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VANISHING AND ARTINIANNESS OF GRADED GENERALIZED
LOCAL COHOMOLOGY

3HUKHEHHS TA APTIHOBICTbH I'PAJIYHOBAHOI Y3ATAJIBHEHOI
JJOKAJIbBHOI KOrOMOJIOI'Ti

Let R = @;>0R; be a homogeneous Noetherian ring with semilocal base ring Ro. Let Ry = @©;>1R; be the irrelevant
ideal of R. For two finitely generated graded R-modules M and N, several results on the vanishing, Artiniannes and
tameness property of the graded R-modules Hp N (M, N) will be investigated.

Hexait R = @;>0R; — onHOpiJHEe HBOTEPOBE KijbIlEe 3 HAMiBIOKaIbHUM 0azoBUM KimblieM Ro. Hexaif Takox Ry =
= @®,>1R; € ippeneBantHuM igeanom R. Jl1d ABOX CKIHYCHHONOPOMKEHUX IpanyifoBanux R-monyniB M i N HaBeneHo
JesIKi pe3ylbTaTi 100 BIaCTHBOCTEH 3HUKHEHHS, apTiHOBOCTI Ta MpuOOpKaHHs rpagyiioBanux R-monynis Hp N (M,N).

1. Introduction. Throughout this paper R = @©,>0/f2, is a homogeneous graded (Noetherian) ring
with semilocal base ring Ry, so that Ry is a Noetherian ring and R, as an Ry-algebra is generated

by finitely many homogeneous elements of degree one. Let Ry = &,50R, be the irrelevant
ideal of R and m(()l), e ,m(()t) be the maximal ideals of Ry. Assume that M = &,z M, and

N = ®,ez N, are two finitely generated Z-graded R-modules. For any graded ideal I of R, the ith
generalized local cohomology module H }(M , V') has a natural graded structure, such that the long
exact sequences induced from suitable short exact sequences (in both component) in the category of
finitely generated graded R-modules and homogeneous homomorphisms is an exact sequence in this
category. Furthermore, with [ = R, it is well-known that the Ry-module HE+ (M, N), is finitely
generated for all n € Z and is zero for all n > 0 (see [12]). For more results on the graded modules
Hf%+ (M, N) see [13].

In this paper we shall study the vanishing, Artinianness and tameness behavior of the graded
R-modules H;%+(M ,N), in case that Ry is a semilocal ring and the projective dimension of M
(denoted by pd(M)) is finite. In Section 2, among some preliminaries, a vanishing theorem on these
modules will be proved which improves [11] (Lemma 3.1) and [13] (Theorem 3.2) in this graded case.
More precisely, it will be shown that H}h (M,N) =0 forall i > pd(M)+dim(N/I' j,r(N)), where

Jo = ﬁlemg) is the Jacobson radical of Ry, I'j,r(N)= {x € N | 3n € N such that J'z = 0} is
the JyR-torsion submodule of NV and dim stands for the Krull dimension of an R-module. Section
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3 deals with Artinianness and tameness properties of the modules H};12+ (M, N). One of the results
in this section states as follows: Let Ry be a semilocal ring with Jacobson radical Jy. Let M, N be
two finitely generated graded R-modules with p = pd(M) < oo. Set s = dim(N/JoN + T j,r(N)).
Then H}‘ﬁ (M, N) is Artinian for ¢ > p + s and is tame for ¢ = p + s. It is well-known that over
a complete semilocal ring any Artinian module is Matlis reflexive. So, it is natural to ask that when
generalized local cohomology modules are Matlis reflexive. Concerning this question we refer to [8].

2. Vanishing theorem. Our aim in this section is to prove a theorem on vanishing of the graded
modules H}'2+(M , ). Recall that these modules was defined in [6], as the direct limits of some
Ext-modules; that is, for two R-modules M, N,

Hp, (M, N) = limExt(M/(Ry)" M, N).
neN

One can observe that each element of H}'%JF(M ,IN) is annihilated by a power of R, and so
H}'%Jr(M ,IN) is an R, -torsion module. Other approaches of these modules can be found in [11]
and [1]. To name one of them in a special case for which the first component is finitely generated,
we have

Hj (M,N) = H'(T'g, (Homp(M,IV))) = H'(Homp(M, T g, (IV))), (2.1)

where IV is an injective resolution of N. From this fact and using [3] (Corollary 2.1.6), it is con-
cluded that whenever M is finitely generated and I'r, (N) = N. Then Hf;;er (M, N) = Exti(M, N),
and if in addition p = pd(M) < oo, then HEJF(M, N) = 0 for all 4 > p. This fact will be used
several times in this paper.

We continue with the following key lemma. This lemma, appeared in [2] in the case that Ry is a
local ring, has been proved using a theorem of Kirby [7]. Here we give another proof, whenever Ry
is semilocal.

Lemma 2.1. Let R be a homogeneous Noetherian ring with semilocal base ring Ry and N =
= ®iczN; be a finitely generated graded R-module. Let Jy be the Jacobson radical of Ry and
d = dim(N/JoN). Then T'r, (N) = N if and only if d < 0.

Proof. One direction is clear. If I'r, (N) = N, then N,, = 0 for all n > 0. This gives that
Ny /JoNy, =0 for all n > 0 and so dim(N/JyN) < 0 as desired.

Now let d < 0. As in the introduction we assume that m[()l), . ,m[()t) are the maximal ideals
of Ry. If d < 0O there is nothing to prove. So assume that d = 0. In this case the only minimal

prime ideals of N/JyN are among the graded maximal ideals mél) +Ry,... ,m(()t) + R4 and so

there exists n € N such that (ﬂ?zl(méj) + Ry))" € (0:r N/JoN). This, in turn, gives that R"! C
C (0 :g N/JyN) and so R,,N C JoN for m > n. Therefore, we conclude that @®;>q, Nitm C
C @i>d, JoN; for m > n, where d; = min{i € Z|N; # 0} is the beginning of N. From this, using
NAK lemma, we obtain that N,;, = 0 for m > n + d; and, so, I'g, (N) = N as desired.

Lemma 2.1 is proved.

The next theorem improves [11] (Lemma 3.1) and [13] (Theorem 3.2).

Theorem 2.1. Let R be a homogeneous Noetherian ring with semilocal base ring Rg. Let
M, N be two finitely generated graded R-modules such that p = pd(M) is finite. Assume that
d = dim(N/JoN). Then Hy, (M, N) =0 for all i > p +d.
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Proof. We prove this by induction on d. If d < 0, then by Lemma 2.1, I'r, (N) = N and so
Hp, (M, N) = Extp(M,N) =0 forall i > p.

So, assume that d > 0 and the result has been proved for d — 1. Put N = N/T'g, (N). Since
H}h (M,Tg, (N)) = Exty(M,Tg, (N)) =0 for all i > p, the short exact sequence

0—->Tg (N)=>N—=N=0

gives rise to the isomorphism H}'Q(M,N) = H§2+(M, N/Tgr, (N)) in the category of graded R-
modules and R-morphisms (i.e., homogeneous R-homomorphisms) for all i > p. Since I'g, (INV)
has only finitely many non-zero components and since d > 0, then dim(N/JoN) = dim(N/JyN).
Therefore, we can replace N by N and may assume that I'p L(N) = 0. So, by [3] (Lemma 2.1.1(ii)),
Ry & ZR(N) = Upeassp(n)P, Where Zr(N) denotes the set of all zero divisors of N in R. On the
other hand, since d > 0, we see that for each minimal member p of the set Assg(N/JoN), Ry € p.

So,
R, ¢ |J »u U p

pEAssg(N) peEMinAssp(N/JoN)

and by [2] (Lemma 15.10), there exists a homogeneous element x € R, which is a non-zero divisor
on N and at the same time

dim((N/2N)/Jo(N/2N)) = dim((N/JoN)/2(N/JoN)) = d — 1.

Considering the short exact sequence 0 — N > N — N/zN — 0 and using the induction
hypothesis we get the isomorphisms

Hiy, (M, N) = Hp, (M, N)

for all i > p + d. Now, as H%%+ (M, N) is R4-torsion we conclude that H}%+(M, N) = 0 for each
1>p+d.

Theorem 2.1 is proved.

The top non-vanishing problem of generalized local cohomology seems to be more subtle. While
there is a partial answer for this problem in some special cases in [11], until now we were not able to
formulate ordinary local cohomology non-vanishing counterparts in generalized local cohomology.

3. Artinian and tame properties. In this section, we will draw several results concerning the
Artinian property and tameness of the modules H};12+ (M, N). Following [2], a graded R-module T’
is said to be tame if there exists m € Z such that T,, = 0 for all n < m or 1}, # 0 for all n < m.
For ease in access we collect some known facts on generalized local cohomology in the frame of the
following theorem.

Theorem 3.1. Let a be an (not necessarily graded) ideal of R and let X and Y be two finitely
generated R-modules.

() If R/a is Artinian, then for each i € Ny the R-module Hi(X,Y) is Artinian [13] (Theo-
rem 2.2).

(i) Hi{(X,Y) = Hf/a(X, Y), for each i € Ny [4] (Lemma 2.1 (1)).

(iii) Let x € R. Then there is a natural long exact sequence

o H o (XLY) = Hy(X,Y) = Hip (X,Y) = Hgi}x)(x, Y)—>...
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of generalized local cohomology modules. Furthermore, if R, X, Y and a are graded and x is a
homogeneous element of R, then all the maps in this exact sequence are homogeneous, so that for
each n € 7, there exists the long exact sequence

coo = Hey () (XoY )0 = Hy(X,Y )y — Hop (X,Y )y — Ht (X, Y )y —

of Rog-modules [5] (Lemma 3.1).
(iv) If R is another commutative Noetherian ring and f: R — R’ is a flat ring homomorphism,
then, for each ideal a of R,

H(X,Y)®p R 2 H.p (X ®r R,)Y @ R).
Thus for a multiplicatively closed subset S of R,
STIHYX,Y) = Hi ., (S71X,571Y).
If R, X,Y and a are graded and S C Ry, then, for each n € Z,
ST HIX,Y)n) = [HE 1y (571X, 571Y),,

as Ro-modules. In particular, for each py € Spec(Ry) and each n € Z,

(H;(X, Y)H)Po = ; (XPO7Y;30)71'

aRp

Theorem 3.2. Let R be a homogeneous Noetherian ring with semilocal base ring Ry and
Jo be the Jacobson radical of Ry. Let M, N be two finitely generated graded R-modules with
p=pd(M) < co. Put d = dim(N/JoN). Then:

(1) The R-module QQ = Ry/Jo ®r, Hﬁ—:d(]\/l, N) is Artinian (see [13], Theorem 3.3).

(2) For each i > 0, the R-module H}‘ﬁ (M, T j,r(N)) is Artinian (see [13], Lemma 3.5).

(3) If dim(Ro) < 1, then T yr(Hp, (M, N)), Hj p(Hp, (M,N)) and (0 i (ar,n) Jo) are
Artinian. N

(4) The R-module H}ﬁ(M, N) is Artinian for i > p + s and is tame for i = p + s, where
s = dim(N/JoN + FJOR(N)).

(5) For each i € Ny, if Ro/Jo ®rg, H%JM, N/Tj,r(N)) is Artinian, then
Ro/Jo @Ry Hp, (M, N) is Artinian too.

Proof. (1) We prove this by induction on d. If d < 0, then, by using Lemma 2.1, we see that
Hp, (M, N) = Extp(M, N) vanishes by a power of R... Thus, Suppz(Q) € {m(()l)+R+, . ,m(()t)+

+ R} where as usual m(()l), e m(()t) are the maximal ideals of y. So, we deduce that () is Artinian.
For d > 0 as in the proof of Theorem 2.1 we can find a homogeneous element © € R which is
a non-zero divisor on N and dim((N/xN)/Jo(N/xN)) = d — 1. Therefore, by using Theorem 2.1,

we can obtain the exact sequence
d—1 A d d
HE (M, NfaN) = HE™ (M, N) 5 HE™ (M, N) — 0.

By induction hypothesis the R-module Ry/Jo®pr, H ﬁid_l(M , N/xN) is Artinian. Thus Ry/Jo®rg,
Im(A) is Artinian too. Now, considering the exact sequence
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Ro/Jo ®r, Im(A) = Ro/Jo @, HY {(M,N) % Ro/Jo @r, Hi (M, N) — 0

gives that (0 : Ro/Jo®n. HET4(M,N) x) as a homomorphic image of Ry/Jy ®p, Im(A) is Artinian.
ot M,

The result now follows by [10] (Theorem 1.3).

(2) By [3] (Corollary 2.1.6), there exists an injective resolution I of I' j,z(/N') at which each term
is a JyR-torsion R-module. Let I? be its ith term. Hence there exists a family (p)) of prime ideals
of R such that JyR C p, for each \ and

I' = & \E(R/py)",

where Er(—) stands for the injective hull and p; = pi(px, Ljyr(IN)) is the ith Bass number of
I j,r(N) with respect to p). We conclude that for each \ there exists 0 < j < ¢ such that m(()j ) C pay
and T'g, (E(R/p)) would be E(R/mY) + R,) if Ry C py and it is zero if Ry ¢ py. Therefore,
since E(R/méj )+ R.) is an Artinian R-module, the module Hompg (M, I')) which is p; copies
of Homp (M, E(R/m§ + R.) will be Artinian. Now by (2.1) we see that Hj, (M,Tj,r(N)) =
= Ext®(M,I'r, (N)) as a subquotient of an Artinian module is Artinian.

(3) When dim(Ry) = 0, by Theorem 3.1(i), Hy, (M, N) is Artinian and the claim holds in this
case. So, assume that dim(Ry) = 1. By the proof of [9] (Theorem 13.6), there exists ag € Jy such
that \/agRo = Jo. Thus, by using Theorem 3.1(iii),(iv), there exists an exact sequence

o fimt o . ) fi )
H;hl(M, N) 2 H;zj(M, N)ao = H{g, a0)(M,N) = Hg (M, N) =% Hp (M, N)q,

of graded generalized local cohomology modules at which féo_l and f;o are natural homomorphisms.
By [3] (Corollary 2.2.18), we have

Coker(fiy') = HY p(Hip (M, N)) = HY p(Hig (M, N))

a

and
Ker(fg,) = Lagr(HR, (M, N)) =T jr(Hp, (M, N)),

which gives the short exact sequence

0= Hj p(Hp '(M,N)) = H{p, ,0)(M,N) = T jr(Hg, (M,N)) = 0.

Ry a0

Now, by Theorem 3.1(ii), we get HgaOR7R+)(M, N) = H30R+R+(M, N) and lLI(iaOR’R%)(M7 N) is

Artinian by Theorem 3.1(i). This proves the claim if ¢ runs through Ny. Finally, the R-module
(0: Hi, (M,N) Jo) as a submodule of the Artinian module I', R(Hfﬁ (M, N)) is Artinian.
L (M,

(4) Consider the short exact sequence
0—-Tsr(N)—>N—=N/T;r(N)—=0
to obtain the exact sequence
i Ui rri i Ai pri
HR+ (M7 FJOR(N)) - HR+ (M7 N) - HR+ (M7 N/FJOR(N)) — HR—:_l (M7 FJOR(N))

of generalized local cohomology modules. By part (2), the left- and right-hand sides of this long
exact sequence are Artinian for each ¢ > 0. Hence, for each ¢ > 0, we get the exact sequence
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0= Uy — Hiy, (M,N) = Hiy (M, N/T5,r(N)) 25 V; -0, (3.1)
where U; = ker(u;) and V; = Im(4;) are Artinian. Now, by Theorem 2.1,
H%%+ (M, N/FJOR(N)) =0

for all 4 > p + s and, hence, H]iﬁ (M, N) = Uj is Artinian for all i > p + s.
For tameness at p + s, using the exact sequence (3.1), we get the exact sequence

0= K =ker(Apys) = Hpy *(M, N/T j,r(N)) = Vpys — 0.
This gives us the exact sequence
TOI‘{%(R/JQR, va+5) — R/JOR Rr K — R/J()R KRR H%iS(M, N/FJOR(N))

of graded R-modules. Since V), is Artinian, the left-hand side module in this exact sequence is
Artinian, while

R/JoR @r HE (M, N/T 1,r(N)) = Ro/Jo ®ry Hp *(M, N/T j,r(N))
is Artinian by (1). So R/JoR ®pr K is Artinian. Now, from the short exact sequence
0= Upts = HE *(M,N) = K =0
we obtain the exact sequence
R/JoR @R Upys — R/JoR® HE' *(M,N) = R/JoR ©r K

at which the left and right most modules are Artinian. So R/JyR ® H giS(M ,IN) as an R-Artinian
module is tame and, hence, H %ﬁs (M, N) is tame.
(5) Let N = N/T';,r(N). The short exact sequence

0—=Tyr(N) = N-—= N =0,
gives rise to the exact sequence
Hy (M,Tjr(N)) = Hy, (M,N) = Hp (M, N) =% Hp (M, T, r(N)),

which in turn gives the following two exact sequences:

Hp, (M,T,r(N)) =% Hp, (M,N) — Hp, (M, N)/Im(u;) — 0 (3.2)
and
0— Hj, (M,N)/Im(u;) — H (M,N) — Hp, (M, N)/Im(v;) = 0, (3.3)

and the monomorphism
. o Az .
0= Hp, (M, N)/Im(v;) =5 HE (M, T j,r(N)).
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Set Y := Hj, (M,N), U := Hp (M,N)/Im(u;) and V := H}, (M, N)/Im(v;). We note that,
by our assumption, Ry/Jyp ®p, Y is Artinian. Also, as a submodule of H;il(M ,Lir(N)) the

R-module V and, hence, Tor!™(Ry/.Jy, V) is Artinian. Therefore, the exact sequence
Tory™ (Ro/Jo, V) = Ro ®ny U = Ro/Jo @, Y,

which we obtain from (3.3), gives that the R-module Ry/Jy ®p, U is Artinian. On the other hand,
from (3.2) we deduce the exact sequence

Ro/Jo @Ry Hy, (M, T 5,r(N)) = Ro/Jo @Ry Hg, (M, N) = Ro/Jo @, U.

Now, using part (2) the result follows.

Theorem 3.2 is proved.

In the next theorem our aim is to improve [14] (Theorem 2.8). The proof is almost the same, but
we present its proof for the reader’s convenience. To do so, we need the following notation. Let Ry
be a semilocal ring and let X be an R-module. We put

cd(X) = sup{dimp(X/nyX)[nyg € Max(Rp)}
and
Mo = | [{nolno € Max(Ro) and dimg(N/noN) = cd(N)},

where Max(Ry) is the set of all maximal ideals of Rj.

Theorem 3.3. Let Ry be a semilocal ving and M, N be two finitely generated graded R-
modules with pd(M) < oco. Set k = pd(M) + cd(N/MoN + I'mor(N)). Then, for each i > k, the
R-module H§+(M, N) is Artinian.

Proof. We set N := N/T'yy,z(N) and

¢ = {po € Spee(Ro)|dim(Ny, /poNp,) = cd(N)}.

Note that, if po € Spec(Rp) \ C, then N, = N, and by Theorem 3.1(iv), for each i > 0, we have
the isomorphism

H%h_ <M7N)P0 = HéRp0)+(MPo7NP0)v (3.4)

of graded Ry, -modules. Since, by Theorem 2.1, the right-hand side of (3.4) is zero for all ¢ >
> pd(Mp,) + dim(Ny,/JoNyp,) =: £ and £ < k, we see that Suppp (Hp, (M, N)) C C for all
i > k. Now let mg € C. Since Nu/T jyRp, (Nmg) = N, by applying Theorem 3.2(4) for the
graded Rm,-modules M, and Nw, we conclude that Hp, (M, N)m, = H(ZRmO)+(MmO,NmO) is
Artinian for ¢ > k. Since the set of maximal ideals in Suppp, (Hp, (M, N)) is finite, this gives that
Hp, (M, N) is Artinian for ¢ > s.

Theorem 3.3 is proved.
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