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NEW GENERALIZED TRAPEZOID TYPE INEQUALITIES
FOR COMPLEX FUNCTIONS DEFINED ON UNIT CIRCLE
AND APPLICATIONS

HOBI Y3ATAJIBHEHI HEPIBHOCTI TUITY TPAIEIII
NJIS1 KOMIUIEKCHUX ®YHKIINA HA OJJMHUYHOMY KOJII
TA IX 3ACTOCYBAHHS

We establish new generalized trapezoid type inequalities for complex functions defined on unit circle via the function of
bounded variation and the functions satisfying Holder type condition. Using these results, quadrature rule formula is also
provided.

3a momomororo QyHKIH oOMexeHO! Bapiawii Ta (QyHKIIH, sIKi 3310BOJIBHSAIOTE YMOBY THIy [enblepa, OTpHMaHO HOBI
y3arajbHEeHi HEPiBHOCTI TUITY Tparewii A KOMIDIEKCHUX (QYHKIIH HAa OJMHUYHOMY KOJi. 3 IIUX PE3yNbTaTiB TAKOXK BUBEACHO
KBaJpaTypHy hopmyiy.

1. Introduction. Over the past two decades, the field of inequalities for the function of bounded
variation has undergone explosive growth. The many research paper related to some type inequalities
such as Ostrowski, trapezoid, Gruss for the function of bounded variation have been written. Re-
cently, some works have focused on Ostrowski and trapezoid type inequalities for complex functions
defined on unit circle. Inspired by these inequalities, we will obtain some generalized trapezoid type
inequalities.
The overall structure of the study takes the form of three sections including introduction. The
remainder of this work is organized as follows: first we give the definitions of the function of bounded
variation and total variation and present a trapezoid type inequality for complex functions defined on
unit circle proved by Dragomir. In Section 2, a new generalized versions of this trapezoid inequality
are obtained. We give also some special cases of these inequalities. Utilizing the results established
in Section 2, quadrature rule formula is provided in Section 3.
First of all, we start to give the definitions the function of bounded variation and total variation.
Let P:a=x9 <z <...<x, =Dbbe any partition of [a, b] and let Af(x;) = f(xir1)—f(x;).
Then f(z) is said to be of bounded variation if the sum
m
> IAf ()
i=1

is bounded for all such partitions.

Let f be of bounded variation on [a,b] and Z (P) denotes the sum Zj_l |Af(x;)| corre-
sponding to the partition P of [a, b] . The number

b

\V () i=sup {3 (P) : P e P(la,t])}

a

is called the total variation of f on [a,b]. Here, P([a,b]) denotes the family of partitions of [a, b] .
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In [7], Dragomir proved following trapezoid type inequalities for complex functions defined on
unit circle C' (0,1):
Theorem 1.1. Assume that f: C (0,1) — C satisfies the Holder s type condition
1f(2) = flw)| < H [z —w|" (1.1)

Sor any w,z € C(0,1), where H > 0 and r € (0, 1] are given.
If [a,b] C [0, 27| and the function w: [a,b] — C is of bounded variation on |a,b], then

eib ela / ;
f( ) + f( ) [u(b) — u(a)] — /f (ezt) du(t)| <

2

b b
1
r—1 r
<2 Htrél[%B a,b;t) \a/ < 5 H(b—a) Y(u) (1.2)

for any t € [a,b], where the bound B, (a,b;t) is given by

B(a,b;t) == sin” <b;t) + sin” (t;a> < S lo—"+(t-a)].

Ostrowski’s type inequalities for complex functions defined on unit circle C (0, 1) was considered

by Dragomir in [10] and the author give some application for unitary operators in Hilbert spaces.
Recently, Dragomir proved also trapezoid type inequalities for complex functions defined on unit
circle C'(0,1) and give some application in [9, 11]. The purpose of this paper is to obtain new
generalized trapezoid type inequalities for complex functions defined on unit circle C' (0,1). For
other inequalities for Riemann — Stieltjes integral, see [1 -8, 12—17].

2. Main results. In this section, we present some generalized trapezoid type inequalities for
complex functions defined on unit circle C' (0,1).

Theorem 2.1. Suppose that f: C (0,1) — C satisfies Holder s type condition (1.1). If [a,b] C
C [0,2n] and the mapping u: [a,b] — C is of bounded variation on |a,b], then, for all s €

b
€ [a, a—;] , we have the inequalities

Te(f, usa,b55)] <

N .. (t—a °
§2H{maxsm< 5 )\a/(u)—l-

t€la,s]

tels,a+b—s] 2

b—t\ |
., _
< )V ;w}—

b
—a)"\/(u) (2.1)
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where T,(f,u;a,b; s) defined by
To(f,u;a,b;8) := f(e®)u(b) — f () u(a)—

eib _ eia b .
_f( ) 2f( )[u(s)—l—u(a—i-b—s)]—/f(en)du(t)'

Proof. Obviously, we have the equality

S

To(fousa, b s) = / [ () = f ()] dut)+

a

2

s

b

+ / [£(e®) — 1 ()] du(t) (22)

a+b—s
It is known that if P: [c,d] — C is a continuous function and v : [¢, d] — C is of bounded variation,

d
then the Riemann — Stieltjes integral / p(t)dv(t) exists and the inequality holds
(&

d

[ poavie

c

< 23
max |p(t) \/ (2.3)

Taking modulus in (2.2) and using the inequality (2.3), we have

s

|Te(f usa,b;8)] < max ’ ( w) —f(eit)‘\/(u)—l—

t€la,s] "
I () + /() |\
+te[slngl§—s] 2 -/ (e ) \S/ (u)+

+ max ‘f(eib) —f (eit) ‘ \/ (u) <

tea+b—s,b|
< max £ () = f ()] V (w)+
1 a+b—s

5 max | () = ()] + ) £ ()] @

2 te[s,a+b—s]

max ’f(eib) — f (eit) ’ \/ (u).

+
tela+b—s,b]
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Since f satisfies the Holder’s type condition (1.1), we obtain

S
. . ia it |7
Tl wsabiol < x| [ — eV )+

1 at+b—s

T3 telsatb—s] [‘em — e+ e - eitﬂ \S/ (w)+

b

+ max ‘eib—eit‘ \/ (u).
tela+b—s,b| atb—s

By using the fact that

i _ ez'yf — ]eil‘f — 2Re(e"(mfy)) + ’eiy’2 -

=2—2cos(x —y) =

= 4sin? <$ - y)
2
. r—vy
S1n
2

for any z,y € R, we have
T

. o
ezx o ezy‘ — 27“

for any z,y € R.
Since [a, b] C [0, 27], we get

. o . S —a
‘ew_ezt‘ :2TSIHT( 5 )

‘eib _ eit‘r — 9T gin” <b;3>

and

[ a+b
forany s € |a, 5 |-

This completes the proof of the first inequality in (2.1).
For the proof of the second inequality in (2.1), by using the basic inequality sinz < z for
x € [0, 7], we obtain

|T.(f,u;a,b;s)| < H { max (t —a)" \/(u)+

tela,s]

r T a+b—s b
+ max [(t—a) ;(b t)] \/(u)+ max (b—1t)" \/(u)}:

tels,a+b—s] . te[a+b—s,b|

s b—a r at+b—s b
ZH{(S—a)’"\/(f)+<2> V @+ s-ay \/ <u>}§

s a+b—s
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Theorem 2.1 is proved.
Remark2.1. Under assumption of Theorem 2.1, if we take s = a, then the inequalities (2.1)
reduce the inequalities (1.2).

b
Corollary2.1. Under assumption of Theorem 2.1 with s = %, we have the inequality

FEyu®) = £ (e uta) = [1e%) = £ ()] (57) - [ 1) auto)] <

(u)

IN

w‘z<o~

Corollary2.2. Assume that f: C (0,1) — C is Lipschitzian with the constant L > 0 on the unit
circle C' (0,1) . Then we get the inequality

ITL(f,u;a,b;8)| < 2L {sin <8;“> \S/(u) + sin (ﬁ“) a+\/l)_8(u) + sin <3 5 “> \b/ (u)} <

s a+b—s

b
< 30—\,

Proof. The proof is obvious from the choosing » = 1 in Theorem 2.1 and the fact that

y a+b
t—a b—t b—a D
[ S O : e 4L
sin < > >—|—sm ( 2 > 2sm< 1 )cos 5

Remark2.2. If we take s = a in Corollary 2.2, then we obtain the inequality

f(€") + 1 () it

b

b
< 2Lsin <b;“> \/(u) < g(b —a) \a/(u).

a

The constant 2 in the first inequality is the best possible in the above sense.
This result is same as that given in [11].
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Remark2.3. 1f we choose [a, b] = [0, 27] and s = 7 in Corollary 2.2, then we have the inequality

2

27
1) fu(2m) = u0)] = [ 7 (") dutt)| < 2L/ w)
0 0

which is given by Dragomir in [11].
Corollary2.3. If 0 < b—a < m, then we get

b
|T.(f,w;a,b;s)| < 2"H sin” <b;s> \/(u) < 2"H sin” (b —

) \:/<u>

b
for s € [a,a;

Proof. For 0 < b—a < m, we obtain

| T‘<t_a> . r<b_t> | T<8_a>
max Sin = max [S18 4 —— | = SIn
] 2 2

tela,s] 2 tela+b—s,b
and
2 2 . (b—s
max = Sin ] .
te[s,a+b—s] 2 2

By using these inequalities in inequality (2.1), we have
|Te(f, usa,b;8)| <

<oH {smr (239 V@) + s (“5°) AVATEE™ (53 H\Z;/S(u)} <

a S

< 2" H max {sin’” (S ; a) ,sin” (b;‘s) } \i/(u) =

b

— 9" H sin” <b 3 5) \b/(u) < 9" H sin" (b 3 a) \/ (w).

a a

Theorem 2.2. Suppose that f: C (0,1) — C satisfies Holder s type condition (1.1). If [a,b] C
C [0,27] and the mapping w: [a,b] — C is Lipschitzian with the constant K > 0 on [a,b], then,

b
forall s € [a, ath , we have the inequality

Te(f, w;a,b;8)] <

s a+b—
t—a 1 t—a b—t

< or s T - P AT s T
<2"KH /sm < 5 )dt+2 / [sm < 5 )dt—l—sm ( 5 )] dt+

S)T—‘rl

; b [REay A
T / sin"<_t>dt gKH(S_a) + (-
2 r+1
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Proof.  Consider the fact that if w: [a,b] — C is a Riemann integrable function and the
mapping v: [a,b] — C is Lipschitzian with the constant M > 0, then the Riemann - Stieltjes
b

integral / w(t)dv(t) exists and the inequality holds

b b
/w(t)dv(t) < M/|w(t)|dt.

Since u is Lipschitzian with the constant K > 0, taking modulus in (2.2) and using the inequality
(2.3), we have

Te(f,us a,b; 5)| =
s ' ' a+b—s f (em) —|—f(€ib) )
_K/\f(e’“)—f(e”)\dtJrK / 5 — f(e™)] dt+

b
[ 1) - g (e e <
a+b—s

a+b—s

<K [1f@) = FE@)aery [ (170 = 1@+ [Fe) - g (@] der

b

[ - f (e fan

a+b—s
As f satisfies the Holder’s type condition (1.1), we obtain
Te(f,usa,b;s)| <

s a+b—s
SKH/‘eit—ei“’Tdt%— / “eit—ei“’r+}eib_eit}r} i+
a

S

b
+KH / e — ™| dt =

a+b—s
s 1 a+b—s b
- .. (t—a . [t—a . —1
=2"KH /sm( 7 >dt+2 / [sm( 5 )—i—sm <2 ﬂdt%—
b b
+ / sin” (;) dt (2.5)
a+b—s

which completes the proof of first inequality in (2.4).
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For the proof of the second inequality in (2.4), by using the basic inequality sinz < z for
x € [0, 7], we have

S

. (t—a 1/ (s—a) !

a

1 a+b—s b 1 a+b—s
.. ft—a . —t _

(b—s)"""—(s—a)"!

= 2.7
27(r+1) @.7)
and
/ b—t 1 / ( yrHt
— s—a
in" [ —— ) dt < — _ -9 2.
/ sin < 5 >dt_ o / (b—t)dt >+ 1) (2.8)
a+b—s a+b—s

Substituting the inequalities (2.6) —(2.8) in (2.5), we obtain the required result (2.4).
Theorem 2.2 is proved.
Remark2.4. 1f we choose s = a in Theorem 2.2, then we have the inequality

f(e”) J;f (") [u(b) — u(a)] /b £ (") du(t)| <
comti [ [ (5o (451 <

which is proved by Dragomir in [11].
b
Corollary2.4. Under assumption of Theorem 2.2 with s = %, we have the inequality

FE)u®) = £ () uta) = [1(e) = £ ()] (“57) = [ 1) auto)] <

a+b

2 b
. (t—a e (b—t (b—a)*
<9r L (N (i < A
<2"KH /sm < 5 )dt—i——i—/sm < 5 )dt —KHQT(T+1)
b

a at

2

Theorem 2.3. Suppose that f: C (0,1) — C satisfies Holder s type condition (1.1). If [a,b] C
C [0,27] and the mapping w: [a,b] — R is monotonic nondecreasing on [a,b|, then, for all

b
s € [a, a—;] , we have the inequality
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b—t t—
N a+b—s | sin” <2 >—|—Sin7"( 2“)
|Te(f,u;a,b;8)| < 2"H sin” | —— du(t) + du(t)+

a s :
<H /S (t —a) du(t) + aJr/b_s[(b —t) —; (t= a)r] du(t)+
+ /b (b—t) du(t) b . 2.9)
a+b—s

Proof. Consider the fact that if w: [a,b] — C is a continuoud function and the mapping v :
b

[a, b] — C is monotonic nondecreasing on [a, b] , then the Riemann — Stieltjes integral / w(t)dv(t)
exists and the inequality holds ¢

b b

/w(t)dv(t) §/|w(t)\dv(t). 2.10)

a a

By using the inequality (2.10), we have, from (2.2),

S

Tu(fyusa,bis)] < / [ () — £ ()] du(t)| +

a

2

S

b

+ / [f(eib) —f (eit)] du(t)| <
a+b—s

atb—s

< [ - selmo+ [

s

f (eia) +f(eib) -
2

b

b [ 1R = £ () faute),

a+b—s

As f satisfies the Holder’s type condition (1.1), we get
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S a+b—s
Te(f,u;a,b;8)] < H/ ‘em - Bit‘rdu(t) + g / Ueia — eit{r + ‘eib - eitﬂ du(t)+
a

S

b
+H / ’eib — eit‘rdu(t) <
a+b—s

a+b—s

<ow far (G2 o +rm [ far (250) s (50 o

S

b
+2"H / sin” <b;t> du(t),

a+b—s

which completes the proof of first inequality in (2.9). The proof of second inequality in (2.9) is
obvious from the fact that sinz < z for = € [0, 7] .

Theorem 2.3 is proved.

Remark2.5. If we choose s = a in Theorem 2.3, then we have the inequality

b
|Te(fu;a,b)| < 2T1H/ [sinr <b2_t> + sin” (?)} du(t) <

a+b—s

<5 [ 1=ty + - a)du),

which is proved by Dragomir in [11].
b
Corollary 2.5. Under assumption of Theorem 2.3 with s = %, we have the inequality

FE)u®) ~ £ () ute) = [1(e) = £ ()] (57) = [ 1) auto)] <

atb
2
t— b b—t
<2'H / sin” ( a) du(t) + ot sin” () du(t) p <
2 2 2
ot b
<H / (t—a)" du(t) + / (b—1t)" du(t)
a a+b

3. Application to quadrature rule. We now introduce the intermediate points

Tp + Thi1

gk € I:xka 2

], k=0,1,...,n—1,

ISSN 1027-3190. Yxp. mam. ocypn., 2020, m. 72, Ne 12



NEW GENERALIZED TRAPEZOID TYPE INEQUALITIES FOR COMPLEX FUNCTIONS ... 1631

in the partition A, :a = x9g < 1 < ... < x, = b.  Let hgp: = xpy1 — x and v(h) =
=max{h;: k=0,1,...,n— 1} and define the sum

n—1
T(f,u, A0, 8) =Y {F (€™ ) ulwpsr) — f () ulag)} —
k=0

n—1

—5 D2 AL (€)= £ ()] [ul6r) + ulan + zxa — &)1}

k=0

Then the following theorem holds.
Theorem 3.1. Let f and u be as in Theorem 2.1. Then

b
/ £ (@) du(t) = T(f. 1, A, €) + R(f, 1, A, E),

where T(f,u, Ay, &) is defined as above and the remainder term R(f,u, Ay, &) satisfies

a

b b
\R(f,u, Ap, €)| < 2" H sin” (U;h)> \/ () < Ho" (h) \/ (u).

Proof. Since v(h) < m, then application of Corollary 2.3 to the interval [z;,x;11], i =
=0,1,...,n — 1, for intermediate points &, we have

f (em’““) w(xgprr) — f (ei“) u(xg)—

_ [f (ewk“); f (emk)] [u(&k) + u(zp + zp1 — &)] — / (") dutt) <
< 2"H sin” (2’“) V (@) G-D

forall k € {0,1,...,n—1}.
Summing the inequality (3.1) over k£ from 0 to n—1 and using the generalized triangle inequality,
we get

n—1 hk: Th41
R(f,u, A, )] < 27"Hk20sinr <2) \ () <
= T

h n—1%k4+1
<2"H v <
- ke{ol,lllﬁﬁq} sin < ) > kZ_O >{ (u) <

b b
T AT ,U(h) T
< 2"H sin <2> Y(u) < Hv (h)\!(u),
which completes the proof.
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and

Remark3.1. Choosing &, = x; in Theorem 3.1, we obtain

b
/f (eit) du(t) =T(f,u,An) + R(f,u, Ay,)

b b
R0 < 2 s (U50) Vi < 500 Vi

with the sum

n—1

T(f7 u, An) = 1 Z { [f (eikarl) + f (ewk)] [ukarl) - u(xk)]}

k=0

[\]

given by Dragomir in [11].
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