UDC 512.7
E. Herscovich (Inst. Fourier, Univ. Grenoble, Alpes., France)

A SIMPLE NOTE ON THE YONEDA (CO)ALGEBRA OF A MONOMIAL ALGEBRA
 ПРОСТЕ ПОВІДОМЛЕННЯ ПРО (КО)АЛГЕБРУ ЙОНЕДИ АЛГЕБРИ ОДНОЧЛЕНІВ

If $A=T V /\langle R\rangle$ is a monomial K-algebra, it is well-known that $\operatorname{Tor}_{p}^{A}(K, K)$ is isomorphic to the space $V^{(p-1)}$ of (Anick) $(p-1)$-chains for $p \geq 1$. The goal of this short note is to show that the next result follows directly from well-established theorems on A_{∞}-algebras, without computations: there is an A_{∞}-coalgebra model on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ satisfying that, for $n \geq 3$ and $c \in V^{(p)}, \Delta_{n}(c)$ is a linear combination of $c_{1} \otimes \ldots \otimes c_{n}$, where $c_{i} \in V^{\left(p_{i}\right)}, p_{1}+\ldots+p_{n}=p-1$ and $c_{1} \ldots c_{n}=c$. The proof follows essentially from noticing that the Merkulov procedure is compatible with an extra grading over a suitable category. By a simple argument based on a result by Keller we immediately deduce that some of these coefficients are ± 1.

Якщо $A=T V /\langle R\rangle-K$-алгебра одночленів, то відомо, що $\operatorname{Tor}_{p}^{A}(K, K)$ є ізоморфним простору $V^{(p-1)}(p-1)$ ланцюгів (Аніка) для $p \geq 1$. Метою цього повідомлення є намагання показати, що наступний результат без будьяких обчислень безпосередньо випливає з встановлених теорем для A_{∞}-алгебр: існує A_{∞}-коалгебраїчна модель на $\operatorname{Tor}_{\bullet}^{A}(K, K)$ така, що для $n \geq 3$ i $c \in V^{(p)} \quad \Delta_{n}(c)$ є лінійною комбінацією $c_{1} \otimes \ldots \otimes c_{n}$, де $c_{i} \in V^{\left(p_{i}\right)}$, $p_{1}+\ldots+p_{n}=p-1$ і $c_{1} \ldots c_{n}=c$. Доведення, в основному, є наслідком того, що процедура Меркулова сумісна з додатковим градуюванням деякої відповідної категорії. За допомогою простих аргументів, що базуються на результатах Келлера, безпосередньо приходимо до висновку, що деякі з цих коефіцієнтів дорівнюють ± 1.

1. The results. This article arose from discussions with A. Solotar and M. Suárez-Álvarez in 2014, and more recently with V. Dotsenko and P. Tamaroff, on the A_{∞}-algebra structure on the Yoneda algebra of a monomial algebra. I want to thank them for the exchange and in particular the last two for lately renewing my interest in the problem. My aim is to explain some results describing such A_{∞}-algebras that do not seem to be well-known, but follow rather easily from the general theory, and were meant to be included in the Master thesis of my former student E. Sérandon in 2016. I would also like to thank the referee for the comments.

In what follows, K will denote a finite product of r copies of a field k. By module we will mean a (not necessarily symmetric) bimodule over K (see [3], Section 2). All unadorned tensor products \otimes will be over K, unless otherwise stated. For the conventions on A_{∞}-(co)algebras we refer the reader to [5] (Subsection 2.1).

Let M be a small category with a finite set of objects $\left\{o_{1}, \ldots, o_{r}\right\}$. As usual, we denote the set of all arrows of M by M itself, the composition by \star, and the identity of o_{i} by e_{i}. We remark that $m^{\prime} \star m^{\prime \prime}$ implies that m^{\prime} and $m^{\prime \prime}$ are composable morphisms. Let ${ }^{M}$ Mod be the category of modules V provided with an M-grading (i.e., a decomposition of modules $V=\oplus_{m \in M} V_{m}$) and linear morphisms preserving the degree. This is a monoidal category with the tensor product $V \otimes W$ whose m th homogeneous component is $\oplus_{m^{\prime} \star m^{\prime \prime}=m} V_{m^{\prime}} \otimes W_{m^{\prime \prime}}$, and the unit $K=\oplus_{i=1}^{r} k_{e_{i}}$, where $e_{j} \cdot k_{e_{i}}=k_{e_{i}} \cdot e_{j}=\delta_{i, j} k_{e_{i}}$. Furthermore, it is easy to see that ${ }^{M} \operatorname{Mod}$ is a semisimple category. We say that a strictly unitary A_{∞}-algebra $\left(A, m_{\bullet}\right)$ has an M-grading if $\left(A, m_{\bullet}\right)$ is a strictly unitary A_{∞}-algebra in the monoidal category ${ }^{M} \mathrm{Mod}$. The same applies to M-graded augmented A_{∞} algebras, and to morphisms of M-graded strictly unitary or augmented A_{∞}-algebras. Moreover, the
definitions of M-graded strictly counitary and coaugmented A_{∞}-coalgebra as well as the morphisms between them are also clear.

Proposition 1.1. Let $A=T V /\langle R\rangle$ is a monomial K-algebra, i.e., V is a module of finite dimension over k and R is a space of relations of monomial type. Then there is a small category (M, \star) with r objects such that A is an M-graded unitary algebra with $\operatorname{dim}_{k}\left(A_{m}\right) \leq 1$ for all $m \in M$.

Proof. Let \mathcal{B} be a basis of the underlying vector space of V such that $e_{j} . v . e_{i}$ vanishes or it is v, for all $v \in \mathcal{B}$ and all $i, j \in\{1, \ldots, r\}$, and define M as the free small category generated by \mathcal{B}. Note that $T V$ identifies with the unitary semigroup algebra associated with M. Given $m \in M$, set A_{m} as the vector subspace of A generated by the element \bar{m} of A given as the image of $m \in T V$ under $T V \rightarrow A$. It is clear that $A=\oplus_{m \in M} A_{m}$ is an M-grading of A and $\operatorname{dim}_{k}\left(A_{m}\right) \leq 1$ for all $m \in M$.

The next result follows directly from the definition of the bar construction.
Fact 1.1. If A is an augmented A_{∞}-algebra over K with an M-grading, then the coaugmented $d g$ coalgebra $B^{+}(A)$ given by the bar construction is M-graded for the canonically induced grading.

We present now the main result of this short note.
Theorem 1.1. Let $A=T V /\langle R\rangle$ be a monomial K-algebra and let M be the small category defined in Proposition 1.1. Then there is an M-graded coaugmented A_{∞}-coalgebra structure on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ together with a quasi-equivalence from it to the M-graded coaugmented dg coalgebra $B^{+}(A)$.

Proof. We first remark that [4] (Theorem 4.5), holds verbatim if we replace Adams grading by M-grading, since ${ }^{M}$ Mod is a semisimple category. Using a grading argument based on the fact that both $B^{+}(A)$ and $\operatorname{Tor}_{\bullet}^{A}(K, K)$ are Adams connected modules (see [5], Section 2, for the definition for vector spaces), we see that the operator Q in [4] (Theorem 4.5), is locally finite (see [3], Addendum 2.9). Hence, applying [4] (Theorem 4.5), to the coaugmented dg coalgebra $B^{+}(A)$, which projects onto its homology $\operatorname{Tor}_{\bullet}^{A}(K, K)$, we see that the latter has a structure of M-graded coaugmented A_{∞}-coalgebra. Moreover, by the same theorem, there is a quasi-isomorphism of coaugmented A_{∞}-coalgebras from $B^{+}(A)$ to $\operatorname{Tor}_{\bullet}^{A}(K, K)$, which is trivially a quasi-equivalence by a grading argument.

Remark 1.1. The previous theorem and its proof hold more generally for any M-graded K algebra A that is connected, i.e., $A_{e_{i}}=k$ for all $i \in\{1, \ldots, r\}$, and such that A / K has a compatible (strictly) positive grading. This occurs, e.g., if there is a functor $\ell: M \rightarrow \mathbb{N}_{0}$ such that $\ell(m)=0$ if and only if m is an identity of M, where the monoid \mathbb{N}_{0} is regarded as a category with one object.

The result in the abstract is obtained from the previous theorem by identifying $\operatorname{Tor}_{p}^{A}(K, K)$ with the module $V^{(p-1)}$ generated by the (Anick) $(p-1)$-chains for $p \geq 1$ (see [1], Lemma 3.3, for the case K is a field, and [2] (Theorem 4.1), for the general case), i.e., given $c \in V^{(p)}$ and $n \geq 3$,

$$
\begin{equation*}
\Delta_{n}(c)=\sum_{\substack{c_{i} \in V^{\left(p_{i}\right), c_{1} \ldots c_{n}=c} \\ p_{i} \in \mathbb{N}_{0}, p_{1}+\ldots+p_{n}=p-1}} \lambda_{\left(c_{1} \otimes \ldots \otimes c_{n}\right)} c_{1} \otimes \ldots \otimes c_{n}, \quad \text { where } \quad \lambda_{\left(c_{1} \otimes \ldots \otimes c_{n}\right)} \in k . \tag{1}
\end{equation*}
$$

Note that Δ_{2} is given by the usual coproduct of $\operatorname{Tor}_{\bullet}^{A}(K, K)$. The (left or right) dual of this coaugmented A_{∞}-coalgebra structure on $\operatorname{Tor}_{\bullet}^{A}(K, K)$ gives an augmented A_{∞}-algebra model on $\operatorname{Ext}_{A}^{\bullet}(K, K)$ (see [3], Proposition 2.13).

With no extra effort we can say a little more about the coefficients in (1) ${ }^{1}$.
Theorem 1.2. Assume the same hypotheses as in the previous theorem. Given $c \in V^{(p)}, n \geq 3$, and $c_{i} \in V^{\left(p_{i}\right)} p_{i} \in \mathbb{N}_{0}$ such that $c_{1} \ldots c_{n}=c, p_{1}+\ldots+p_{n}=p-1$ and $p=p_{j}+1$ for some $j \in\{1, \ldots, n\}$, then $\lambda_{\left(c_{1} \otimes \ldots \otimes c_{n}\right)}= \pm 1$.

Proof. By [5] (Theorem 4.2) (or [3], Theorem 4.1) the twisted tensor product $A^{e} \otimes_{\tau} C$ is isomorphic to the minimal projective resolution of the regular A-bimodule A, where $C=\operatorname{Tor}_{\bullet}^{A}(K, K)$ is the previous coaugmented A_{∞}-algebra and τ is the twisting cochain given in that theorem. Comparing the differential of $A^{e} \otimes_{\tau} C$ given in [5], (4.1), with the one in [2] (Theorem 4.1) (see also [6], Section 3), it follows that the mentioned coefficient is ± 1.

Remark 1.2. In the examples, the computation of the remaining coefficients in (1) is in general rather simple to carry out, by imposing that the Stasheff identities are fulfilled.

References

1. D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc., 296, № 2, $641-659$ (1986).
2. M. J. Bardzell, The alternating syzygy behavior of monomial algebras, J. Algebra, 188, № 1, $69-89$ (1997).
3. E. Herscovich, Applications of one-point extensions to compute the $A_{\infty-(c o) m o d u l e ~ s t r u c t u r e ~ o f ~ s e v e r a l ~ E x t ~(r e s p ., ~}^{\text {(ra }}$. Tor) groups, J. Pure and Appl. Algebra, 223, № 3, 1054-1072 (2019).
4. E. Herscovich, On the Merkulov construction of $A_{\infty_{-}}$(co) algebras, Ukr. Mat. Zh., 71, № 8, 1133-1140 (2019).
5. E. Herscovich, Using torsion theory to compute the algebraic structure of Hochschild (co)homology, Homology, Homotopy and Appl., 20, № 1, 117-139 (2018).
6. E. Sköldberg, A contracting homotopy for Bardzell's resolution, Math. Proc. Roy. Irish Acad., 108, № 2, $111-117$ (2008).
7. P. Tamaroff, Minimal models for monomial algebras (2018), 28 p., available at https://arxiv.org/abs/1804.01435.
[^0]
[^0]: ${ }^{1} \mathrm{P}$. Tamaroff has told me that, by carefully choosing the SDR data for $B^{+}(A)$ and following all the steps in the recursive Merkulov procedure, he can even prove that all nonzero coefficients are ± 1, at least if K is a field (see [7]). Our results are not so general but they are immediate, since we did not need to look at the interior of the Merkulov construction.

