(R™). Then, for all f € LP*() (R"), we have

116, L) ()l ) < C 0l Baco N1y, (-
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1040 R. HERAIZ

4. Boundedness of fractional integral and their commutators on variable Herz-type Hardy
spaces. In this section, we present the boundedness of fractional integral operators and their com-
mutators on variable Herz-type Hardy spaces.

First, we treat the boundedness of I, on variable Herz-type Hardy spaces.

1 1
Theorem 4.1. Suppose that p1, p2 belong to Plog(R”) with p{“ < n and — — —— = c
o

pi()  p2(t) n’
a € L*®(R"™), q1,q2 € Po(R™). If a, q1 and qo are log-Hélder continuous, both at the origin and
1
at infinity with o (-) > n(l - T)7q1(0) < @2(0) and (q1)o, < (92)o » then 1, is bounded from
Dy
HKpl(())ql()(Rn) to K;;(())’%()(Rn)
Next, we present the boundedness of [b, I,] on variable Herz-type Hardy spaces.

1 1
Theorem 4.2. Suppose that p1, pa belong to P°8(R™) with pj < " ond — — — = g,
o p() pA) n
a € L®(R"), q1,q92 € Po(R™). If a, q1 and q2 are log-Holder continuous, both at the origin and at

infinity with o () > n(1 — i) q1(0) < ¢2(0), (q1) oo < (¢2)o and b € BMO(R™), then [b, 1] is
Py

oo —

bounded from HK (())ql( )(R”) to KSQ(('?)’qQ(')(R").

Remark 4.1. If «,q; and ¢o are constants, then the statements corresponding to Theorems 4.1
and 4.2 can be found in [16] (Theorems 1.1 and 1.2).

Our proofs use partially some techniques already used in [16] where «, g1 and ¢o are constants.

Proof of Theorem 4.1. We must show that

1 (Voo (- < o)1 (-
H U(f)||Kp2(();q2( >(Rn) >cC Hf”HKpl(();ql( )(Rn)

forall f € H K;;((.-))m(-) (R™) . By using Theorem 3.1, we may assume that

+o0
f=> Na;

where \; > 0 and a;’s are (a(-),p1(-))-atom with suppa; C B;. By using Proposition 3.1, we
have

T, e ol )ao (- ~
I a(f)HKp;(};qg()(Rn)

-1 1/42(0) +o00 1/(q2)oo
%{ Z 9ka(0)g2(0) ”Ia(f)XkHZZ(((,)))} +C{Z2kaw (32) oo I, (f )XkH q2) } <

k=—00 k=0

-1 k—2 w00 Ve
< ) oke0e(0) ( > ‘)\i’HIa(ai)Xk”m(')) "
k=—o0 =00
y N g2(0) ) 1/22(0)
+{ 3 2ke0nO ( Nl 1o (ai) Xkl o ) +
oo i=k—1
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1/(42) 0o

. (92) 0o
L Zkaaoo 92) 0o <Z ‘)\ ‘ HI az)Xkaz > *

k=0 1=—00

1/(42) 0o

» (22) o
n Z2kam 42) 00 (Z IAil 1o (@) xl . > -

k=0 i=k—1
=: Hy + Ho + H3 + Hy.

Let us estimate H;. By the s-order vanishing moments of a; with

o)

—n-+o

we can subtract the Taylor expansion of |z — y| at x, we obtain

s+1
a; (Y)Y
L) @) < [ %dys

<ec- 2—k(n—0+s+l)+i(s+1) / |ai (y)’ dy.
B;
Applying Holder inequality, we get

I (@) (2)] < ¢ 27 Kot DD gy Ly (“.1)

On the other hand (see [7, p. 350]), we have

I (xs,) ( / W (@) > e P, (1), (4.2)
|z — y|

By (4.1), (4.2) and Lemma 3.4, gives

1o (@) Xkl py ) < € p~kn—otetl)tils+l) aillpy ¢y 1Bl ) xRl py ) <

< ¢ 7MYy | BNy 0 o Ocs )y <

< . 9 kst Fi(s+1) laill,, ¢y 1Bl ) 1By -
By (2.2), we have
—1 k—2 42(0) 1/42(0)
k=—o00 1=—00
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1042 R. HERAIZ

1/42(0)

-1 q2(0)
<ec Z < Z ‘)\ ‘2(1 )(n4s+1— a+n/p1)(0))>

k=—0c0 \i=—00

1
Since s+1—at +n (1 — > > 0, then, by Lemma 3.2, we obtain
by

1 1/g2(0) -1 1/q1(0)
Hy<c ( > !Ak|q2(0)> <c ( > |)‘k|q1(0)> < C||f”HK§1<8;ql(')‘

k=—o00

Let us estimate Hy. By Lemma 3.4, we get

-1 too 42(0) ) 1/42(0)
Hy={ Y 2ke02(0 < > Il ”Io(ai)Xk||p2(.)> <
k=—o0 i=k—1
—1 +oo ¢2(0) ) M/ 22(0)
<c Z Qka(O)Q2(0) ( Z ’)\l’ Haing(-)> <
k=—00 i=k—1
1 2(0) ) 1/42(0)
sc Z 2he(0) ( Z |Adl ||az'||p2(.)> =+
k=—00 i=k—1

1/42(0)

q2(0)
+c Qka 2(0) Z\)\\Haszg )

k——oo

/—\
IA

1/42(0)

-1 -1 q2(0)
<ec Z < Z |)\i|2(l€—i)a(0)> +

k=—o00 \i=k—1

1/42(0)

+c Z <Z ‘)\z‘ 2(ki)a+k(o¢(0)a)+i(aaoo)>

k=—oco \i=0

for k < 0 < and since o~ < min(a (0), a), we have k(a (0) —a™) +i(a”™ — ax) < 0. Then,
by Lemma 3.2, we have

1 1/42(0) —1 1/41(0)
Hy<c ( > !AkIW(O)) <c ( > \)\k|q1(0)> < c||f”Hf<§1<8;q1(')‘

k=—o0 k=—o00

We can estimate H3 and H,4 by the same technique as in the estimation of H; and H» when replacing
a(0) and ¢2(0) by a and (g2),, , respectively. A combination of estimations of Hy, H», Hs, and
H, finish the proof ot Theorem 4.1.

Proof of Theorem 4.2. We must show that
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16, L1 7 o023 gy < €Nl g jor,n ) gy
p2(+) p1(+)

forall f e H K§11((.~)),q1(~) (R™) . By using Theorem 3.1, we may assume that

+oo
F=Y M,

i=—00

where \; > 0 and a;’s are (a(-),pi (-))-atom with suppa; C B;. By using Proposition 3.1, we
obtain

I[b, I"]fukgégiq?(')(w) ~

1/g2(0) +00 i
{ > 22OmO b, 1) a2 } H{ZQW(%)@ ||[b,10]ka\|§,qj(?§’°} :
et k=0
< 21604(0)(12 ( BY ‘ || b I ]ka?HpQ( ) +
k_foo =00
e 42(0)) 1/42(0)
. Qka )a2(0) ( S b, Lol el ) +
ki_a) i=k—1
-~ o (2)oc ) /()
k=0 i=—00
N . (42)o0 ) /()0
i ZQk’aoo(QQ)oo < Z ’Az‘ H[b, IO’]kaHpg(-)) =:
=: Q1+ Q2+ Q3 + Qu.

‘—n+a

Let us estimate (1. As in Hy, we use the Taylor expansion of |z — y at x and the s-order

1
vanishing moments of a; with s > [oﬁ -n <1 — )] , we get
Dy

|[b, L] (ai)| <

Ja; ()| [y
< [ 1bta) = blo) Sy <

]

<ec. 27k(nfo+s+l)+i(s+1) / ‘ai (y)| |b(;1;) — b(y)| dy <

B;
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< ¢ KOs DR o(ar) — bp| [ Jai (y)| dy + / |ai (y)| 1bB; — b(y)| dy
B; B;

We use the Holder inequality, the last expression is bounded by
c. 9 k(n—o+st1)+i(s+1) Hainl(.) (|b(x) — bp,| ||XBZ-||p/1(.) + |||bB;, — b(y)| XBZ'HP'l(')) .
By (4.2) and Lemma 3.3, we have

11b: o] (@) Xkl py ) <
< ¢ Rt DD g (1b(2) = b, Xkl sy ) +
1155, = 1) X8y ) XKDy ) <
< ¢ g kot DD gy | (6 = ) 1Bl paso X8y 168, g ) +

18l 510 I8y ) Xkl ) <

< ek — ) - 27RO gy bl o Iy ) Xy <

<c(k—1)- gt tilstl) Hainl(.) 16l grro ||XBin/1(.) ”Ia(ai)Xka(.) <

< c(k—1)- g kwtetibti(etl) ||ai||p1(.) 16/ grro HXBinfl(.) ||ch”p1(.) :

By (2.2) and Lemma 3.1, we obtain

—1 k—2 42(0) 1/42(0)
Q=3 3 2k020 ( >l 1) (ai)x,fum(,)) <
k=—o00 1=—00
-1 k—2 g2(0) Y 1/42(0)
< c|lbllgao Z ( Z || (k — 1) - 2(ik)(s+1+n(a+n/p1)(o))> <
k=—00 \i=—00

-1 k-2 ¢2(0) Y 1/22(0)
<chMo{ 2 (Z \M(kz‘)-2<i"f><s+l+"‘W*"/”M”) } SNCE)

k=—00 \i=—00

1
Since s+1—a™ +n (1 — > > 0, then, by Lemma 3.2, we get that (4.3) is bounded by
by

_1 1/42(0) 1 1/41(0)
Q1 < cllbllpaso < > |>\k|‘m(0)> <c < > |>\k|q1(0)) < C||f||HKa<&>5q1<~)-
p1(-

k=—o00 k=—o00
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Let us estimate (2. By Lemma 3.3, we get

2(0)) 1/22(0)

Qz=9q > 25 O=O {37 N5, L] (a0) Xl <
k=—o00 i=k—1
-1 +o0 42(0) 1/4a2(0)
<clblipaoq D 27O 1SN (A flail,, <
k=—o0 i=k—1
-1 -1 42(0) 1/a2(0)
<clbllpuoq o 20O D7 il llaill, +
k=—o00 i=k—1
-1 +o0 42(0) ) 1/42(0)
telbllpao § Do 2O D7 Nl laillyy <
k=—c0 i=0
1 1 42(0) 1/42(0)

< CHbHBMO Z Z ’/\i|2(k7i)a(0) i

k=—o0 \i=k—1

1 42(0) ) 1/42(0)

+o00
+c HbHBMO Z Z I\l 9(k—i)a™ +k(a(0)—a™)+i(a” —aso)

k=—o00 \i=0

for k < 0 <. Since o~ < min(a (0) , ), we obtain k(a (0) —a™) +i(a™ — aso) < 0. Then, by
Lemma 3.2, we have

_1 1/g2(0) -1 1/41(0)
Q2 <cllbllppo | D 1Ml <ecl D we©@ < C||f||HKa<&>;q1<~>-
p1(

k=—oc0 k=—oc0

We can estimate Q3 and ()4 by the same technique as in the estimation of (); and ()2, when
replacing «(0) and ¢2(0) by a and (¢2),, , respectively.
A combination of estimations of @)1, QQ2, ()3, and Q4 finish the proof ot Theorem 4.2.
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