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A SHORT NOTE ON THE NONCOPRIME REGULAR MODULE PROBLEM *

KOPOTKHIA KOMEHTAP OO0 3AJIAUYI ITPO PETYJISIPHI MOJIY/II,
IO HE € B3AEMHO ITPOCTUMHA

Considering a special configuration in which a finite group A acts by automorphisms on a finite group G and the semidirect
product GA acts on the vector space V' by linear transformations, we discuss the existence of a regular A-module in Vy4.

PosmisiHyTO crienianbHy KoHGIrypariro, B sKiii ckiHueHHa rpyna A Jie 3a 1ornoMororo aBToMop(i3MiB Ha CKIHYEHHY IpYILy
G, a HamiBnpamuit 1o6ytok GA — Ha BekTopHuil mpoctip V' 3a ZONOMOroOI0 JiHIHHUX HMEPETBOPEHB; OOTOBOPIOETHCS
icHyBaHHs peryisipHoro A-monynasy Va.

1. Introduction. Let A be a finite group which acts faithfully on the vector space V' by linear
transformations. We say “A has a regular orbit on V" if there is a vector v in V' such that C4(v) = 1.
In this case, the A-orbit containing v is called a regular A-orbit. Furthermore, V' contains the regular
A-module if a regular A-orbit happens to be linearly independent. More generally if A acts by linear
transformations on the vector space V' (not necessarily faithfully), then we say that A has a regular
orbit on V' or V' contains the regular A-module if A/C4 (V') does the same.

While studying the structure of a finite solvable group G admitting a certain group of automor-
phisms A, we are often forced to study A-invariant chief factors V' of G together with the action of
the semidirect product (G/Cg(V'))A on V. It turns out to be rather efficient to know that V' contains
the regular A-module or at least a regular A-orbit. Not all groups act with regular orbits although
many interesting and rich classes do, especially under the additional assumptions of coprimeness
that (|G|, |A]) = 1 = (|]V],|GA|). There has been extensive research about the existence of regular
orbits such as [1, 6-8, 11, 12] in the case of coprimeness and [2, 4, 5, 13, 14] in the noncoprime
case. All the results concerning a nilpotent A are culminating in Theorem 1.1 in [14] which can be
reformulated as follows:

Let G be a finite solvable group admitting a nilpotent group A as a group of automorphisms.
Suppose that COP(A)(G) = 1. Let V be a finite faithful kG A-module over a field k of characteristic
p not dividing the order of G. Then A has at least one regular orbit on V' if A involves no wreath
product 7o ! Zy and involves no wreath product 7, ! Z, for r a Mersenne prime when p = 2.

In the present paper, we prove a theorem which concludes the existence of a regular module
without the coprimeness condition the prototype of which is Theorem 1.5 in [11]. This theorem was
improved as Theorem B in [5] in case where the group GA is of odd order. For the convenience
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of the reader, we formulate the main conclusion of Theorem 1.5 in a way suitable to emphasize the
similarities and differences between this theorem and Theorem B in [5] and our result.

Let PRA be a finite group where P is a p-group and R is an r-group for distinct primes p
and r not dividing the order of A such that P < PRA and R < RA. Assume that the following are
satisfied.:

(a) P is an extraspecial p-group for some prime p where Z(P) < Z(PRA) and C4(P) = 1,

(b) R = R/Ry is of class at most two and of exponent r where Ry = Cgr(P); suppose that
}CMR/@(R)’ is either a prime or 1;

(c) A/CA(R/P(R) has a regular orbit in its action on R/®(R);
if CA(R/®(R) # 1, [CaA(R/®(R),P] # P and p = 2, assume that |C4(R/®(R)| is not a
Fermat prime.

Let x be a complex PRA-character such that x, is faithful. Then X, contains the regular
A-character.

Namely we obtain the following theorem.

Theorem. Let PRA be a finite group where P is a p-group and R is an r-group for distinct
primes p and r such that P << PRA and R <1 RA. Assume that the following are satisfied:

(a) P is an extraspecial p-group for some prime p where Z(P) < Z(PRA) and C4(P) = 1,

(b) R/Ry is of class at most two and of exponent dividing r where Ry = Cr(P) and Ay =
= Ca(R/Ro) = 1;

() A= Apx Ay X Ay, ry where its Sylow r-subgroup A, and Sylow p-subgroup A, are both
cyclic and Ay, .y acts with regular orbits on R/®(R);

(d) if p =2 then r is not a Fermat prime.

Let x be a complex PRA-character such that x, is faithful. Then x , contains the regular
A-character.

Notice that both p and r are allowed to divide the order of A.

All groups considered in this paper are finite and the notation and terminology are standard.

2. Existence of regular orbits. In this section, we present a result due to Dade [3] on the
existence of regular orbits which will be applied in the proof of our theorem.

Proposition. Let V be a faithful kA-module over a finite field k of characteristic p. Assume
that A = B x C where B is a cyclic p-group and C' is a p'-group which has a regular orbit on
every C-invariant irreducible section of V. Then A has a regular orbit on V.

Proof. Let Vo = W1 d...®&W, be the decomposition of V' into its C'-homogeneous components.
As B and C' commute, each W; is A-invariant. Therefore it suffices to prove that A has a regular
orbit on W; for each i = 1,...,¢. To see this let w; € W; be such that C'4(w;) = Ca(W;) for
i=1,..., 0. Ifv=w; +...+ wy, then

k k
Ca(v) = () Ca(wi) = [ Ca(Wi) = Ca(V) = 1.

i=1 i=1

Thus we may assume that £ = 1, that is, Vo is homogeneous. Let X be the irreducible kC-module
which appears in V¢ and let B = (). Then we have kB = kla — 1]. Set R; = kB/ ((a — 1)7)
for j =1,...,p", where p" = |a|. Note that R; is an indecomposable kB-module of dimension j
for each j and these are the only indecomposable kB-modules by Theorem VIL.5.3 in [9]. Then the
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decomposition of the kA-module V' into indecomposable k£A-modules can be given as
VE(XQR;,)®..8(XOR;,)2X® <EBR;L.>
i=1

for some ji,...,jm in {1,...,p"}. To simplify the notation we set U = ;- Rj,. The group C
has a regular orbit on X by hypothesis, that is, there is x € X such that Co(z) = Co(X) = 1. We
shall observe that B has a regular orbit on U: As a consequence of the faithful action of A on V, B
acts faithfully on U. Hence there is at least one indecomposable component, say R;,, on which B
acts faithfully, since B is cyclic. Let

Rji:UlDUQD...DUSZO

be a B-composition series of 17, = Uy. Each factor U; JUiy1, i =1,...,8—1, is isomorphic to the
trivial module of dimension 1. Hence s — 1 = dim U; = j; and [Ul, Q... ,a} = 0. It follows that
——

j1—times

dimU; = j; > p"~! + 1, because otherwise (a — 1)7’"71 = 0 on U; and, hence, o?" " is trivial on
U, a contradiction. Pick an element u from U; — Us. If Cp(u) # 1, then o?" ! acts trivially on
u, whence the degree j; of the minimum polynomial of & on Uj is at most p™~!. But then p" ! +
+1 < j; < p™ !, which is impossible. This yields that C(u) = 1 = C(U). As a consequence, B
has a regular orbit on U. We are now ready to complete the proof of the theorem. Let a € Cy(x®@u).
Then a = b+ c forsome b € Band c € C. As ¢ € (a), we have (z Q@ u)c = zcQ@u =2 Q@ u
and hence xzc = z. That is, ¢ € Co(x) = Cc(X). Similarly, we observe that b € C(u) = Ca(U).
Consequently, we have a € C4(X ® U) and, hence, the equality C4(z ® u) = C4(X ® U) holds.
It follows that A has regular orbit on V| as claimed.

The proposition is proved.

Remark. The above proposition cannot be extended to Abelian O, (A) as the following example
shows: Let V be an elementary Abelian group of order p* with a basis {v1,v9,v3} and A an
elementary Abelian group of order p? of automorphisms of V' generated by {ay, as} with the action
vyt = v]? = vy, vy = Vv, V57 = vg, vs' = v3, vg? = vzvr. Then every A-orbit on V' has length
dividing p.

3. Proof of theorem. Let (P, R, x) be a counterexample with |PR|+ x(1) minimum. We shall
proceed in a series of steps. To simplify the notation we set G = PR.

(1) x is irreducible.

There exists an irreducible constituent y, of x which does not contain Z(P) in its kernel, that
is (x,), is faithful. Then we have x, = x because otherwise x, contains the regular A-character
by induction.

(2) xp is homogeneous and Ry = 1.

As it is well-known the irreducible characters of the extraspecial group P are uniquely determined
by their restriction Z(P) so that x, = ef for some faithful irreducible G A-invariant character 6 of
P and some positive integer e, since Z(P) < Z(GA). The coprimeness condition (|P|,|RA,|) =1
enables us to extend 6 in a unique way to an irreducible character § of GA,, such that det(6)(z) = 1
for each x € RA,y by [10] (8.16). On the other hand ¢ = 6 x 1, is an irreducible P x Ry-character
with Ry < Ker ;. We can extend 67 uniquely to 61 € Irr(GA, /Ro) with det(6;)(z) = 1 for each
z € RA, /Ry. The uniqueness of this extension implies Ry < Ker 6. Notice that (61), =0 = 0,
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and also that the set {¢: ¢ € Irr(GA,) such that ¢, = 0} is A,-invariant, because 0 = ¢ for
each a € A,. Since det(f”)(x) = 1 for each a € A,, the uniqueness of 0 gives 8" = f. It follows
from [10] (Corollary 11.22) that 6 is extendible to an irreducible G'A-character, say 6. Now 0, = 6,

6, =6 and Ry < Kerf = G'N Ker 0.1f (1) < y, or Ry # 1, by induction applied to the group

GA/ Ry over 6 we see that 6, contains the regular A-character. Since Y is a constituent of 0, |4,

there exists 3 € Irr(GA/P) such that y = 63 by [10] (6.17) and hence x, = 0, -Ba. We conclude

that y, contains the regular A-character, while 6, does. Therefore without loss of generality we
may assume that Ry = 1 as claimed.

(3) Theorem follows.

Theorem 1.3 in [11] applied to the group PR over x shows that one of the following holds:

(i) xj contains the regular R-character;

(i1)) p =2 and r is a Fermat prime.

By hypothesis (d) we see that (i) follows, that is x, contains a copy of every irreducible R-
character. On the other hand we can regard Irr(R/®(R)) as a faithful [, (A)-module which is
isomorphic to R/®(R) and hence apply the proposition above to get a linear character v of R such
that C4(v) = 1. Let V be a GA-module affording y and let W be the homogeneous component of
V,, corresponding to v. Since the stabilizer in A of W is trivial, V, contains the regular A-module.
Therefore, x, contains the regular A-character.

The theorem is proved.
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