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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO AN EVOLUTION EQUATION
FOR BIDIRECTIONAL SURFACE WAVES IN A CONVECTING FLUID

ACUMIITOTUYHA MOBEJIHKA PO3B’SI3KIB EBOJIIOIIMHOI'O PIBHSHHSI
JJISA ABOHAIIPABJIEHUX ITOBEPXHEBUX XBUJIb
Y PIIMHI 3 KOHBEKII€IO

We consider the Cauchy problem for an evolution equation modeling bidirectional surface waves in a convecting fluid. We
study the existence, uniqueness, and asymptotic properties of global solutions to the initial value problem associated with
this equation in R™. We obtain some polynomial decay estimates of the energy.

Posrsimaersest 3amaya Komri mist eBOMIOLIHHOTO PIiBHSHHSA, IO MOJENIOE JBOHAIPABIICHI TOBEPXHEBI XBWII Y piIHHI 3
KOHBEKIII€10. BUBUAIOTHCSI iICHYBaHHS, €IMHICTh T4 ACUMIITOTHYHI BIACTHBOCTI IIO0AJILHUX PO3B’S3KiB MMOYATKOBOI 3a/1aui,
1110 NOB’si3aHa 3 UM piBHSAHHAM ¥y R™. OTpuMaHO AesiKi MOJIHOMIiaJIbHI OLIHKH CIaJIaHHs eHeprii.

1. Introduction and preliminaries. In this paper, we study
g — eAug — A + A%u + aAuy + APuy + up = Af(u) + BAg(uy) (1.1)

which arises as the phase equation in the study of the stability of one-dimensional periodic patterns
in systems with Galilean invariance. Also, it was derived to describe the oscillatory instability of
convective rolls and elastic beams [3, 6, 7]. Equation (1.1) is a higher order wave model in which
the terms aAw; + A%u; + u; represent the frictional dissipation. Equation (1.1) can be viewed
as a generalized the Cahn-Hilliard equation with an inertial term which models nonequilibrium
decompositions caused by deep supercooling in certain glasses [§—10, 17].

Here u = u(t,z) is the unknown function of z = (z1,...,2,) € R", and t > 0, ¢ > 0, < 0
as well as [ are real constants. In addition, the nonlinear terms g(u) and f(u) are like O(JulP). We
assume that f and g are continuously differentiable in R, and satisfy the following hypothesis:

(fD)(@)] < kjlafP~ and  |(gD)(@)] < Kjlal?~?

for all @ € R and j = 0,1,2, where k; and k:; are real positive constants. It is well-known
that equation (1.1) is closely related to several wave-type equations. For example, the Boussinesq
equation

g — A+ A%u = Af(u), (1.2)

which was derived by Boussinesq in 1872 to describe shallow water waves. The counterpart of
equation (1.2), i.e., the improved Boussinesq equation, can be presented as follows:

Ut — A — Autt = Af(u)

In [19], the authors considered the Cauchy problem associated with the Cahn — Hilliard equation with
the inertial term

ug + Au — A%u + up = Af(u).
Combining the high/low-frequency techniques and energy methods, they obtained the global exis-

© H. MAHMOUDI, A. ESFAHANI, 2020
1386 ISSN 1027-3190. Yxp. mam. ocypn., 2020, m. 72, Ne 10



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO AN EVOLUTION EQUATION ... 1387

tence and asymptotic behavior of the solutions. In [18], the authors investigated a fourth wave
equation that is of the regularity-loss type. Based on the decay property of the solution operators, the
global existence and asymptotic behavior of solutions are derived. See also [12, 13] and references
therein for the global existence and asymptotic behavior of solutions to higher order wave-type and
dissipative hyperbolic-type equations.

In this work, we show decay estimates in time for the total energy of the Cauchy problem
associated with (1.1) and the L?-norm of the solution. To this end, we study the associated linear
problem in detail as well as the behavior of the solutions. Subsequently, by using the formula of the
variation of parameters, we implement that result to the semilinear problem.

2. Main result. Before stating the main result, we give some notations which are used in this
paper.

For 1 < p < oo, LP = LP(R") denotes the usual Lebesgue space with the norm || - ||,,. We also
use || - || as the norm of L?(R™). The inner product in L*(R™) will be indicated by (-,-). Let s be a
nonnegative integer. Then H* = H*(R"™) denotes the Sobolev space of L? functions, equipped with
the norm || - || z7s. Also, C*(I; H®) denotes the space of k-times continuously differentiable functions
on the interval I with values in the Sobolev space H® = H*(R").

To state our main result, we consider the weak solution u of (1.1) with the initial data «(0,z) =
= ug(x) and u(0,t) = ug(z). More precisely,

(uee(t),9) + & (Vuu(t), V) + (Vu(t), Vi) + (Au(t), A) —
—a(Vu(t), Vi) + (Aus(t), AY) = (Af (u(t)) + BAG(u(t)), ) ,
u(0, ) = uo(),

ug(0,t) = uq(x).

@.1)

The energy associated with the linear problem of (1.1) (see equation (3.1)) is defined by
1 € 1 1
B(#) = gl + Vel + 170l + 5 |Aw]?

Theorem 2.1. Let p > 2 and n < 3. Suppose that (ug,u1) € H> x H? with Iy < 6. Then
there exists 6 > 0 such that problem (2.1) has a unique global solution u € C([0,00); H3) N
N CY([0,00); H?) N C2%([0,00); HY) such that ||u(t)||* < CIy and E(t) < Cly(1 + 1), where

Io = Jluollzs + lull?pe-

3. Linear equation. This section is devoted to studying the existence and uniqueness of the
weak solution of the linear equation in R™:

v (t, ) — eAvg(t, ) — Av(t, ©) + A2o(t, z) + alAvy(t, ) + A2vy(t, ) + v (t, ) = 0,
v(0,x) = vo(x), (3.1)
v(0, 2) = v1(x).
Throughout this section, we assume that n > 1.
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Theorem 3.1. For (vg,v1) € H3E x H*** | =0, 1,2, the linear problem (3.1) admits unique
solution
v € C([0,00); H***) N CY([0, 00); H*T) N C3([0, 00); H' )

such that there holds for all 1 € H? that

(Vg V) + € (Voy, Vi) + (Vu, Vo) + (Av, A) + o (Vo, Vb)) + (Avg, A) + (v(t), 1) = 0.
(3.2)

The proof of the existence is obtained by employing the semigroup theory.
Proof of Theorem 3.1. Equation (3.2) can be rewritten as

v+ (I —eA)HA? = A+ v = (I —eA)((—aA — A2 — Doy +v).
Define D(A) to be the subspace of all v € H? such that there exists y = y, € H' satisfying

(Av, Ap) + (Vu, Vi) + (0, 9) = (y,4) + € (Vy, Vi)

for all ¢p € H2. Therefore, it is natural to define an operator A from the definition of D(A) as
follows:

A:D(A) — H',
Av = 1.

Indeed, A is formally the operator (I —eA)~!(A% — A + I). In addition, it is straightforward to see
from the definition of A that D(A) = H?3, and there exists C' > 0 such that ||v| zs < C||Av| g for
all v € D(A).

Now, we complete the proof of the existence for the linear problem.

Let z € H'. It follows from the Lax - Milgram lemma that there exists a unique Z € H' such
that

- <27¢> - €<V57V¢> = <Zﬂ/f>

for all 1» € H'. So we define the function h: H' — H' such that for each z € H', h(z) is given
by the equation

= (1(2),9) —e(Vh(2), Vi) = (2,9) (3.3)

for all 1y € H'. Furthermore, eAh(z) — h(z) = z and h(z) = (I —eA)~}(—=2). For (v(t),w(t)) €
€ H? x H' with ¢ > 0 such that v(0) = vy, w(0) = vy, we define

Z(t) = [o(t),w(t)] s H(Z(t)) = [0, h(aAw + A*w + w) — h(v)],
in which Z(0) = (vo,v1) € H® x H?2. Consider the operator B: D(B) — H? x H' defined by
B(U, w) = (wv —AU), (34)

where D(B) = H? x H?. The operator B generates a Cjy semigroup of contractions in H? x H*.
See Lemma 5.2 in the Appendix for the proof of this fact. Consequently, equation (3.1) is equivalent
to
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S 2(t) = B(z(1) + H(Z(1), (3.5)

Z(0) = Zy € D(B).
It should be mentioned that H is linear and continuous in X = H? x H'. Hence by the semigroups
theory, the operator £ := B + H is the generator of an infinitesimal Cy semigroup. Therefore, (3.5)

has a unique solution
Z € C([0,00); D(£)) N C([0,00), X).

That is, there exists a unique function v € C([0, 00); H3) N C([0,00); H?) N C?([0,00), H') sa-
tisfying (3.2), where v = wv(t) is the first component of Z = Z(t). The cases k = 1 and k = 2
of Theorem 3.1 are similar.

Theorem 3.1 is proved.

To give our estimates of the linear problem we define

Iy = JlvollFa + llonllZs,
Iy = |vollFra + o1l s + N[ (vo + 01) 1%, (3.6)
I3 = [lvoll 3+ + [l 155 + llvo + lei%-
Theorem 3.2. (i) If (vo,v1) € H3x H?, then the solution v € C([0,00); H3>)NC ([0, 00); H?)N
N C2([0,00); H) of the linear problem (3.2) satisfies

E(t) <CIy(1+1t)7!

and

lv(®)|* < Clo,

where Iy and E are defined in Section 2.
(i) If (vo,v1) € H* x H? such that |z|?(vo + v1) € L?, then the solution v € C([0,00); H*) N
N CL([0,00); H3) N C?([0,00); H?) of (3.2) satisfies

E(t) < CL(1+1t)72

and

@11 + [ Av @ + [|AVu(O)? < CL( +1) 7

(iii) If (vo,v1) € H* x H? such that (vo + v1) € L%, then the solution v € C([0,00); HY) N
N CY([0,00); H?) N C?([0,00); H?) of (3.2) satisfies

E(t) <CI3(1+t)72

and
[o(®)]1* + [Av () [1> + [|A(Vo(@)||? < CLy(1 + )

To prove Theorem 3.2, we need the following lemmas.
Lemma 3.1. Suppose that the hypotheses of Theorem 3.2 hold. Then, the solution v of problem
(3.2) satisfies
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vl + (1 + 1) E(t) < Cp + C/ Vv (s)]|2ds,

where C' > 0 is a constant which does not depend on the initial data.
Proof. We know from Theorem 3.1 for (vo,v1) € H3 x H? that there exists a unique function
v satisfying (3.2). Thus, we have

d
ZE® + Ol + [An @) - o Vu@)* =
and consequently
t
)+ / [ve(s)I” + [[Ave(s)[|* = [ Vor(s)[|*)ds = E(0). (3.7)
0

On the other hand, multiplying (3.7) by (1 + ¢) and integrating on [0, ], we get
t t
(1+t)E +/ (14 5)(JJve(s))? + [[Ave(s)]|* — a|| Ve (s)]]?) )+ /E )ds.  (3.8)
0 0

By substituting ¢ = v in (3.2) and integrating on [0, ¢|, we deduce

t

lo()]? + / |Ao(s)|2ds + / [Vo(s)ds + / (oe()12 + Awr(s)[2 — aVu(s)[[2)ds <
0 0

0

<Clhp+ c/ Vur(s)|2ds. (3.9)

The proof follows from (3.7)—(3.9).
Lemma 3.2. Suppose that the hypotheses of Theorem 3.2 hold. Then the solution v of (3.2)
satisfies

1Av ()] + [|Av(®)* + [|A(Ve@©)]* + / IVr(s)|[*ds < Clo,

where the constant C' > 0 is independent of the initial data.

Proof. Let (po, 1) € H* x H? and ¢ € C([0,00); H*) N C1([0, 00); H?) N C2([0, 00); H?)
be the associated solution of the linear problem (3.2). The regularity of the solution ¢ implies for
any § € N with |G| <1 that

(DPut), D?u()) + = (Vu(t), VD eu(t)) +
+(VDp(t), VDPu(t) ) + (AD (1), AD u(t) ) -
—a (VDu(t), VD (1)) + (AD u(t), AD (1)) + (DPipu(t), DP(t) ) = 0.
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Let
1 € 1 1
Epo(t) = 51D (0)2 + S IV D (t)2 + 5 IV DA o()]* + S| AD (o))

Hence,
t
Epsy(t) + [ (ID%@u(s)|* + |AD @u(s)|* — ol VD () ) ds = Eps,,(0)
DBy Pels Pe(s a (s S DBpU).
0

By taking 5 = (0,...,0,1,0,...,0), with 1 in the jth position, we have, for j € {0,1,2,...},

2 t
o/

0

2 52
87590@)

—+ dSS

+ Aot et

< C (llgollia + o1l ) -

Therefore, it follows that
t
1A¢: ()12 + [Ap@®)]I* + AV )1 + / Vi (s)[2ds < C(llollzs + llenllze)-
0

Lemma 3.3. Let (vg,v1) € H* x H3. Then the solution of (3.2) satisfies

L+ Oo®I* + /(1 +8)(IVo(s)[I* + [Av(s) [ + [lve(s)[* + [|Ave(8) ]2 — el Voe(s)[*)ds <
0

t t
<ch+c / |Vou(s)|Pds + C / Ju(s)|2ds.
0 0

Proof. By Theorem 3.1, there exists the unique function v satisfying (3.2). Similar to
Lemma 3.1, we have

t t
(1+0)E(t) + /(1 +5)([loe() [ + [ Ave(s)|I* — | Vve(s)[|*)ds < CI + C/ IVve(s) ) *ds
0 0

and

% [(vt,w + e (Vuy, Vo) — % (Vu, Vo) + % (Av, Av) + % <v,v>] — [lve(s)]|2—

—el V()P + [ Vo(s)|* + |Av(s)]* = 0. (3.10)

By multiplying (3.10) by (1 + t), and integrating on [0, ¢] as well as utilizing (3.6), we obtain the
desired estimate.
Lemma 3.4. Under the hypotheses of Theorem 3.2(ii), the solution v of (3.2) satisfies
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t
/Hv(s)Hst < Ch.
0

¢
Proof. Consider the function w defined by w(t) = [ v(s)ds, where v is the solution of (3.2)
0

with initial data [vg, v1] € H* x H3. Then w € C*([0, 00); H*) NC2([0, 00); H3) NC3([0, 00); H?).
It can be easily found out that w is the solution of

(Wit (1), ) + e(Vwy(t), Vo) + (Vw(t), Vib) + (Aw(t), Ap) — a{Vwy(t), Vip) + (Aw(t), Ag) +
+ (we(t),v) = (vo + v1,¥) + & (Vuy, Vuy) — a(Vog, Vwy) + (Avg, Awy) , (3.11)

in which w(0,z) = 0 and w(0, z) = vg. Therefore, we have by substituting 1) = w; in (3.11) and
integrating on [0, ] that

t t t
Vo) + [ Aw(®)]? - a / IV (s) | 2ds + / | Aw(s)[2ds + / Jwe(s)|2ds <
0 0 0

< Cly + C (vg + v1,w(t)) .

As a result, we get

t

(o + o1, w(t)) = / 2200 (@) + 01 (2))
R’Vl

|z]

1 lw(t, z)|? 1
<21 Ploo o)+ [ = - Plo+ el + e Aw(®) P,
Rn

where in the previous inequality, we used the Hardy-type inequality (see [5])

By using two above estimates with ¢ sufficiently small, we observe that

2
/|u(74)1| deK/|Au(a:)]2dx, u € H2
x
R R

t t t
IVw(®)]? + [ Aw(®)]? - a / IVwe(s)|2ds + / | Aw(s)|2ds + / lwy(s)|2ds < CI.
0 0 0

Since
t

(1 +Oo@)* + /(1 +8)[IVo(s)I* + [ Av(s)[|* + [loe(s) 1 + | Ave(s)]* = e Voe(s)[*)ds <
0

t t
<cI + 0/ V0 (s) 12 + c/ v(s)|2ds < Cl,
0 0

then
lo()|* < CI(1+1)7".
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Lemma 3.5. Under the assumptions of Lemma 3.3, the solution of (3.2) satisfies

t

IAVu ) + (1 + )| Ave () + (1 + O AV (8))]I* + /(1 +5)||Vue(s)||*ds < C1LL.
0

Proof. Let (v, 1) € H> x H* and ¢ € C([0,00); H?) N C1([0, 00); H*) N C2([0, 00); H?)
be the solution of (3.2) with initial data (g, ¢1). Then, for each g € N™ with |5| < 2, we have, for
all » € H?,

(DPut), ) += (VD 0u(t), Vir) + (VD(t), Vip) + (ADPo(t), At ) -
o <vp%t(t), w> + <AD5gpt(t)7 Aw> n <D%t(t),¢> —0. (3.12)

Here, D%y is denoted by w?. Therefore, the energy of w?(t, z) is given by

1 1
Eoo(t) = SlwfI?+ SIV0fI? + 519082 + 3 |awf|2
We obtain by substituting ¢» = DS, (t) in (3.12) that
qa
dt
By integrating the above identity on [0, ¢], we get

By (t) + ) | + [|Aw] || — o V) || = 0. (3.13)

t
E,s(t) + / (lwr ()17 + 1 Awf ()[* — | Vey (5)*)ds = Eyys(0), (3.14)
0
where |3| < 2. Since w”® = DPyp, we see from the definition of the energy that
DD @)+ [ 1D (5D s < OBy (0)
forall 4,57 =1,2,...,n, where ¢; is the ith basis vector of R™. Thus,
IA(D ()1 + / V(D% p(s))|ds < CE,s(0).

Multiplying (3.13) by (1 + ¢) and integrating on [0, ], we obtain

¢
L+ 0B + [ (04 UG + 18w )P — all Tl (5)2)ds =
0
t
0)+/Ew5(s)d5. (3.15)
0

On the other hand, by substituting ¢ = D?(t) in (3.12) as well as integrating on [0,¢], and using
(3.14), we derive that
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[ (@)1 + (1 + ) Ewe (8) < ClleollFra + l1l7s) + C/ IV (s)[ds.
By combining this estimate with (3.14) and (3.15), we have

t
(1+8)Eys(t) + / +5)(lwf ()I” + | Awf () — a| Ve (s)]*)ds <
0

< C(llgolZ + llgnle) + € / IV (s)]%ds.

Moreover, by employing the definition of the energy once again, we can conclude the following
inequality as

(L +DID* () + (1 + )| ADY (1) + /(1 +5)[[ D1 (s)|[Pds <
0

< Clllgoll + lprllZs) + C / Vg ()| ?ds.

The above-mentioned estimates lead to
t

IAD @ ()[* + (1 + )| D> (t)]|* + (1 + ) [ AD (1)[|* + /(1 +8)[| D%y (s)|[Pds <
0
Cllollzs + Il l7s)-
By summing on ¢, it follows that

1AV + 1+ ) Age @I + (1 + DIA(Ve®))]* + /(1 +5)[[Vee(s)[ds <
0

< Cllpollzzs + llenllzps).

where ¢ is the solution of (3.2) with initial data (g, 1) € H® x H*. The density argument
completes the proof.

Proof of Theorem 3.2. (i) The proof is an immediate consequence of Lemmas 3.1 and 3.2.

(ii) We use the fact that the energy F(t) is a nonincreasing function. Thus,

d
—la+ t2E()] =21+ t)E{t) + (1 +t)*E'(t) <201 +t)E(t), t>0.
By integrating on [0, ¢], we can conclude that

E(t) < CIy(1 +t)72

Lemmas 3.3, 3.4 and 3.5 give the estimates of (ii).
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(iii) The proof is similar to the one of (ii) under the assumptions of (iii) and the following fact
(see Lemma 3.4)

t
/Hv(s)Hst < CI.
0

4. Global existence and asymptotic estimate. In this section, we study the existence of the
local solution for the semilinear problem (1.1). One can easily find out that Af(u), BAg(u) € L?
for all u € H?. We now consider two functions k1 : H?> — H? and ko : H?> — H? defined by

(ke (), ) + e (Vha(u), Vi) = (Af (), ¥)
(ka(u), ) + e (Vka(u), Vi) = (BAg(u), ¥) .

The functions ki, ke € H? are well-defined from the Lax—Milgram lemma. Also, there is C' > 0
such that

(4.1)

[k (W)l g2 < ClAf(u)l 2,
[k2(w)]| g2 < Cl|BAg(u)| L2

for all w € H?2. In addition, as a result of the elliptic regularity and the uniqueness of (4.1), we can
obtain the following inequalities as

k1 (ur) — k1 (u2)|lg2 < CllASf(u1) — Af(uz)ll g2,
[k2(u1) — ka(u2)l|g2 < C||BAg(w1) — BAG(uz)|| L2

Denote U (t) = (u(t),v(t)) and F(U(t)) = (0, k1(u) + k2(v)), where k; and ko are defined in (4.1).
Consider now the problem

%U(t) = B(U(t) + F(U(1)),

U(0) = Uy,
where B: D(B) C X — X is defined in Section 2, Uy = (ug,u1), X = H?> x H' and F(-) as
above. The following result follows from the well-known classical semigroup theorem.
Theorem 4.1 [2]. Let (ug,u;) € H?x H?. Then there exists T, > 0, and a unique solution u €

€ C([0,Tpn); H3)NCL([0, T;); HH)NC2([0, Tr ); H?) of (2.1) with u(0, x) = ug(w) and us(0, ) =
= uy(z). Moreover, T,,, = +0o0 or T,, < +oo and

i u0), e (8) a2 = +oo.
—Tm

Moreover, we have, for (ug,u1) € H* x H3, that
u € C([0,T,,); HY) N CY([0, T,,); H?) N C2([0, T} ); H).

Proof. Define the operator B: H? x H?> — H? x H' with B(u,v) = (v,—Au) and A =
= (I —eA)"Y(A%2 — A+ I). By Lemma 5.1 in the Appendix, we need to show that the function
F: D(B) = H® x H?> — D(B) given by F(u,v) = (0, k1(u) + ka(v)) is Lipschitz, with the graph
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norm on bounded sets, where ki, ko are functions defined in (4.1). The definition of (4.1) implies
that k1(u) + k2(v) € H2. Thus, F: D(B) — D(B) is well-defined. Since f and g are Lipschitz,
consequently, it is obvious that F' is Lipschitz on bounded sets.

We are ready now to prove Theorem 2.1.

Proof of Theorem 2.1. Define the norms

[(w, 0)|[ 2 = [loll + Vol + [| Aul],
1(w, ) |7 = [Jull + | Av]} + [AV)].

We use the local solution given by Theorem 4.1, and combine it with the decay estimates of the
linear problem (3.2). The solution of (2.1) can be written by the Duhamel principle as

U(t) = S(t)Us + / S(t — $)F(u(s))ds, 42)
0

where U(t) = (u(t),w(t)), Uy = (uo,u1), F(U(s)) = (0,k1(u(s)) + ka(ue(s))), and ky, ko are
defined in (4.1). Also, S(t) indicates the semigroup associated with the linear problem. Define
Iy = |[k1(u(s)) + k2(ue(s)) |32 for each s € [0,¢] and ¢ € [0,7T},), with T, given by Theorem 4.1.
From the Gagliardo — Nirenberg inequality and the Sobolev embedding, we have

Io < |lks ()72 + 2 (un) 32 < CIAf(W)]* + CllAg(up)|* <
< ClA@P|* + el Afu)|* <
< Cll? |2 + Cli(ue)? || < Cllullfe + Clludll7e <

<C D (I1D%ul + |DPuy|?P). (4.3)
|B]=2

Furthermore, we have, from the estimates
IS(H)Tolle < CIY?(1 +£)71/2,
IS UollF < C1)?,
that
I1S(t — 5)F(U ()| 2 < CI,*(s)(1 +t — 5)"1/2, y
ISt — ) FU(s)llr < CI3/(s) “4)

for s € [0,t] and t € [0,T},). Choose K large enough such that & > C' to be fixed later, where C
is the same as in (4.4). Suppose, by contradiction, that the estimates

1
1+ )2 |UW)|e < KIE,

1
U®)|r < KIg

fail for all ¢ € [0, T,,). By choosing K sufficiently large, there exists 7y € (0,7},) such that, for all
t €[0,Tp), we get
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1
1+ 82U e < KIE,
. 4.5)
IU@)|r < KIZ.

Moreover, the estimates
1 1
(1+To)2|U(To)l|p = K1j

and .
1U(To)|lr = K1

hold. By estimate (4.4) and (4.2), we have
t
1 -1 -1 1
IUO)|s < CIE(1+1)7 + /1+t—3202()ds
0
We obtain by (4.3) that
t
1 _ _
HU@MSCPO+05+C§:/O+#wwﬂw%@W”wD%mw%%

la]=27

By applying (4.5) and for all ¢ € [0, Tp], we can conclude that
¢
1 r -
UR)p <CIE1+8)72 +C [(1+t—s)2 KPIZ(1+5) 2 ds.
IU®)e < CLg ( 0
0

Hence, we obtain, for all ¢ € [0, Tp],

U@z < CIE(1+8)7 + C,CKPIE (1 +1)7.

In the previous inequality, we used the following elementary inequality (see [11, 16])

t
1 —1
/1+ts2 (148 Pds < Cs(14+6)3, B>1.
0

2
K- -1
If we take K is sufficiently large such that K > C, and § > 0 such that § < < ¢ ) ’ , then
Cp,CKP

we see that, for all ¢ € [0, Tp],

U@ < KIEQ+1)7, (4.6)

provided Iy < d. On the other hand, we have from (4.4),
1
rwmw<cﬂ+c/5 @)
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Also, we note, from (4.3) and (4.7), that

t
1
IU@|r<CIZ+C ) /(HDO‘U(S)\2”+ I D%uy(s)]|*)ds <
la]=27

t
1 P — V4 P
<CIg + C/Kpfg (14 5)2ds < CI§ + C,CKPI?
0

for all t € [0,Tp], where C a positive constant. If K > C and Iy < ¢ such that ¢ satisfies
2

K—-C\""'
0<d< Xl , then, we obtain, for all ¢ € [0, Tp],
1

WU@)lr < KI¢. 4.38)

Hence, estimates (4.8) and (4.6) contradict (4.5). This proves the validity of (4.6). Therefore, there
exists a constant 0 > 0 such that [y < ¢ and the solution U(¢) satisfies

U@ | rsxpz < C

for all t € [0, 7,,]. Hence, T}, = +00 and the solution is global. In addition, the decay estimates of
(4.6) hold and the proof is now complete.

5. Appendix. We show here that the operator B, defined in (3.4), generates a Cy semigroup of
contraction in H? x H'. This will be deduced from the following result [14].

Lemma 5.1. Let B be a linear operator with the dense domain D(B) in a Hilbert space H. If
B is dissipative and 0 € p(B), the resolvent set of B, then B is the infinitesimal generator of a C
semigroup of contraction in H.

Lemma 5.2. The operator B: D(B) — H? x H' generates a Cy semigroup of contraction
in H® x H'.

Proof. We show that B satisfies the assumptions of Lemma 5.1. Let (v, w) € D(B). Therefore,
ve H?, we H?, and

(B(va)> (U )H2><H1 = ((w> _AU)> (va))HQXHl = (w’v)HQ + (_Avvw)Hl <

,w)
< C((w,v) + (Vw, Vo) + (Av, Aw) + (—Av, w) + & (V(— Av), Vw)) =
= C((w,v) + (Vw, Vo) + (Av, Aw) — (I — eA)v,w)) =

= C((w,v) + (Vw, Vo) + (Av, Aw) — ((A* = A+ I)v,w)) =
= C((w,v) + (Vw, Vo) + (Av, Aw) — (Av, Aw) + (Aw,v) — (w,v)) =
= C((w, v) — (Aw,v) + (Av, Aw) — (Av, Aw) + (Aw, v) — (w,v)) = 0.

Hence, B is dissipative. Next, we show that 0 € p(B). We first show for (f,g) € H? x H!
that there exists (v,w) € D(B) such that B(v,w) = (f,g), and consequently w = f € H? and
—Av =g € H'. Let y = —g € H'. Then, by the Lax—Milgram lemma, there exists a unique
function v € H? satisfying
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(Av, Ap) + (Vu, V) + (0,9) = (y,9) + & (Vy, VY)

for all » € H?. Hence, we see that v € D(A) as well as Av = g, and the operator B is onto. The

fact ||v| s < C||Av|| 1 implies that the operator B is one-to-one. On the other hand, we have, for
v € D(A) such that —Av = g,

IB=' (£, )% = 1B (Bv,w)% = lI(v,w)% = [vl7 + lw][F <
< |Iwlls + £l < ClAvIE + 1112 = Cll = alizpn + 1/ 172 < CI 9k

where X := H? x H'. Hence, 0 € p(B) and B! is continuous. Also, D(B) = H? x H? is dense
in H? x H'. Using again the facts D(A) = H?, and ||v||gs < C||Av||g for all v € D(A) and
some C' > 0, the proof of Lemma 5.2 follows.
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