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A REMARK ON COVERING OF COMPACT KAHLER MANIFOLDS
AND APPLICATIONS*

3AYBAKEHHS IIOJO NOKPUTTA KOMITAKTHHUX
KEJEPOBUX MHOTOBHU/IB TA iX 3ACTOCYBAHHSA

Recently, Kolodziej proved that, on a compact Kéhler manifold M, the solutions to the complex Monge — Ampere equation
with the right-hand side in L?, p > 1, are Holder continuous with the exponent depending on M and || f||, (see [Math.
Ann., 342, 379-386 (2008)]). Then, by the regularization techniques in [J. Algebraic Geom., 1, 361 -409 (1992)], the
authors in [J. Eur. Math. Soc., 16, 619647 (2014)] have found the optimal exponent of the solutions. In this paper, we
construct a cover of the compact Kéhler manifold M which only depends on curvature of M. Then, as an application,
base on the arguments in [Math. Ann., 342, 379 -386 (2008)], we show that the solutions are Holder continuous with the
exponent just depending on the function f in the right-hand side and upper bound of curvature of M.

HemonasHo Kosozazeit 10BiB, 1110 Ha KOMITAKTHOMY KeJIepOBOMY MHOTOBHI M pO3B’SI3KH KOMIIJIEKCHOTO PiBHAHHS MOHXa —
Awmrnepa i3 npagoto yactuHow y LP, p > 1, € HenepepBHMMH 3a ['e/bepOM 3 €KCIIOHEHTO!0, 1O 3aiexuTh Big M Ta || f||,
(muB. [Math. Ann., 342, 379-386 (2008)]). ITicns mporo, 3a AOIMOMOTOK MeTony perymspusanii 3 [J. Algebraic Geom., 1,
361-409 (1992)], aBropu po6otu [J. Eur. Math. Soc., 16, 619647 (2014)] 3naituum onTuManbHy eKCIIOHEHTY PO3B’S3KiB.
V miii po6oTi MU OyayeEMO MOKPHUTTS KOMITAKTHOTO KEJIEPOBOTO MHOTOBUIY M, sike 3aJC)KHUTh JIUIIE BiJ KpUBHHU M.
Jaui, sSiK 3aCTOCYBaHHS, BUKOPHCTOBYIOUH aprymeHTanito 3 [Math. Ann., 342, 379 -386 (2008)], noBoanMoO, 110 pO3B’A3KH
€ HelepepBHUMH 3a [ esbiepoM 3 eKCIIOHEHTOI0, 110 3aJISKHUTH JHIIe Bif QyHKUIT f y mpaBii 4acTHHI Ta BEPXHBOI MEXKi
KpuBuHU M.

1. Introduction. Let M be a compact n-dimensional Kéhler manifold with the fundamental form
w given in local coordinates by
i k >
W= Yk s d2" A dZ.

An upper semicontinuous function v on M is called w-plurisubharmonic if dd°u + w > 0.
Consider the Monge — Ampere equation

(ddu + w)" = fw™, (1.1)

where the given function f € L'(M), f > 0 and / fw = / w'.
M

M
Now, we recall some results achieved on the equation (1.1) recently. In [20], by using the
continuous method, S. T. Yau has shown that the equation (1.1) has solutions belong to PSH N

N C>®(M), when f € C®(M), f > 0, / fw"™ = 1, with a constant error. Then, in [10],
M
S. Kolodziej has proven that it has solutions belong to PSH N C(M), when f € LP(M), f > 0,
fw™ =1, p > 1. Recall that this result solves in particular the Calabi conjecture and allows to
M

construct Ricci flat metrics on X whenever ¢;(X) = 0. In [11], the author has proven that L*°-norm
of a difference of solutions is controlled by L!-norm of the difference of functions on the right-hand
side (see Theorem 2.1 below). Continuing research the results in this direction, in [12], the author
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A REMARK ON COVERING OF COMPACT KAHLER MANIFOLDS AND APPLICATIONS 139

has shown that the solutions to the equation (1.1) are Holder continuous with the exponent depending
on M, || f|p- A similar result was also proved in [8], when M is a bounded strongly pseudoconvex
domain. By demonstrating the opposite case of the main result in [7], P. H. Hiep gave a result that
is stronger than the result in [12] (see [14]). More exactly, P. H. Hiep proved, in a special case of
u measure, for every f € LP(u) with p > 1 there exists a Holder continuous w-plurisubharmonic
function v such that (dd“u + w)" = fu. Then, by the regularization techniques in [5], the authors
in [6] have found the optimal exponent and other interesting results.

In this paper, we construct a cover for the compact Kahler manifold M which depends on the
curvature of M. Then, as an application, we show that the solutions are Holder continuous with the
exponent just depending on LP-norm of the function f in the right-hand side of (1.1) and upper
bound of curvature of M.

The paper is organized as follows. In Section 2, after two necessary lemmas (Lemmas 2.1 and
2.2), we present main result, that is Theorem 2.3).

In Section 3, we show that the solutions are Holder continuous with the exponent depends only
on the LP-norm of the function on the right-hand side of (1.1) and the upper bound of the curvature
of M in Theorem 3.1.

2. A covering on compact Kihler manifolds. First, recall that we use the normalization
d=0+0,d =i(d—0). According to [1, 2], the Monge— Ampére operator (dd°.)" is well
defined on the class of locally bounded plurisubharmonic functions (see also [3, 9]). Moreover, if
uw € PSH N LY. (M) then by [1] (ddu)™ is a non-negative Borel measure.

On a compact Kéhler manifold M with fundamental form w, the LP-norm of function f €
€ LP(M), p > 0 is defined by
1/p
9= | [ 1)
M

Here we cite the result about stability of solutions that is set up in [11].
Theorem 2.1. Given p > 1, € >0, co > 0 and || f||, < co, ||g|lp, < co satisfying the normali-
zing condition in (1.1) there exists c(e, co) such that

o = Ylloo < el co)llf — g”}/(n-i-i%—f—a).

Here p, 1 are solutions of (1.1) corresponding to the functions f, g on the right-hand side.

Proof. See [11].

Let 2 be a domain in C”. For fixed 6 > 0 we consider Q5 = {z € Q: dist(z,00Q) > §}. With
u € PSH(Q), we define a function us on {25 as follows:

us(z) = [T(n)52”]7 / u(z 4+ ¢)dV (Q), 7(n) = / av(¢),

I¢1<é I¢I<1

1

where dV denotes the Lebesgue measure. Then g is a plurisubharmonic in €25. On the other hand,
by [8] we have the following inequality:

/ (@5 — w) (Q)AV(C) < 1| Auf 62 @.1)

Qs

with the constant ¢; depending only on the dimension.
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140 V. V. HUNG, H. N. QUY

The following main results on compact Kéhler manifolds (Theorems 2.2 and 2.3) are the basis
for expanding the main results in [12]. Before presenting the theorems, we shall prove two lemmas
to prove the main theorems.

For each matrix A = (aij)i,jzﬁv a;;j € C, we set A* is the conjugate transpose matrix of A
(ie., A* = (a@j;); j_15)- Set I is an unit matrix and [|A[| is a norm of matrix A.

Lemma 2.1. Let C be a matrix such that A = CBC* with ||[A—1I|| <e, |B—I| <€, e<1/3.
Then ||CC* —I|| < 5e and ||C*C — I|| < 5e.

Proof. Set A=1+ FE and B =1+ F with |E|| <e, ||F| <e. We have

|CC* —I|| = ||CC* — A+ E|| = |[CC* — CBC* + E|| =
=|E-CFCT| < |E[ + [CIIIFIC -
Hence
[ce < I+ =N+ ICHIFNICH < 1+ e+elCHCT] -
Moreover, since ||C]|? = ||C*||? = ||CC*||, we obtain

1+¢€
HC’H2 <1 +e+eHC’|]2 & HCH2 < T <4=|C| <2.

From this, we infer that
|CC* —1I|| = ||[E = CFC*|| < [|E[| + [CIIFINCT < | E] + 4| F[| < 5e.

On the other hand, since B = C~1A (C’ _1)* , applying the above result for C' and A, B invert each
other we have ||[C~! (C~1)" — I|| < 5¢. Now, from this we get [|C*C — I|| < 5e.
Remark 2.1. i) With z = [21, 29, ..., 2,]" and C be a matrix, we have

||Z||2 =2z = 2121 + ...+ ZnZn,

|Cz||> = (C2)*(Cz) = 2*C*C.
From these formulas, we obtain
1Cz||2 = ||2]|*> = 2*C*Cz — 2*2 = 2* (C*C = ) =.
So, if [|C*C — I|| < ¢, then
(L= ol=l® < [IC2]* < (L + €)=

ii) We denote by B, is the open ball of radius » > 0 and B,(z) is the open ball of radius r
centered at z in C™.

Lemma 2.2. Let U C C" and f: U — C™ be a holomorphic function. Then we have the
following estimate:

[f(@) = FEI < [IDf(2)(w = 2)] + sup ID?f(2)|| llew — =] 2.2)

Sorall z,w e U, ||w—z| <r and B,(z) CU.
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A REMARK ON COVERING OF COMPACT KAHLER MANIFOLDS AND APPLICATIONS 141

Proof. This lemma as follows from the Taylor inequality for real functions.

Now we prove the main result about a covering for Kéhler compact manifolds as follows.

Theorem 2.2. Let (M,w) be a Kéhler compact manifold. Then there exist charts {U;};_17; of
M and holomorphic bijective functions f;: U; — B3, such that

6 £ (Br) = M,
j=1
;.zn:le ANdz; < (f]fl)*w < Qiidzl ANdZ; on Ba,, (2.3)
=1 =1
and
ID(fir)D(fi)* = Il < er® on  f;(U; N UR), (24)

where fii, = fi o f;l 2 f;(U;NU,) — fi(Uj N Uy) is the local translate function on Uj N Uy, and
€ > 0 depending on the curvature of M.

Proof. First, in order to prove (2.3), we use the techniques in the proof of Theorem 4.8 in [4].
Let Ths and T, are the tangent and cotangent bundles of M. Then, for each a € M, since w is
Kahler form, we can choose the local coordinates 2z’ = (2], ..., z/) such that (dz],...,dz]) is an
w-orthonormal basis of 77 M. Hence,

n
w= ZZ wlmdzl’ A dE;n,
=1

where

n
wim = Oun + O (I2']) = 0 + Y (ajimz} + diyZ)) + O([I2']).
j=1

By w is real and Kéhler form, we have a;.lm = Qjpy and ajy, = agjmy. Put
1 n
Zm = z;n + B Z ajlmz;»zf, 1<m<n.
7,l=1
Then (z1,...,2,) is a coordinates system at a and
n
dzym = dz;n + Z aﬂmz;dzl’.
j=1
It follows that

n n n
i dam NdEm =1 Y dzl, NdZ, +i0 Y aumZide] Adz,+

m=1 m=1 J,l,m=1

n
i) GumZde, Adz 4+ O(||2])?) =

7,l,m=1
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142 V. V. HUNG, H. N. QUY

=i Y wimdsf Adz, +O(Z|) = w+ O(1|%).

jvl7m:1

So we can conclude that, at every points a € M, we have a holomorphic coordinate system

(z0,...,2]) centered at a such that
n
w=1i Y wimdz] AdZ,,  wym = 6im + O(||Z]|?). (2.5)
l,m=1
Assume that the coordinates (z),, ..., z,,) are chosen such that (2.5) is satisfied. Then by the Taylor

expansion we get

n
wWim = Oim + OIZ'1*) = Oim + D (ajrim2iZ), + @jim 2k + afum?iZ) + O (I12'1%) . (2.6)
Jk=1

/ _ ! " _ = — . o . .. ;o
However @itim = Uejtms Yjkim = Cjgmis Cjklm = Qlejml- Moreover, by Kéhler condition 8wlm/8zj =

= Owiy, [0z at 2" = 0 we have @y, = aj.;,,, 1.€., @jyy,, 18 invariant under all permutations of j,
k, l. Next, if we put

1 n
Zm = 2, + 3 Z a;klngzzzl’, 1<m<n,
jki=1
then by (2.6) we infer that

n
dzy = dz), + Z a;klmz;-zllﬁdzf, 1<m<n,
j7k7l:1
n

n
w:iZdzm/\dfm—i-i Z ajklmzﬁ;gdzl’/\d?'m—i—O(||Z/H3)7

m=1 7,k m=1
n n
w=1 Z dzm N dZm + 1 Z ajklijfdel NdZm + O (HZHS) . 2.7
m=1 7,k lm=1

Now we have

g 0 - _
<82z’ azm> = 0im + Y, ajrmzZe + O (|12]1%)

k=1
o 0 Jg 0 = _
2o 52 ) = 5 3y = 3 et 0 (11
m m k=1
Then the Chern curvature tensor ©(7)s), can find by
0 SN/ 0 _ . _ — 0
@(TM)a—ZZ =D"D 52 ) =~ > jrimdz A dZ @ 5t O(||2])).

j7k7m:1

S0 —a;km are the coefficients of the Chern curvature tensor ©(7'3r),. On the other hand, from (2.7),
we have
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A REMARK ON COVERING OF COMPACT KAHLER MANIFOLDS AND APPLICATIONS 143

o 9 . _
oy — <al > =5+ > aumzize+ 0 (|12]°) -

0z
m 4, k=1

This gives (2.3).

In order to obtain (2.4), we proceed as follows. From the above, we can assume that, at each
a € M, we can find a neighbourhood V,, of a and a holomorphic bijective function f,: V, — B,
such that

(f) w(z) =i dandz+0(|2%), = €Bs,
=1

with O (||z]|?) depending on the curvature of M. Now, by compactness of M we can assume that
Sq >8>0 Va e M and

(fCL_l)*W(Z):iZ le/\dEZ—I—O(Hz”Q)7 z € By,

=1

uniformly for a € M. Hence, with ¢ > 0 depending on the curvature of the M, we can choose
r = r(e) small enough such that

H(fa_l)*w —’iZle A dz;
=1

on Bs,.. Set U, = f,;!(Bs,), then by the compactness of M, there exist m = m(r) points
ai,as,...,a, € M such that the family {f;jl(IB%T)}j:—m is open cover of M. Set

Uj=f;'(Bs,) and fj= fa,.

Fixed 1 < j,k < m, we set that

n

() w=1 ) apda Adz,

1<l,t<n

(i) w=i > budz Adz.
1<lt<n
Since ( - ) = f]k)*(( ) ) on f;(U; NUy), we get A = DfjrBDf}, on [i(U; N Ug),
where A = ( ) w, B= (fk ) w. Now using Lemma 2.1 we obtain

ID(fir)D(fi)* = Il < er® on  f;(U; NU).

Theorem 2.2 is proved.

From Lemma 2.2, Theorem 2.2 and Remark 2.1, we are ready to prove the following main result.

Theorem 2.3. Let (M,w) be a Kihler compact manifolds. Then there exist charts {U;}
of M and holomorphic bijective functions f;: U; — B3, such that

U @) =M,
j=1
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144 V. V. HUNG, H. N. QUY

. n n
%Zdzl Ndzp < (f].*l)*w < 2iZdzl ANdz; on Bg,.,
= 1=1

and
fit Bs(2)) C Beys(fin(2)) Vz € fi(f; (B2r) N i ' (Bar)) V6 € (0,060),

where Cq = 1+ er? and € > 0 depending on the curvature of M.
Proof. First of all, we use the same notation as in Theorem 2.2. Now we wish to apply the
Lemma 2.2 for fji, with w € Bs(z2). Indeed, by (2.2) with f replaced by f;i, we have

I50(0) = () < 105w = D]+ sup D] o = 21
5(2
Therefore, in view of Theorem 2.2 and Remark 2.1, we get
2
||Df]k _2H<m(5<<1+2>(5

2

Set d = supg;.) |D?(fjx)|| < oo and choose dc = 6(g) < %, we conclude that

1 fik(w) = fiu(2)| < (1 + er?) 6.
Therefore,
fir(w) € Beys(fik(2)) with Co=1+er? andforall &€ (0,6,).

Theorem 2.3 is proved.

3. Applications to the complex Monge — Ampére equation. In this section, we apply the main
result to show that the solutions to the equation (1.1) are Holder continuous with the exponent just
depending on the upper bound of the curvature of M.

Theorem 3.1. Assume that p > 1 and f € LP(M) satisfying the normalizing condition in (1.1).
Then the solutions to the equation (1.1) are Holder continuous with the Hoélder exponent which
depends on | f||, and upper bound of curvature of M.

Proof. Take ¢ > 0 which only depends on curvature of M. By Theorem 2.3, there exist charts
{Uj};—17m of M and holomorphic bijective functions f;: U; — B, such that

U fj_l(BT) =M,
j=1

. n n
5> dundzm < (fi')w<2iy dunds on By,
=1 =1

and
fir(Bs)(2) C Baws(fix(2) Wz € f; (7' Ba) N7 (Bar)) W6 €(0.6), (D)

where Cy = 1 4 er?. For each j = 1,2,...,m, we set B} = f].*l(IB%gT), B = fj*l(]BBr), B; =
=f; 1(By,). Choose h € C> (C") such that =1 < h < 0on C*, h =0 on B; and h = —1 on
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cn \IB%% Set p(z) = h (i) . We have p € C* (C") such that -1 <p <0 on C", p=0onB,,
T
p=—1on (C”\]B%% and

dd’p > ———= dezl Adz,
where c(n) is a constant depending on n. Set p; = po f;, then we obtain p; € C*(BY), -1 <
< pj < 0on B}, pj =0 on B} and pj = —1 on the neighbourhood of 9B;. Since dd’p >
> —C?(Z) (f;7')w on By, we get dd°p; > —Cfg) w on BY. Set C' = 67(47;) and fixed N > 4 big

enough. Then, by log Cy = log (1 + er?) < er? and ClogCy < ec(n), we can choose 7 = r(e)

small enough such that 2Cy < N, a < (where p, g conjugate) and

gin+3+¢€ +1
22C |ulloo + 1) log Co < N~ *log N.
From the above it follows that

log N
log C() .

220 |ulloe +1) < N7¢ (3.2)

On the local chart BY/, we define regularizations

w;s(2) = maxu(z +1t), =z¢€ B,.
976() |t|<6( ) J

Set uj s = Ujs50 fj_1 (function u; s defined locally on the neighbourhood of 0 in C™). We also define
two auxiliary functions

Xx(0) =48~ myaxzrgg;(ujg—uof N (2),

7(0) = max max (u; cos — tjs)(2).

According to (3.1), we have

max ()5 — uk,s)(2)| < n(d). (33)

We will approximate the function v by w-plurisubharmonic functions us which are created by gluing
together the local regularization wu;s (see [5]). Then by (3.3) the function 7(d) plays adjustment
functions u; s in the intersection of the charts when moving from local definition to global definition.
Note that, due to the continuity of the function u (see [10]) should have lims_,qn(J) = 0. Set

us(z) = (1+ Cin(8)) ™" mj‘@X(uj,é(Z) +n(8)p;(z)), Ci1=2C.

By (3.3) and the property of p; the maximum in the above definition should always be achieved on
By, so the function s is continuous on (Jj2, f;(BY). Moreover, by Cn(0) < 1, we get

dd° (uj5(2) +1(0)pj(2)) = = (1+ Cn(38)) (1) w.
From the above results and the inequality approximately dd®max(u,v) (see [1]) we derive
dd°us +w > 0 (with ¢ is sufficiently small). 3.4

To finish the proof, we need to verify the following proposition.
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146 V. V. HUNG, H. N. QUY

Proposition 3.1. The function x is bounded on some nonempty interval (0,0).
Proof. Suppose that x () > max(9, x(/NJ)) and N6 < r/2. Then we have

_ o o
E:U{ZGBQT: (uj,(;—uofj N(z) > <X;)—2>5 };é@.
j
Choose the function ¢ such that g o fj_l =0on E and g = Cof on M\ Uj fj_l(E) with Cy as a
constant satisfying condition / fw = / w™. Set
M M

Bia(2) = [re] " [ we 714 0av (O, rn) = [ aveo)

I¢I<é I¢]<1

We will compare u; s and ;s as follows. Given z € By, we find ¢, with |t,| = 0 such that

ujs(z) =wo fi (z+t2) <U; 5z +t.) < s5(2) + 2wl oV
1
Since a < 3 we conclude from above estimate for § < dp and dp small enough that

ENB,, C {uj,(g —uofj_1 > 5a} C {ﬂj’\/g — uofj_1 > 50‘/2}.

As |[Aul|; is bounded on every B, thus, applying formula (2.1) we have

/ W' < C3617* forall ;.
ENBo,-

Therefore,
/ W < Cyot e,
E

So, by Holder inequality, we get

1/q

[ram<usio| for] < csti-a,
F E

where Cs depends only on || f||,. So, if v is a solution of (w + dd“v)" = gw", then by Theorem 2.1
with & < ;1 (J1 small enough) we conclude that

1 11—«
Ju =V < |If = gl|TF3%9 < Cgdat¥3 < 69, (3.5)

1l -«
q(n+3+¢)
To end the proof of Proposition 3.1, we will prove the following lemma.
Lemma 3.1. If zo € By, such that (uj, 5 — uo J;l)(zo) = x(0)0%, then we have

where « is choosen such that o <

sup  (us—vo f;l) < (us — v)(z0)-
U £5(Bi)\E
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Proof. We can assume that u > 1. Take z € (UJ fi(Bj) \E) N By, then

(ujs —uo fi1)(2) < (X?) - 2) 5.

So, by (3.5), we get

(w5 —ve fi)(2) < (’C?) - 1) 5.

Since u > 1, we infer that

(us —vo fj_l)(z) < max (ujs—vo fj_l)(z) < <X<5) - 1> 0. (3.6)

T j:2€B; 3
Again, by (3.5) we conclude similarly that
(ujo.s —vo f5.")(20) = (x(6) — 1) 6%
So, by definition of the functions, we have

(us —vo fi,) (20) = (x(8) — 1) 6% = n(0)(2C|ufloc +1). (3.7)
With § small enough and by the three circles theorem we get

log N
(e = uj8) 2 30 (wicos = uzs) -

Choose j such that

n(d) = max (uj,cos — ujs) (2)-
zEBa,

From this we obtain

o log N
(NO)*Xx(N6) > og Co n(8).

On the other hand, since x(4) > x(NJ) then, from (3.2), we get the following result:

6x(0) > o N

N~ > 2n(8)(2 o+ 1).
> o MON ™ > 20(6)2C o + 1)

The above result combined with (3.7), we obtain

(us —vo fi,')(20) > <X(25) — 1> 5.

From this and (3.6), we complete the proof of Lemma 3.1.
We proceed to finish the proof of the theorem.
Applying the Lemma 3.1, we can find C; such that

zp e U= {Uijfl <u5—C7} C F.
By the comparison principle (see [10]) and (3.4), we lead to a contradiction because
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148 V. V. HUNG, H. N. QUY

0< / (ddcuﬁ(f;l)*w)”g / (dd°v + w) < / (dd°v + w)" = / g™ = 0.
E E

U U

This contradiction shows that the choice of small enough § such that
x(0) > max(9, x(N9))

is impossible. Thus, the proof of Proposition 3.1 and, so, of Theorem 3.1 is completed.

Finally, we get the following corollary as a special case of Theorem 3.1 when M be a compact
Kéhler manifold of zero curvature (such as in [17-19]).

Corollary 3.1. Let M be a compact Kihler manifold of zero curvature. Then the solutions of
(1.1) in Theorem 3.1 are Holder continuous with the Holder exponent which depends only on || f||p.

References

1. E. Bedford, B. A. Taylor, The Dirichlet proplem for the complex Monge — Ampére operator, Invent. Math., 37, 1 —44
(1976).

E. Bedford, B. A. Taylor, 4 new capacity for plurisubharmonic functions, Acta Math., 149, 1-40 (1982).

U. Cegrell, The general definition of the complex Monge — Ampére operator, Ann. Inst. Fourier, 54, 159 -179 (2004).
J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html.

wh e

J. -P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 361 -409

(1992).

6. J. -P. Demailly, S. Dinew, V. Guedj, H. H. Pham, S. Kolodziej, A. Zeriahi, Hélder continuous solutions to Monge —
Ampeére equation, J. Eur. Math. Soc., 16, 619-647 (2014).

7. T.C. Dinh, V. A. Nguyen, N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics,
J. Different. Geom., 84, 465-488 (2010).

8. V. Guedj, S. Kolodziej, A. Zeriahi, Hdlder continuous solutions to the complex Monge—Ampére equations, Bull.
London Math. Soc., 40, 1070—1080 (2008).

9. S. Kolodziej, The Monge—Ampere equation, Acta Math., 180, 69-117 (1998).

10. S. Kolodziej, The Monge—Ampeére equation on compact Kdhler manifolds, Indiana Univ. Math. J., 52, 667686
(2003).

11. S. Kolodziej, The complex Monge— Ampére equation and pluripotential theory, Mem. Amer. Math. Soc. (2005).

12. S. Kolodziej, Hdlder continuity of solutions to the complex Monge — Ampére equation with the right-hand side in LP:
the case of compact Kdihler manifolds, Math. Ann., 342, 379-386 (2008).

13. L. M. Hai, P. H. Hiep, H. N. Quy, Local property of the class Ey 1oc, J. Math. Anal. and Appl., 302, 440—-445 (2013).

14. P. H. Hiep, Holder continuity of solutions to the complex Monge—Ampére operator on compact Kdihler manifolds,
Ann. Inst. Fourier, 60, 1857 -1869 (2010).

15. H. Hein, Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc., 25, Ne 2, 355-393 (2012).

16. V. V. Hung, H. N. Quy, Convergence in capacity on smooth hypersurfaces of compact Kéihler manifolds, Ann. Polon.
Math., 103, 175-187 (2012).

17. G. Tian, S. T. Yau, Existence of Kdhler— Einstein metrics on complete Kdihler manifolds and their applications to
algebraic geometry, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1,
574-628 (1987).

18. G. Tian, S. T. Yau, Complete Kdihler manifolds with zero Ricci curvature, I, J. Amer. Math. Soc., 3, Ne 3, 579-609
(1990).

19. G. Tian, S. T. Yau, Complete Kéihler manifolds with zero Ricci curvature, 11, Invent. Math., 106, Ne 1, 27-60 (1991).

20. S.T. Yau, On the Ricci curvature of a compact Kdihler manifold and the complex Monge — Ampére equation, Commun.

Pure and Appl. Math., 31, 339-411 (1978).

Received 05.03.18

ISSN 1027-3190.  Vkp. mam. scypn., 2021, m. 73, Ne 1



