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PARTIAL ORDERS BASED ON THE CS DECOMPOSITION *
YACTKOBI BIIOPAJAKYBAHHSA HA OCHOBI CS-PO3KJIAY

A new decomposition for square matrices is given by using two known matrix decompositions, a new characterization
of the core-EP order is obtained by using this new matrix decomposition. Also, we will use a matrix decomposition to
investigate the minus, star, sharp and core partial orders in the setting of complex matrices.

3a JI0NOMOTOI0 JBOX BIZIOMHX PO3KJIAJIB MaTpPHIb OTPUMAHO HOBUI PO3KJaj] Ul KBAJPaTHUX MAaTpHIb, a 32 JOIIOMO-
TOIO I[bOTO HOBOTO PO3KJIALy OTPHMAHO HOBY XapaKTepHCTHKY core-EP-BmopsiaxyBaHHA. Takok BUKOPHCTaHO MAaTPHYHHH

CLIY3 LIRS

PO3KIJIaj UIsl BUBYCHHS YaCTKOBOTO IOPSIKY THIY “minus”, “star”, “sharp” Ta “core” i KOMIUIEKCHUX MaTpULIb.

1. Introduction. Let C™*" denotes the set of all m x n complex matrices. Let A*, R(A),
N(A) and rk(A) denote the conjugate transpose, column space, null space and rank of A € C™*™,
respectively. For A € C™*"_if X € C"*"™ satisfies

AXA=A, XAX=X, (AX)*=AX and (XA)" = XA,

then X is called a Moore— Penrose inverse of A. If such a matrix X exists, then it is unique and
denoted by Af. Many existence criteria and properties of the Moore — Penrose inverse can be found
in[l, 6,8, 9]. If AXA = A holds, then X (and denoted by A7) is called an inner inverse of A and
the set of all inner inverses of A is denoted by A{1}.

Let A € C™*™. It can be easily proved that the set of elements X € C"*™ such that

AXA=A, XAX=X and AX=XA

is empty or a singleton. If this set is a singleton, its unique element is called the group inverse of A
and denoted by A7.

The core inverse for a complex matrix was introduced by Baksalary and Trenkler [4]. Let
A e C". A matrix X € C™" is called a core inverse of A, if it satisfies AX = P, and
R(X) € R(A), here P4 denotes the orthogonal projector onto R(A). If such a matrix exists, then
it is unique and denoted by A®. For a square complex matrix A, one has that A is core invertible,
A is group invertible, and rk(A) = rk(A?) are three equivalent conditions (see [1]). We denote
COM = {A € C™" | tk(A) = rk(A?)}. The core partial order for a complex matrix was also

®
introduced in [4]. For A € C¢M and B € C™*™, the binary relation A < B is defined as follows:

ASB & APA— A®B and AA® — BA®.
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In [4] (Theorem 6), it is proved that the core partial order is a matrix partial order. Baksalary and
Trenkler [4] gave several characterizations and various relationships between the matrix core partial
order and other matrix partial orders by using the decomposition of Hartwig and Spindelbock [9].
Let us recall some other well-known partial orders in C"*™. For A, B € C"*",

the left star partial order A *< B: A*A = A*B and R(A) C R(B) [3];
the star partial order A ; B: A*A = A*B and AA* = BA* [7];

the minus partial order A ; B: A—A = A"B and AA~ = BA~, where A~ denotes some
inner inverse of A [8];

. #

the sharp partial order A < B: A* A = A# B and AA# = BA¥ [12].

In addition, 1,, and 0,, will denote the n x 1 column vectors all of whose components are 1 and
0, respectively. 0,,xn (abbr., 0) denotes the zero matrix of size m x n. If S is a subspace of C",
then Ps stands for the orthogonal projector onto the subspace S. A matrix A € C"*™ is called an
EP matrix if R(A) = R(A*), A is called projection if A* = A = A? and A is unitary it AA* = I,,,
where I, denotes the identity matrix of size n. Let A € C™*™, the smallest integer k such that
rk(A*) = rk(AF*1) is called the index of A and denoted by ind(A) = k.

2. Preliminaries. A related decomposition of the matrix decomposition of Hartwig and Spin-
delbock [9] was given in [1] (Theorem 2.1) by Benitez. In [2] it can be found a simpler proof of this
decomposition. Let us start this section with the concept of principal angles.

Definition 2.1 [18]. Let S and Sy be two nontrivial subspaces of C". We define the principal
angles 01, ...,0, € [0,7/2] between Sy and Sz by

COS 92 = Ui(Pgl PSQ),

for i = 1,...,r, where r = min{dimS;,dim Sa}. The real numbers o;(Ps,Ps,) > 0 are the
singular values of Ps, Ps,.

The following theorem can be found in [1] (Theorem 2.1).

Theorem 2.1. Let A € C"*", r = rk(A), and let 6,,...,0, be the principal angles between
R(A) and R(A*) belonging to |0,7/2[. Denote by x and y the multiplicities of the angles 0 and
/2 as a canonical angle between R(A) and R(A*), respectively. There exists a unitary matrix
Y € C™™™ such that

2.1)

MC MS «
aoy| e s ]y

where M € C™" is nonsingular,
C = diag(0y,cosby,...,cos0,,1,),

g { diag(1y,sinfy,...,sin6,)  Opiyn(ripty) }
Oz pty Oz.n—(r-+p+v) 7

and r = y+ p + x. Furthermore, x and y +n — r are the multiplicities of the singular values 1 and
0 in Pr(a)Pr(ax), respectively. We call (2.1) as the CS decomposition of A.
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PARTIAL ORDERS BASED ON THE CS DECOMPOSITION 1121

In this decomposition, one has C? 4 SS* = I,.. Recall that AT always exists. We have that A%
exists if and only if C' is nonsingular [1] (Theorem 3.7). The following equalities hold:

cCM~t 0 C'M—' C M- 1C’ 1S
T — * # _ *
P B AR D O v
—1ps—1
From A® = A#AA', we obtain A® = Y[ ¢ (])\4 8 } , AA® = Y[ {)r 8 ]Y*
~1
andA@A—Y[ g COS ]Y*.Wehave

1 A1
AA®—A®A—Y[I(;" g}y*—y[ L 08 ]Y*—Y[ 0 -5 ]Y*. (2.2)

Thus,

=0.

-1
yAA®—A®A\:‘Y[ 0 —C75 }Y*

0 0

Therefore, AA® — A® A is always singular and rk(AA® — A® A) = rk(C~1S) = rk(S) < n
From (2.2), we have that A is an EP matrix if and only if S = 0, that is all the canonical angles
between R(A) and R(A*) are 0. This result also can be found in [1] (Theorem 3.7).

Proposition 2.1. If A € C"*" is core invertible and A has the form (2.1), then AA® — A® A
is always singular with Tk(AA® — A® A) = rk(S) < n.

In [19] (Theorem 3.1), the authors proved the following lemma for an element in a ring with
involution.

Lemma 2.1. Let A € C"*". Then A is core invertible with A® = X if and only if (AX)* =
=AX, XA? =Aand AX?>=X

Proposition 2.2. Let A, B, U € C™"™ with A = UBU*, where B is core invertible and U is
unitary. Then A is core invertible. In this case, one has A® = UB®U*.

Proof. Let X = UB®U*, we have

AX = AUB®U* = UBU*UB®U* = UBB®U* is Hermitian,
XA? =UB®U*(UBU*)? = UB®(B)*U* = UBU* = A,
AX? =UAU*(UB®U*)? = UB(B®)’U* = UB®U* = X

Thus, A® = UB®U* in view of Lemma 2.1.

Recently, Wang introduced a new decomposition for square matrices, named the Core-EP decom-
position in [17] (Theorem 2.1).

Lemma 2.2. Let A € C"*" with ind(A) = k. Then A can be written as

A= Al =+ AQ, (23)
in which
(1) Ay e CSM;
(2) A5 =0;
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(3) AjAs = A2A; =0.
We call the equality (2.3) as the Core-EP decomposition of A.

Definition 2.2 ([14], Definition 3.1). Let A € C™*™ with ind(A) = k. A matrix X € C"*" is
called a core-EP inverse of A if X is an outer inverse of A and satisfying

R(X) = R(X*) = R(A").

If such X exists, then it is unique and denoted by A®.

3. A matrix decomposition related the CS decomposition and the core-EP decomposition.
Theorem 3.1. Let A € C™™" with ind(A) = k and r = rk(A). Then there exists a unitary
matrix U € C™"™" such that

MC MS %
A—U[ 0 Dy }U, (3.1)

where M and C' are both nonsingular, Dy is nilpotent, C? 4+ SS* = I, and matrices C and S have
the form after equality (2.1).
Proof. From Lemma 2.2, we have

A=A+ A,

in which A4, € (CgM , A’§ = 0 and AJAy = AzA; = 0. Now, utilizing the decomposition in
Theorem 2.1 to Aj, there exists a unitary matrix U such that

Ale[ MC MS }U*,

0 0

in which M is nonsingular. We also have that C' is nonsingular in view of 4; € C¢M and

[1] (Theorem 3.7). Have in mind C' is Hermitian. If we let Ay = U [ ZD)l 32 U*, where
3 4 |
Dy € C™7, then
w4 CM*D, CM* Do N _ DiMC DiMS |, .
AlAQ—U S*M*D1 S*M*DQ :|U and A2A1—U|: D3MC D3MS -U. (3.2)

From (3.2) and A7A; = AA; = 0, we get CM*D; = 0, CM*Dy = 0 and D3MC = 0. The
nonsingularity of C' and M implies that D1, D, and D3 are zero matrices. Thus,

The equality A% = 0 implies that D, is nilpotent.

Theorem 3.1 is proved.

Note that the decomposition in Theorem 3.1 has the same form as Schur form, but the decompo-
sition in Theorem 3.1 seems easier to handle. Have in mind that M and C' are both nonsingular, C'
is diagonal and real, Dy is nilpotent and C? + SS* = I,. by Theorem 3.1.

Since C' is nonsingular, we obtain
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PARTIAL ORDERS BASED ON THE CS DECOMPOSITION 1123

# _
AT =U 0 0

cmM—t c-tm-icts ]U*

—1p7-1
by [1] (Theorem 3.7). It is evident that A® = U [ ¢ (]]V[ 8 } U*. From [17] (Theorem 3.2),
—1p/-1
we get AP = AP =U ¢ éw S}U*

In the following theorem, we will use the matrix decomposition in Theorem 3.1 to investigate the
core-EP order, which was introduced by Wang in [17], defined as follows: for matrices A, B € C™"*"

@
A<B & AYA=A®B and AA® = BA®.

®
Theorem 3.2. Let A, B € C"*". Assume that A has the form (3.1). Then A < B if and only if
B — A can be written as

B-A=U 00 U* for some By e Cv=m)x(n=r), (3.3)
0 By
By  Bs @ . .
Proof. Let B—A=U [ B B ] U*, where By € C"*". Note that A < B if and only if
3 4

A®(B - A) = (B — A)A® =0, where

—1 —1 —1 —1
A®(B—A):U[ ¢ ]\g B C ]‘g By ]U*, (3.4)
Bi.C'M~t 0 .
(B-A)A@:U[ B;C—lM_l 0 }U. (3.5)

@
Assume A < B. From (3.4) and (3.5), we get C"'M~'B; =0, C"'M~'By = 0 and B3C~'M~! =
= 0, thus from the nonsingularity of C' and M, we obtain that By, By and Bs are zero matrices.
Therefore, we get (3.3). To prove the opposite implication, it is easy to check that (B — A)A® =

®
=A®(B - A) =0, thatis A < B.
Theorem 3.2 is proved.
4. Core, star, group and minus partial order. In this section, we will consider the core, star,
group and minus partial orders by using Theorem 2.1.

Lemma 4.1 ([12], Lemma 2.2). Let A € C™*™ be group invertible. Then A é B if and only if
A? = AB = BA.

Lemma 4.2 ([20], [Theorem 3.2). Let A, B € C"*™ be two core invertible matrices. Then
AS Bifand only if A < B and B® AA® — A®.

An equivalent form of the minus partial order is the following statement: for complex matrix
case can be found in [5, 15] and for element in rings case can be found in [11].

Lemma 4.3. Let A, B € C"*". Then the following statements are equivalent:

(1) B <4
(2) B=AA"B=BA™ A= BA™ B for some A~ € A{1};
(3) B=AA"B=BA~A=BA B forall A~ € A{1}.
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The following lemma was proved in the more general setting of rings with involution in [16]
(Theorem 4.10).

Lemma 4.4. Let A,B € C"™". If A, B are both core invertible and B < A, then B g A if
and only if A BA® = B®,

Theorem 4.1. Let A, B € C"*". Assume that A has the form (2.1). If A is core invertible, then
the following statements are equivalent:

®
(1) A< B;
(2) B — A can be written as

0 0

BA:Y[O B,

:| Y*, By € (C(n—r)x(n—r); 4.1)

(3) AA®(B—A)=0and (B— A)AA® =0;

4) B=A+ (I, — AA®)X (I, — AA®) for some matrix X € C"*".

Proof. (1) < (2). Since A is core invertible and core invertibility of a matrix gives the group
invertibility of such matrix, hence C' is nonsingular. Note that

—1a7—1
A®:A#AAT:Y{C M O]Y*.

0 0

Ifwelet B—A=Y B B Y*, where By € C"*", and suppose that A < B, then A < B
3 4

if and only of A®(B— A) = (B — A)A® =0 and

C'M~'B;, C M 1'By

A@(B_A)zy[ . .

] Y™, (4.2)

BsC—'M~1 0 @3)

(B—A)A®—Y[ B.C~M~1 0 }Y*.
From (4.2) and (4.3), we get C~'M~'B; =0, C"'M~'By = 0 and B3C~'M~! = 0. Thus, from
the nonsingularity of C' and M, we obtain that By, Bs and Bj are zero matrices. Conversely, if we
have (4.1), it is easy to check that AA® B = A, which is equivalent to A® A = A® B. And we have
AA® = BA® in a similar way.

(2) = (3). It is easy to check that AA®(B — A) = 0 and (B — A)AA® = 0 by AA® =

I, 0 .

e[ ]
X1 X
X3 Xu
and X, are zero matrices and (B — A)AA® = ( implies that X; and X3 are zero matrices. Thus
we have the form in (4.1).

(2) = (4). Note that (4.1) can be written as

0 0 0 0 0 0 .
B_A_Y[o LH.HO B4Ho In_r]y_

(3)=(2). Ifwelet B—A=Y [ ] Y*, then AA® (B — A) = 0 implies that X
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0 0 I, 0 I, 0 *
-l o s (s 2L -Le D
Therefore, B — A = (I,, — AA®)X (I, — AA®) for some matrix X € C"*".
(4) = (3) is trivial.
Theorem 4.1 is proved.
Remark4.1. If A € C™*" is core invertible, then A® = A® by [14] (Theorem 3.8). Thus, the
equivalence between (1) and (2) in Theorem 4.1 also can be got by Theorem 3.2.

Theorem 4.2. Let A, B € C"*™. Assume that A has the form (2.1). If A is group invertible,
then we have the following two parts.

I, O
0 0

L o0 ]
0 In—w"

Part (I). The following statements are equivalent:

(1) A< B;
(2) B — A can be written as

0 0

_pgrc-t B, |V BreCheT (44)

B-A=Y

(3) AAT(B — A) =0and (B — A)AAT = (B — A)[AAT — (AA7)*];
(4) B=A+ (I, — AANYX(I, — AAY)(I,, — A" A)* for some matrix X € C™*™,
Part (II). The following statements are equivalent:

#
(1) A< B;
(2) B — A can be written as

0 —-C1'sB,

* (n—r)x(n—r).
0 B, Y*, ByeC ; 4.5)

B-A=Y
(3) AA#(B — A) =0 and (B — A)AA* = 0;
(4) there exists a projection @ such that QA = 0 and B = A + (I, — A A)QXQ for some
matrix X € C™*™,

Proof. Part (I).
(1) & (2). Since A is group invertible, we get that C' is nonsingular. Let

B—A:Y[ B B ]Y*

B3 By

and suppose A ; B. We marked with ¥, the entries that we are not interest in. Since A ; B if and
only if A*(B— A) = (B - A)A* =0 and

* * 0 *

thus, from (4.6) and (4.7), we get CM*By = 0, CM*Bs = 0 and BsCM* + B,S*M* = 0.
The nonsingularity of C' and M leads to By and By are zero matrices and By = —ByS* -1
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0 0 .
Conversely, byB—A—Y[ _B,S*C-' B, }Y we have
. 0 0 cM* 0 .
(B—A)A _Y[ _B.S*C' B, ][ S0 ]Y =0, (4.8)
. _ cM* 0 0 0 .
A(B—A)_Y{ S0 ][ _B.S*C' B, ]Y =0. (4.9)

From (4.8) and (4.9), we get BA* = AA* and A*B = A*A. Thatis A % B.
(2) = (3). Since we have AT = Y[ CM~! 0 }Y* so, AAT = Y{ L0 }Y*
) S*M~t 0 T 0 ’
Observe that

—1 *
= (r[ 5 S Y o] ok ]

thus,

I 0 I 0 0 0
Ti #*_ r * T * *
AAT — (AAT) —Y[ 0 0 ]Y Y[ s*Cc—t 0 ]Y —Y[ -s*Cc~t 0 }Y.

Therefore, it is easy to check that AAT(B — A) = 0 and (B — A)AAT = (B — A)[AAT — (AA#)*].

(3)=>(2).LetB—A:y[ X1 Xy

Y*, then AAT(B — A) = 0 implies that X; and X
X3 Xy

are zeros and (B — A)AAT = (B — A)Y [ —S*OC’*l 8 } Y* implies X3 = —X4S*C~1. Thus,
we have the form in (4.4).
(2) = (4). Note that (4.4) can be written as
0 0 0 0 .
B_A_Y[ 0 By ] [ —-S*C~' I, }Y B

Sl 810 L )

:Y[ 8 1}24 }Y*(IH—A#Ay.

Therefore, B — A = (I, — AAT) X (I,, — AAT) (In — A#A)* for some matrix X € C"*",

(4) = (1). Since B — A = (I, — AAN) X (I,, — AAT)(I,, — A% A)* for some matrix X € C"*",
thus, it is not difficult to verify that A*(B — A) = 0 = (B — A)A* by A*(I, — AAT) = 0 and
(I, — AAT)* A* = 0.

Part (1I).

(1) = (2). Since A is group invertible, we get that C' is nonsingular. If we let B — A =

_ By By * TXT is — A2 _
=Y B B Y*, where By € C"™*", and suppose A < B, then AB = A* = BA by
3 4
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Lemma 4.1. Tt is obvious that AB = A? = BA if and only if (B — A)A =0 = A(B — A). We
marked with v the entries that we are not interest in

(B_A>A_Y[Bl BQHMC MS}Y*_Y[BlMC *

Bs B, 0 0 BsMC % }Y’ (4.10)

(4.11)

A(B—A)—Y[ x  MCBp+ M5B, ]Y*.

0 0

From (4.10) and (4.11), we get BsMC = 0, BiMC = 0 and 0 = MCBy + M SBy. Thus, from
the nonsingularity of C' and M, we obtain that B; and Bjs are zero matrices and By = —C~1SB,.
(2) = (3). Since we have

ctm—t c-'mM-lc-ls

At =Y
0 0

~1
}Y*, SO AA#:Y[{)T ¢ S}Y*.

0

It is easy to check that AA¥ (B — A) =0 and (B — A)AA* = 0.

(3) = (1). Since AA#(B — A) = 0 and (B — A)AA# = 0 are equivalent to AA#B = A
and BAA" = A, respectively, we get A* B = A% A and AA# = BA" by multiplying A# on the
left-hand side of AA# B = A and multiplying A* on the right-hand side of BAA# = A. That is

#
A < B by the definition of the sharp star partial order.
(2) = (4). Note that (4.5) can be written as

-1
B_A:Y[o CSHO 0

0 I, ., 0 DBy

I, 0 I, C7§ 0 0 .
Al L ST D s e
Therefore, B — A = (I, — A% A)(I,, — AAN X (I,, — AAT) for some matrix X € C"*".

(4) = (1). Multiplying by A on the left-hand side of B — A = (I, — A* A)QXQ, we have
A% = AB, and multiplying by A on the right-hand side of B — A = (I,, — A" A)QX(Q, we obtain
#
A% = BA. Thus, A < B by Lemma 4.1.

Theorem 4.2 is proved.
Let A,B € C™" and let A be a group invertible matrix. If A has the form (2.1) and let

B-A=Y [ gl gZ } Y*. From part (I) in Theorem 4.2, we get A ; Bifandonly if B— A
3 4

can be written as

-

0 0

BoA=Y [ ~ByS*C~' By

] Y*, ByeChmxtnr),

#
Similarly, from part (IT) in Theorem 4.2, we have A < B if and only if B — A can be written as

0 —C_ISB4

B—A:Y[O B,

:| Y*, B, € C(n—r)x(n—r).
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# *
Thus B4S* =0 and SB4y = 0 implies A < B if and only if A < B. It is obvious that A#F — A® —
0 o 'mMlc-ls . . o . .
=Y 0 0 Y*. Therefore, A is an EP matrix if and only if S = 0, that is all

the canonical angles between R(A) and R(A*) are 0. This result can be found in [1] (Theorem 3.7).

# *
Thus if all the canonical angles between R(A) and R(A*) are 0, then A < B if and only if A < B.
But in general, the condition, B4S* = 0 and SB4 = 0 is weaker than A is an EP matrix.
Theorem 4.3. Let A, B € C"*". Assume that A is group invertible.

#
() If (AAT — AA*)B(I, — AAT) = 0 and (AAT — AA#)B*(I,, — AAT) =0, then A < B if
and only if A % B.
# *
(@) If A< B and A < B, then (AAT — AA#)B(I,, — AAT) = 0 and (AAT — AA#)B*(I,, —
— AAT) =0.

Proof. Letus write A as in Theorem 2.1 and B— A=Y [ gi gz ] Y*. Since A is group

invertible, matrix C' is nonsingular.
(1). The equality (AAT — AA#)B(I, — AAT) = 0 can be rewritten as (AAT — AA%)(B —
— A)(I,, — AA") = 0. Now,

0 —-c's [ B, B 0 0
_ - 4 _ B Jf: 1 2 *
Y o I < | I

0 —-C7'SBy .
_Y[O . ]y

implies SBy = 0.
Now, (I,, — AAT)B(AAT — AA#)* = 0 is equivalent to (I, — AAT)(B — A)(AAT — AA#)* = 0.
Hence,

0 0 B; B 0 0
0=(I, — AAT)(B — A)(AAT — AA¥) Y[ 0 I H By B, H _gs01 }Y
- 0 0 —B,S*C~t 0 . 0 0 .
_Y{ 0 I, } [ —BsS*C~t 0 ]Y _Y[ —B,S*C~t 0 ]Y

implies B4S* = 0. By Theorem 4.2, we obtain

A< B = B, =0,By=0,Bs = B,S*C~! «—

#
< B =0,B3=0,By=—-C"'SBy «— A<B.

(2). By Theorem 4.2 we have B; = 0, Bo = 0, Bg = 0, 0 = B4S*, and SB4 = 0, and the
computations made in the previous item show that (AAT — AA#)B(I, — AAT) = 0 and (AAT —
— AA*)B*(I, — AAT) = 0.

Theorem 4.3 is proved.

#
Corollary4.1. If A is an EP matrix, then A < B if and only if A ; B.
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Note that Corollary 4.1 is a consequence of Theorem 4.3. There exists a another method to prove
this result as follows. In [4] (Theorem 7), Baksalary and Trenker proved that for complex matrices

() *
A and B, if A is an EP matrix, then A < B if and only if A < B. In [13] (Theorem 3.3), Mailk
® #
proved that for complex matrices A and B, if A is an EP matrix, then A < B if and only if A < B.
# *
Thus, if A is an EP matrix, then A < B if and only if A < B.

Theorem 4.4. Let A, B € C™™"™ are core invertible. Then A g B ifand only if A x< B and
R(A) CN(B® — A®).

Proof. Assume that A has the form (2.1). Since A is core invertible and a core invertible matrix
P R
F; Fy
that B® AA® = A® if and only if R(A) C N(B® — A®) by Lemma 4.2. If B®AA® = A®
then (B® — A®)(I,, — AA®) = B® — A% and, thus, exists X € C"*" such that B® — A® =
= X(I, — AA®), and B® — A® = X(I,, — AA®) implies (B® — A®)* = (I, — AA®)X™*.
Hence, R[(B® — A®)*] C R(I,, — AA®). But R[(B® — A®)*] = [N (B® — A®)]* and, by using
that AA® is the orthogonal projector onto R(A), we have R(I, — AA®) = R(AA®)+ = R(A)*L.
Therefore, [N (B® — A®)]+ C R(A)*, hence R(A) C N(B® — A®).

Conversely, if R(A) C N (B®— A®), then R[(B® — A®)*] = [N(B® - A®)]L C [R(A)]*+ =
= R(AA®)L = R(I,— AA®), hence, B® — A® = X'(I,,— AA®) for some matrix X’. Therefore,
B®AA® = [A® + X'(I,, — AA®)|AA® = AP AA® = A®,

Theorem 4.4 is proved.

Let A, B € C™*™. To study a partial order between A and B, we have two directions. One is to
use the matrix decomposition of A; another is to use the matrix decomposition of B.

Theorem 4.5. Let A, B € C"*™ and A be group invertible. Assume that A has the form (2.1).

Then B ; A if and only if B can be written as

is group invertible, we get C' is nonsingular. Let B® =Y [ } Y*. It is enough to prove

B, ByC7lS

B=Y 0 0

} Y*, Cc'M~'e B {1} (4.12)

_ ®@
Moreover, if B < A, then By is core invertible and B® =Y [ BOI 8 ] Y*.

Proof. Since A is group invertible, we have that C' is nonsingular. Let B =Y [ B By ] Y*

Bz By
with B, € C™". If B < A, then B = AA®B = BA®A = BA®B by Lemma 4.3. From

AA®B =Y [ B;)l B;f } Y* and B = AA® B, we get that Bs and B, are zero matrices. From
-1
BA®A=Y [ B;)l Blc(; 5 } Y*and B = BA® A, we get By = BiC~'S. From
B B c'M~t 0 B B
BA®B =Y Y* =
[ Bs B } [ 0 0 || Bs By

:Y[ Bi.C'M~'B; BiC'M™'B, ]Y*
0 0
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and BA® B = B, we get BC~'M~'B; = B;. Thus B has the form in (4.12).
For the opposite implication, it is easy to check that B = AA® B = BA® A = BA® B, which

gives B ; A by Lemma 4.3.
Since B can be written as

B, BC7lS

Y*.
0 0

B=Y [
The group invertibility of B leads to the core invertibility of B and B; by [10] (Theorem 1). It is
BY 0

easy to verify that B® =Y { 0 0

] Y* by Proposition 2.1 and Lemma 2.1.

Theorem 4.5 is proved.

Theorem 4.5 will be useful in the next theorem. In the following, we will answer the question,
when the minus partial order is the core partial order.

Theorem 4.6. Let A, B € C™*" be core invertible. Assume that A has the form (2.1). Then

@
B < A if and only if B can be written as

B, BiCls

B=Y 0 0

] Y*, Cc'M'e B {1} (4.13)

and By = MC’BIC@MC.
Proof. Since A is core invertible and the core invertibility is equivalent to the group in-

By By * rXTr
Bs B4}Y,WhereB1€(C .

® ® >
Suppose B < A. Since B < A implies B < A, Theorem 4.5 and Lemma 4.4 imply B =
—1 7 ® ®
=Y Bol Bl% s Y*, C'M~'e Bi{1} and B® =Y [ 301 8 } Y*. Since B < A
implies A® BA® = B® by Lemma 4.4,

vertibility, we get that C is nonsingular. Let B = Y {

A®PBA® =Y

[ CclMt 0 Bl By CTMT 0 ]
0 0 Bs B 0 0 -

—1a7-1 —1a7-1
:Y[ CTOMTBCTM 0 }Y*. (4.14)

0 0
From (4.14) and A BA® = B® (by Lemma 4.4), we get
C'M'B,C*M~! = BP.

That is B; = MC’BI@D MC.
The opposite implication is trivial by Lemma 4.4 and Theorem 4.5.
Theorem 4.6 is proved.
5. Core invertibility under the core partial order. In [12] (Theorem 2.2), Mitra has shown

that for matrices A, B € C"*", if A ; B, then BT — AT = (B — A)!. A natural question is that if A

®
and B — A are core invertible and A < B, is B core invertible? Moreover, if B is core invertible,
do we have B® — A® = (B — A)®? In the following theorem, we will answer this question.
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®
Theorem 5.1. Let A, B € C™*". If A and B — A are both core invertible and A < B, then B
is core invertible. In this case

B® =A® + (B-A)® — APA(B - A)%.
Moreover, if (AAT — AA#)B(I,, — AAT) = 0, then
(1) (B—4)® = B — A®;

®
(2) (B—A)<B.
Proof. Let us write A as in (2.1). From Theorem 4.1, we have

0 0 \
B—A_Y[O B4]Y. (5.1)

Since A and B — A are core invertible, we get that C' is nonsingular and By is core invertible in
MC MS } v

view of the Proposition 2.1. The equality (5.1) gives that B =Y [ 0 B
4

Let

“1a/-1 _ —lonp®
X:Y[ Cc'M C-1SBS }Y*,

0 B®

then we have

_ I, 0 . . ..
BX =Y [ 0 B, Bff) } Y™ is Hermitian,
—1z—1 o —-1op® 2
XBQZY[ C (])\4 CBé)S'B4 ] [ (MOC) MCMSBg—MSBAL ]Y*:B,

4 4

I 0 c'M~t —-C'SBP?

2 _ r 4 * _
BX —Y[ 0 B4Bf>][ 0 Bff) }Y—X.

Thus, B® = X in view of Lemma 2.1.

—1 —1 =1 ®
That is, we have B® = Y[ M CSB,

® Y*. The equality (5.1) gives that
0 BS

(B-A)® =Y { 8 BO® ] Y™ in view of the Proposition 2.1. Thus, B® = A® + (B — A)® +
4
0 -—-C1sBP .
o ey
o ctmM=t o0 - . u
Having in mind A® =Y 0 0 Y*. Finally, since we have A® A = AA#* and
0 C'sSB? . I, C7'§ 0 0 . # ®
Y[O . Yy =v| | . 0 po |V =AARB-A)®.

Thus, B® = A® + (B—- A)® — A®A(B - A)®.
Theorem 5.1 is proved.

®
Corollary5.1. Let A,B € C™". If A and B — A are both core invertible, A < B, then
A% = AB ifand only if B® — A® = (B — A)®.
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Proof. Assume that A has the form (2.1). Since B® — A® = (B — A)® if and only if

0 C1sBY .
A®A(B — A)® =0 by Theorem 5.1 and APA(B - A)® =Y 0 0 Y™, thus it is
0 C'sBY

sufficient to prove that A2 = AB if and only if Y’ [ } Y* = 0. It is equivalent to

0 0
show that AA# (B — A)® = 0 if and only if A2 = AB. Since we get B— A = (B— A)®(B — A)?
and (B — A)® = (B — A)((B — A)®)2, thus,

AA¥(B-A)® =0 & AB-A4)®=0 < AB-A)=0.

By Bs
Bs By
By and Bj3 are zero matrices by Theorem 4.1. From the proof of Theorem 4.3, the condition
(AAT — AA#)B(I, — AAT) = 0 implies SBy = 0.

The part (1) is obvious by

Let us write A as in Theorem 2.1 and B — A = Y Y*. We have that Bj,

A(B_A):Y[ MC MSH 0 0

0 0 0 By } ¥ =0
To prove the part (2). It is sufficient to show that (B — A)*(B — A) = (B — A)*B and
(B — A)2 = B(B — A) by [16] (Theorem 2.4):

(B—A)*(B—A)_Y[ 8 gz H 8 124 }Y*_Y[ 8 B;;OB4 ]Y*, (5.2)
(B—A)*B:Y[ 8 lgi } { MOC ]gf ]Y*:Y[ 8 31034 ]Y*, (5.3)
(B—A)Q:Y[g §4H8 24]1”:5/[8 gz}y*, (5.4)
sa-ay -y [ M MO0 Ty [0 8 Ty s

®
From (5.2), (5.3), (5.4) and (5.5) we get (B — A) < B.
Corollary 5.1 is proved.
In [1] (Theorem 3.7), the author proved that if A is an EP matrix, then S = 0.

®
Corollary5.2. Let A,B € C"™™. If A and B — A are core invertible, A < B and A is an EP
matrix, then B® — A® = (B — A)®.
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