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A SIMPLE NOTE ON THE YONEDA (CO)ALGEBRA
OF A MONOMIAL ALGEBRA

MPOCTE MMOBLIOMJIEHHSI ITPO (KO)AJITEBPY MOHEIN
AJTEBPU OTHOUYJIEHIB

If A =TV/(R) is amonomial K-algebra, it is well-known that Tor;?(K , K() is isomorphic to the space V®=1 of (Anick)
(p — 1)-chains for p > 1. The goal of this short note is to show that the next result follows directly from well-established
theorems on A -algebras, without computations: there is an Ao -coalgebra model on Tor‘.“(K , K) satisfying that, for
n>3and ce VP, Ay (c) is a linear combination of ¢1 ® ... ® c,, where ¢; € y i) pr+...+pr,=p—1and
ci1 ...cn = c. The proof follows essentially from noticing that the Merkulov procedure is compatible with an extra grading
over a suitable category. By a simple argument based on a result by Keller we immediately deduce that some of these
coefficients are +1.

Slkmo A = TV/(R) — K-anre6pa onHounenis, To sinomo, mo Tor; (K, K) € isomopdunm npoctopy V¥~ (p — 1)-
JaHoriB (AHika) At p > 1. MeToro 1poro moBiIOMIICHHS € HaMaraHHs MOKa3aTH, [0 HACTYMHUI pe3yasTar 6e3 Oyab-
SIKUX O0OYHCIICHb Oe3M0CepeIHbO BUILTUBAE 3 BCTAHOBICHUX TeopeM Uil Ao, -airedp: icHye A -koaiarebpaiuHa Mojesb
Ha Torf‘(K, K) taka, mo wsi n > 3 ic € V@) Ar(c) € miHIHHOW KOMOIHAIE ¢1 ® ... ® Cn, O€ ¢; € V(P”,
pr+...+pn =p—11ici...cn, = c. JloBeAeHHS, B OCHOBHOMY, € HACJIIKOM TOrO, IO Mpoleaypa Mepkyiaosa
CyMiCHA 3 JIOZATKOBHM I'paIyIOBaHHSAM JIESKOi BiJITOBITHOI KaTeropii. 3a JOMOMOTOI0 IPOCTHX apryMEHTIB, 0 0a3yI0ThCs
Ha pesynbratax Kemrepa, 6e3mocepelHb0 MPUXOIMMO 10 BUCHOBKY, IO JEsKi 3 IUX KOe(ii€HTIB JOPIBHIOIOTH +1.

1. The results. This article arose from discussions with A. Solotar and M. Suarez-Alvarez in 2014,
and more recently with V. Dotsenko and P. Tamaroff, on the A, -algebra structure on the Yoneda
algebra of a monomial algebra. I want to thank them for the exchange and in particular the last two
for lately renewing my interest in the problem. My aim is to explain some results describing such
A.-algebras that do not seem to be well-known, but follow rather easily from the general theory,
and were meant to be included in the Master thesis of my former student E. Sérandon in 2016. 1
would also like to thank the referee for the comments.

In what follows, K will denote a finite product of r copies of a field k. By module we will mean
a (not necessarily symmetric) bimodule over K (see [3], Section 2). All unadorned tensor products
® will be over K, unless otherwise stated. For the conventions on A, -(co)algebras we refer the
reader to [5] (Subsection 2.1).

Let M be a small category with a finite set of objects {01,...,0,}. As usual, we denote the
set of all arrows of M by M itself, the composition by *, and the identity of o; by e;. We remark
that m/ x m” implies that m’ and m” are composable morphisms. Let * Mod be the category of
modules V' provided with an M -grading (i.e., a decomposition of modules V = &,,c3V;) and
linear morphisms preserving the degree. This is a monoidal category with the tensor product V @ W
whose mth homogeneous component is @,/ =m Viy ® Wiy, and the unit K = @©_, k,, where
ej.ke; = ke;.ej = 0; jk.;. Furthermore, it is easy to see that MMod is a semisimple category. We
say that a strictly unitary A -algebra (A, me) has an M-grading if (A, m,) is a strictly unitary
Aoo-algebra in the monoidal category  Mod. The same applies to M -graded augmented A.-
algebras, and to morphisms of M -graded strictly unitary or augmented A, -algebras. Moreover, the
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definitions of M -graded strictly counitary and coaugmented A, -coalgebra as well as the morphisms
between them are also clear.

Proposition 1.1. Let A = TV/(R) is a monomial K-algebra, i.e., V is a module of finite
dimension over k and R is a space of relations of monomial type. Then there is a small category
(M, *) with r objects such that A is an M -graded unitary algebra with dimy(A,,) < 1 for all
me M.

Proof. Let B be a basis of the underlying vector space of V' such that e;.v.e; vanishes or it is
v, forall v € Bandall i,5 € {1,...,r}, and define M as the free small category generated by 5.
Note that 7'V identifies with the unitary semigroup algebra associated with M. Given m € M, set
A, as the vector subspace of A generated by the element m of A given as the image of m € TV
under TV — A. It is clear that A = @,,cpr Ay, is an M-grading of A and dimg(A4,,) < 1 for all
meM.

The next result follows directly from the definition of the bar construction.

Fact 1.1. If A is an augmented As.-algebra over K with an M -grading, then the coaugmented
dg coalgebra BT (A) given by the bar construction is M -graded for the canonically induced grading.

We present now the main result of this short note.

Theorem 1.1. Let A = TV/(R) be a monomial K-algebra and let M be the small category
defined in Proposition 1.1. Then there is an M -graded coaugmented A.-coalgebra structure on
Torf(K , K) together with a quasi-equivalence from it to the M -graded coaugmented dg coalgebra
BT(A).

Proof. We first remark that [4] (Theorem 4.5), holds verbatim if we replace Adams grading
by M-grading, since # Mod is a semisimple category. Using a grading argument based on the
fact that both B*(A) and Tors (K, K) are Adams connected modules (see [5], Section 2, for the
definition for vector spaces), we see that the operator () in [4] (Theorem 4.5), is locally finite (see
[3], Addendum 2.9). Hence, applying [4] (Theorem 4.5), to the coaugmented dg coalgebra BT (A),
which projects onto its homology TorZ (K, K), we see that the latter has a structure of M -graded
coaugmented A -coalgebra. Moreover, by the same theorem, there is a quasi-isomorphism of
coaugmented A, -coalgebras from Bt (A) to Tori (K, K), which is trivially a quasi-equivalence by
a grading argument.

Remark1.1. The previous theorem and its proof hold more generally for any M -graded K-
algebra A that is connected, i.e., A, = k forall s € {1,...,r}, and such that A/K has a compatible
(strictly) positive grading. This occurs, e.g., if there is a functor ¢ : M — Ny such that £(m) = 0 if
and only if m is an identity of M, where the monoid Ny is regarded as a category with one object.

The result in the abstract is obtained from the previous theorem by identifying Tor;‘(K , K) with
the module V(P~1) generated by the (Anick) (p — 1)-chains for p > 1 (see [1], Lemma 3.3, for the
case K is a field, and [2] (Theorem 4.1), for the general case), i.e., given ¢ € V() and n > 3,

Ay (c) = Z Ner®..@en)CL ® ... @ cn,  Where Ao gen) €k (1)

ciEV(pi),clA“cn:c
pi €ENoyp1+...+ppn=p—1

Note that Ag is given by the usual coproduct of Torf‘(K ,K). The (left or right) dual of this
coaugmented A..-coalgebra structure on Tor?(K , ) gives an augmented A, -algebra model on
Ext% (K, K) (see [3], Proposition 2.13).
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With no extra effort we can say a little more about the coefficients in (1)!.

Theorem 1.2. Assume the same hypotheses as in the previous theorem. Given ¢ € V) n > 3,
and ¢; € V) pi e Ny such that ¢i...cp = ¢, p1+ ... +pp =p — 1 and p = p; + 1 for some
Je{l,...,n}, then N\ g ge,) = T1.

Proof. By [5] (Theorem 4.2) (or [3], Theorem 4.1) the twisted tensor product A¢ ®. C' is iso-
morphic to the minimal projective resolution of the regular A-bimodule A, where C = Torf‘(K , K)
is the previous coaugmented A..-algebra and 7 is the twisting cochain given in that theorem. Com-
paring the differential of A°®, C given in [5], (4.1), with the one in [2] (Theorem 4.1) (see also [6],
Section 3), it follows that the mentioned coefficient is +1.

Remark1.2. In the examples, the computation of the remaining coefficients in (1) is in general
rather simple to carry out, by imposing that the Stasheff identities are fulfilled.
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' P. Tamaroff has told me that, by carefully choosing the SDR data for BT (A) and following all the steps in the
recursive Merkulov procedure, he can even prove that all nonzero coefficients are +1, at least if K is a field (see [7]). Our
results are not so general but they are immediate, since we did not need to look at the interior of the Merkulov construction.
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