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ON A BIVARIATE KIND OF g-EULER AND g-GENOCCHI POLYNOMIALS *
PO BIBAPIAHTHI IIOJIHOMH THUITY ¢-EMJIEPA 1 q-IKEHOKI

Two bivariate kinds of g-Euler and g-Genocchi polynomials are introduced and their basic properties are stated and proved.

Buznaueno 6iBapiaHTHi nomiHoMu THITy g-Efinepa i ¢-/[xeHoki. Takox chopMynboBaHO 1 JOBEICHO IXHI OCHOBHI BIACTH-
BOCTI.

1. Introduction. Euler and Genocchi polynomials have found valuable applications in various
branches of mathematics such as analytic number theory, numerical analysis, geometric design and
mathematical physics. For instance, Euler numbers are directly related to the Brouwer fixed point
theorem and vector fields [12]. These numbers are extended by Carlitz in [1] and called g-Euler
numbers. In [10], the authors have presented a new g-analogue of the exponential generating function
of Euler polynomials and in [5] a new g-extension of Euler numbers and polynomials are introduced.
In [2], the authors have obtained some new symmetric identities for g-Genocchi polynomials arising
from the fermionic p-adic g-integral on Zj,. Finally, in [8], a new type of Euler polynomials and
numbers are introduced.

In this paper, we first give some preliminary definitions of g-calculus and the g-analogue of some
elementary functions, which are required in Section 3, in order to extend both ordinary g-Euler and
q-Genocchi polynomials. In this sense, we introduce a bivariate kind of g-Euler and ¢-Genocchi
polynomials in Section 3 and present some basic properties of the extended g-Euler polynomials.
Of course, because of similarity, we only give the properties of bivariate ¢-Genocchi polynomials
without proof in Section 4.

2. Preliminaries and definitions. If ¢ # 1 and « is a real number, the g-analogue of « is
defined by [3, 4]

and
[n]q! = H[k]q = [n]gln —1]g...[1]g, neN,
k=1

is the g-analogue of n! where lim,_,1[a], = o and [0],! = 1.
The ¢-derivative operator of an arbitrary function defined by

flgz) — f(z)

qu(x) = (q _ 1)x ,

satisfies the rules
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D, (f(x) + k:g(:L‘)) =D, f(x) £ kDgyg(z),
Dy(f(z)g(x)) = f(z)Dyg(x) + g(qz) Dy f (x) = g(x) Do f(x) + f(qz)Dyg(2),

and

D (f(ﬂf)) _ 9(@)Dyf(x) — f(x)Deg(x) _ g(qz)Dyf(x) — fgr)Deg(x)
"\ g(x) g9(x)g(qz) 9(z)g(qz) '

Although there is not a general chain rule for g-derivatives, we have

Dy(f(ax?)) = a[Blge” " (Dys f)(az”)

and

Dy(f(ax)) = a(Dyf)(ax).
The function

(x —a)(z —aq)(x — ag?) ... (x — ag"™ 1), n=12...,
(=) = n
1, n =0,

is the g-analogue of (z — a)™, which can be extended to

1
— -n_-___ - N'
(x —a), @ —ag n e

n—1

It is easy to check that Dy(x — a)y = [n]¢(z — a)g
The g-Pochhammer symbol is indeed a particular case of (1) for z = 1 and is defined as

n—1

(@;q)n=[[(1—ad*)  with (a59)0=1, neN, )
k=0

When n — oo, the limit relation of (2) is denoted by (a;q)~ (provided that |¢| < 1) and in the
sequel we have

aq
(a’7Q)n = Mov ne NOv |QI < 1a
) oo
while for any complex number «;, it reads as
(a;9)
(a;9)a = (aqa;qjooo’ lq| < 1.

The ¢-binomial coefficient is defined for positive integers n and k by

[n} _ [n]q! _ (4 D)n _ [ n }
k q [k}q![n - k]q! (6 Dr(6 Ok n—k q
In [9], Schork studied Ward’s “Calculus of sequences” and introduced a g-addition symbol as
(z@gy)" = i | bk
q k .
k=0 q
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It is clear that the g-subtraction can be defined in the same way as

N ) ne
@ounr =3 |} | e = o ()"
k=0 q
A g-analogue of the classical exponential function e” is defined by [3, 6]

> i
Dyeg = eq = z;) [n],!”
n=

n

0<|ql <1, |z|<1,

where
a(xd ar®qa
and eq( qy) == eq a y.

Another g-type of the exponential function is defined by

o0 :L‘n
B2 =Y "¢ 0<lg <1,
=0 [n]y!

so that these two g-exponential functions are closely related to each other by the relation
eyt =1 (3)

Finally, in this section we state g-Taylor’s theorem for formal power series [4].
Theorem 2.1. For any polynomial p(z) of degree n and any arbitrary point x = a, we have

ple) = > D ) T
=0 jlq!

o0 .
Hence, any formal power series f(x) = E ' Ocjznj can be expressed in terms of a generalized
) =

) . J
D(J)f(()):?— such that

Taylor series Z o Di 7!
Jj= Jlq!

Vj € Ny and Dyf(z) = Z[j]chxj_l.
j=1

2.1. q-Appell sets, q-Euler and q-Genocchi polynomials and some related properties. Let
{P,(z)}>2, be a polynomial set in which P,(z) is of exact degree n. {P,(z)}°, is a ¢-Appell
set if

DgPri1(z) = [n+ 1gPu(z).

Such sets were first introduced by Sharma and Chak [11]. The following characterization theorem
holds in this regard.

Theorem 2.2 [11]. Let {P,(x)}°, ba a polynomial set. The following assertions are equiva-
lent:

1. {P,(x)} is a qg-Appell polynomial set.
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2. There exists a sequence (ay)i>0 independent of n, ag = 1, such that

3. {P.(x)} is generated by

t?’L
A(t)eq(xt) = Z Pn(a;> [n] 1’
n=0 q
where
A(t) = Z akw, ag
k=0 T
The g-Euler polynomials are defined by [5]
2€a:t o0 tn
q
= E, )
et +1 712—:0 () [n],!

leading to the representation

and the ¢-Genocchi polynomials are defined by [2]

et+1 ZG’Q .’

leading to the representation

-E [0

k=0

It is not difficult to verify for every n € N that
DyEnqg(z) = [nlgEn-1,4() and DyGhq(x) = [n]qGn-1,4(2).

Hence, ¢-Euler and ¢-Genocchi polynomials belong to ¢-Appell set.
3. A bivariate kind of g-Euler polynomials. Let z,y € R. Then the Taylor expansion of the
two functions e®! cosyt and e®’ sinyt are respectively as follows [7]:

xt — tk
e cosyt = ZCk(a:,y)H

and
Tsinyt =) Sk(r,y) 7,
k=0 )
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where
[5] I o
Cr(x,y) = (—W(Qj)as“fy% *)
j=0
and
[*7*] o -
Se(w,y) = (=1) (2. H)x“ﬂly%“. )
=0 J

Now, a g-extension of the bivariate polynomials (4) and (5) can be considered.
If x,y € R, then

€y cosqyt Zqu x y (6)
and
t .
eq singyt = Z Sk.q(, y)m,
k=0
where
oo n 2n n
1 + (iz)
cong =3 G S8 L U i
n=0 n=0 q
and

] B 0 (_1)n22n+1 . o0 (—1)”—1(12)"
iz = S T 3

In this sense, we have
0o k k tk
(Sia) (So) -2 (L ]ome) i 2
k=0 \ j=0 q

Proposition 3.1. The polynomials Cy, 4(x,y) and Sy 4(x,y) can be explicitly represented as

B |k be2i 2
Cig(,y) = ] (—1>J[2jo Fy (8)

and

kl]

Skalz.y) =) (- [2] +1] kAP, )
7=0
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Proof. We have

k=0 k=0
I R B T G ) S N
-2 EM T
S5 (S £ e | 2
= F=A L P 1T

The proof of (9) is similar.
Proposition 3.2. The following derivative rules are valid:

D‘]J?Ck,q(x7y) = []‘J]ququ(.’L',y), (10)
Dq,yck#](x?y) = _[k]qsk—l,q(x7y)a (11)
Dq7xSk7q(IE,y) = [k]qsk—l,q(xuy)v (12)
and
Dq,ysk,q(xay) = [k]qok—l,q(xvy)' (13)

Proof. Relation (6) yields

" tn+1
Zququ(x y)[ I —te cosq yt = ZC’nq T, Y)——
q

= ZCn—l,q(xvy)fin' = Z[n] Cn-14(2,9) = = I
ot [n—1]4! "0 [n]q!

proving (10). Other equations (11), (12) and (13) can be similarly derived.
Proposition 3.3. The following identities hold:

k

Ck,q(x)y) = Z |:L];):| Ck—j,q(ovy)xj (14)
j=0 74
and
k
Sk, y) = Z[ }Sk 5.a(0,9)77 (15)
J=

Proof. By Proposition 3.2, for j =0,1,...,k we have

o
) ;j Crq(@,y) = [klglk — 1q...[k — J 4+ 1¢Cl—jq(z,y),
q
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while for j > k we obtain
%
@Ck,q(%y) =0,
because Cj, 4(x,y) is a polynomial of degree k in terms of x. Hence, the g-Taylor expansion of
Crq(x,y) at x gives

SEPURTRT PO
Crqlx+hy) = ——Cp oz, y)== = [ ] Cr—i(x,y)h,
q = 8(133] q []]q' o J . J

in which h € R. It is now enough to take x = 0 and h = x to reach (14). In a similar way, (15) can
be derived.
Proposition 3.4. For any n € Ny, the following power representations hold:

2n

e (]2 n
> (=" ’“q@[ . } Conmtalw, y)e* = o, (16)
k=0 4q
2n+1
o[ 20+ 1
Z(—l)kq@[ " ]OQnﬂk,q(x,y)x’“:o, (17)
k=0 q
2n NS
Z(—l)kq<z>[ i } San-ka(@,y)a* =0, (18)
k=0 q
and
2n+1
nok () [ 20+ 1 .
> (1) kq@[ " ]Sznﬂ_k,q(:c,y)xk:y? . (19)
k=0 q

Proof. Multiplying both sides of (6) by £ 2t and using (3), it follows that

- ¢ (1" g g(@.y) | 7oy
3 (S [H] e rsenien) o
By setting n — 2n and n — 2n 4+ 1 in the above relation, (16) and (17) are proved respectively. The
proof of (18) and (19) is similar.

Based on previous comments, we are now in a good position to introduce two kinds of bivariate
q-Euler polynomials as

2e7t > © tn
cosg yt = EX) (z,y)——
2 g =3 B
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and

xt
Zeq

eé—i—l

tTL

[n]q!

o
sing yt = Z Eﬁfl)z(a:, Y)
n=0

and give some basic properties of them in the sequel.

Proposition 3.5. E,(fz(x, y) and Efle(x, y) can be represented in terms of q-Euler numbers as
follows:

£ o) = 3 | 1] Ba0Coraton) o)
k=0 q
and
Bila@y) = m Eyog(0)Snteq(®.9)- 1)
k=0 q

[n]g! el +1

00 m 00 o
(S i)

tn

[ZLEk,q(O)anvq(x’yO ]!

which proves (20). The proof of (21) is similar.
Proposition 3.6. Er(f()](l', y) and E,(f()l(x, y) can be represented in terms of E, 4(x) as follows:

B o) = S0 g | Buanaters @2)
k=0 q
and
252
E) (z,y) = kz (—1)* [ %Z . LEn_Qk_Lq(l‘)y%—H. 23)

oo n xt
ZE(C) (z,9) = 26 cosg yt =
n=0 e [ ]q' 67‘; + 1 !
> tn 1+ (=)™ tn
= E,q(x) i"y" =
(3 Bt (55 i)
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[ =[n] 1+ (=1, "
- Z (Z [k]q—i_g)lkykEn_kg(m)) il —

=0 =

o [ 15]
n tm
= Epong(@)y*" | —.
=3 (S| 5] st ) oo

Similarly, (23) can be proved.
Proposition 3.7. For every n € Ny, the following identities hold:

B (1&g 2),y) + EL)(2,y) = 2Cn4(2,y) (24)
and
ES) (1 @g2),y) + ES) (2, y) = 280 q(2,y). (25)
Proof. We have
m ((IIEBqa:)t
E 1 ® = cos, Yyt =
Z qr ) [n]q! f] +1 qY
2et(el +1—1) 2ezt
=11 t=2elt t) — ——~ t =
e+ 1 CoSq Y € cosq(yt) ef] 1 coSq Y
o

n n

_2ZC’nqa¢y Z C 0

which proves (24). The relation (25) can be similarly proved.
Corollary 3.1. The following relations hold:

Eéffq(l,y) + Eéi)q(O,y) = 2(—1)"y*"
and
Byl g(Ly) + Egyly 4(0,y) = 2(-1)"y" .
Proof. 1f n is replaced by 2n in (24) and x by 0, we obtain
By (L) + By (0.) = 2C,,4(0, ),

which proves the first relation because from (8) we have Ca,4(0,y) = (—1)"y*". The second
relation can be similarly proved.
Proposition 3.8. For every n € N| the following identities hold:

c - n c n—
B ((@®q2),y) = [ k} B (2, y)2" " (26)
k=0 q
and
EP) ((x @y 2),y) = ~[n B (z,y)z"k 27)
n,q q 'Y ]C k,q » Y .
k=0 q
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Proof. We have

0o © m 26((1:UEqu)t
E* t
nz:;) n,q((w @q Z)v y) [n]q' eg 1 COS(] Yy

3

n=0

)3 [ZLE&?;m,y)z“-k) =

k=0

which proves (26). The proof of (27) is similar.
Corollary 3.2. For every n € N, the following partial q-differential equations hold:

Dy EQ) (@, y) = g B, (2. y),

Dq,yEff,ZI(% y) = _[n]qE(sz1,q($a Y),

n

Dq,mEgs,z)](x7 y) = [n]qES—)l,q(wv y),

and

Doy ES)(2,y) = [n]yEL, (2. )-

4. A bivariate kind of g-Genocchi polynomials. In this section, we introduce a bivariate
kind of g-Genocchi polynomials and just present some basic propositions of them as their proofs are
similar to the previous section.

Based on pervious comments, we can introduce two kinds of bivariate g-Genocchi polynomials
as follows:

2temt

T 1 C0Sq yt = Z G

q ]q

and

2te$t Tk

T smq yt = Z G
e
gt

where they can be represented in terms of ¢-Genocchi numbers as

n

Gq(lc,)q(xv y) = Z |:Z:| Gk,q(O)Cn—k,q(xa y)
q

k=0

and

M=

64 =3 | | GralOSu o)
q

£
Il

0

They can also be represented in terms of G, 4(x) as follows:
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(5]
Gl (x,y) = 2 ( 1)’“[;” Gin-2kq(2)y™*
k=0 a
and
(5]
Griy(y) = ; o [ 2t 1 LG"2“’q(x)y2kH

For every n € N, the following identities hold:

Gy (L@ 2),y) + Gy (e,y) = 2[n]gCrorq(z,y)
and

Gﬁ(f,)q((l ®q 7), y) + Gns,é(w, y) = 2[n]gSn—1,4(z, y).
Consequently, we have

Gilirg(Ly) + G5y (0.) = 2020 + 1y (~1)"y™
and

(1,y) + G5 (0,y) = 2[2n)y(—1)" 1y

2n,q

G(S)

2n,q

Moreover, for every n € N,

and

k=0

Finally, for every n € N, the following partial ¢-differential equations hold:

Dy oG (2,y) = [n],G\ | (x,y),

n,q n—1,q

Dy G (2,y) = —[n],GY, (2,y),

n,q n—1,q
Dy GS)(2,y) = [n],GY
a,T n,q(li’y) Njq n,l,q(:c,yh

and

Dy G y) = InlyGiL (2 y).

) n, n—1,q
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