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HYPERBOLICALLY LIPSCHITZ CONTINUITY, AREA DISTORTION
AND COEFFICIENT ESTIMATES FOR (K, K’)-QUASICONFORMAL
HARMONIC MAPPINGS OF UNIT DISK

T'IEPBOJIIYHA HEMEPEPBHICTD 3A JIITIIUIEM, CHOTBOPEHHSI
OBJIACTEI TA OLIIHKHY KOE®IIIEHTIB JJI81 (K, K')-KBABIKOH®OPMHUX
TAPMOHIYHUX BIJOBPAKEHD OJJMHUYHOTO JUCKA

We study the hyperbolically Lipschitz continuity, Euclidean and hyperbolic area distortion theorem, and coefficient estimate
for the classes of (K, K')-quasiconformal harmonic mappings from the unit disk onto itself.

BuBuatoTbcs rinepOosiyHa HerepepBHicTb 3a Jlinmuiem, Teopema mpo CIIOTBOPEHHS €BKJIIJOBHUX Ta rinepOoiyHux odiac-
Teld, a Takoxk ominky koeditientis mist (K, K')-KkBa3ikoH(pOPMHUX TapMOHIYHHX Bi0OpakeHb OJMHMYHOTO JIUCKA B CEOE.

1. Introduction. Before stating some backgrounds and our main results, we firstly introduce some
terminologies. Suppose that ~ is a rectifiable curve in the complex plane. Denote by [ the length of
~ and let I': [0, 1] — ~ be the natural parameterization of +, i.e., the parameterization satisfying the
condition

IT(s)] =1 for all se[0,1].

We will say that ~ is of class C™* forn € N, 0 < p < 1, if I is of class C™ and

(n) () — 7(n)
wpy TOO T
t,5€[0,1] |t —s|#

We will call a Jordan C™* domain in C, if is bounded by C"™* Jordan curve.

Let D and G be subdomains of the complex plane C. We say that a function v: D +— R is
absolutely continuous on line in the region D if for every closed rectangle R C D with sides parallel
to the axes = and y, u are absolutely continuous on almost every horizontal line and almost every
vertical line in R. Such a function has, of course, partial derivatives u, and u, everywhere in D. A
topological mapping f = u +iv: D — G is said to be (K, K')-quasiconformal if it satisfies:

(a) f is absolutely continuous on lines in D;

(b) there are constants K > 1 and K’ > 0 such that
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L <KLgly+K', ae. in D,

where Ly = [f.(2)| + [ fz(2)], I = [|f2(2)| = [fz(2)]], f- = %(fx —ify) and fz= %(fx +ify). If
K’ =0, then f is called a K -quasiconformal mapping.

Let p(z)|dz|? be a conformal C! metric defined on D. A map f € C?(D,Q) is called a
p-harmonic mapping if

fez+(logpluo f- fofz=0.

In particular, 1-harmonic mapping is called an Euclidean harmonic function. In what follows, we say
a function is harmonic always means that it is Euclidean harmonic.

Let Ap(z)|dz| be the hyperbolic metric of the domain G having constant Gaussian curvature —1.
The hyperbolic distance dy, , (21, 22) between two points z; and 2o in D is defined by

inf //\D(z)]dz\ ,
v

v

where infimum is taken over all rectifiable curves v in D connecting 21 and zo. It is known that if
D =D, then

|1 — z1Z2| + |21 — 22|
’1 — 2’15‘ — ‘21 — ZQ‘.

Ap(2) and  dpy (21, 22) = log

BERSPE

A mapping h of D onto G is said to be hyperbolically Lipschitz if there exists a constant L; > 0,
such that the inequality

dne (h(21), h(22)) < L1 dpp (21, 22)

holds for every z1, 20 € D.

We will say that a mapping f: D — Q is normalized if f(t;) = w;, i = 0,1,2, where
{tot1,t1ta, tato} and {wowi,wiws,wow;} are arcs of T = JD and of v = 91, respectively, having
the same length 27/3 and |v|/3, respectively. Let v € C'*,0 < u < 1, be a Jordan curve, g be the
arc length parameterization of v and [ = || be the length of . Let d, be the distance between g(s)
and ¢g(t) along the curve v, i.e.,

dy(g(s), 9(t)) = min{[s — [, (I = [s — £[)}.

A closed rectifiable Jordan curve v enjoys a b-chord-arc condition for some constant b > 1 if for all
21, 2o € -y there holds the inequality

dy(z1,22) < blz1 — 2. (1.1

It is clear that if v € C™* then ~ enjoys a chord-arc condition for some by > 1.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 2



HYPERBOLICALLY LIPSCHITZ CONTINUITY, AREA DISTORTION AND COEFFICIENT ESTIMATES ... 153

1.1. Background and main results. Martio [12] was the first one to consider quasiconformal
harmonic mappings for the unit disk, and Kalaj [4] extended the domain to the unit ball. In [14],
Wan showed that every hyperbolically harmonic quasiconformal diffeomorphism from D onto itself
is a quasiisometry of the Poincaré disk. In [11], Parlovi¢ proved that a K -quasiconformal harmonic
mapping of D onto itself is bi-Lipschitz with respect to Euclidean distence. Its explicit bi-Lipschitz
constants were given by Partyka and Sakan [5]. In 2007, Knezevi¢ and Matecljevi¢ [10] showed

that a K -quasiconformal harmonic mapping of the unit disk onto itself is a (?’ K ) -quasiisometry

with respect to Poincaré metric. Recently, Kalaj and Mateljevi¢ [2] studied the class of (K, K')-
quasiconformal mappings with bounded image domains. They obtained the following intrigue
results [2].

Theorem 1.1 [2]. Suppose that ) is a Jordan domain with C? boundary and w is (K, K')-
quasiconformal harmonic mapping between the unit disk D and €. Then:

(a) w has a continuous extension to D, whose restriction to T we denote by f;

(b) furthermore, w is Lipschitz continuous on D;

(¢) if [ is normalized, there exists a constant L = L(K, K',0Q) such that

If' ()| <L for almost every te€|0,2n],

and
lw(z1) —w(z2)| < (KL 4+ VK')|z1 — 23| for z1,2z2 € D.
Here,
L< (KAkob(L,\(K K AZUA 4 \/K')A P S L pp— ks |
— 9 9 K(l + 26)27 a 9 s S|

and ks is the curvature of 0S) at the point g(s), b is a constant such that 0X) satisfies b-chord-arc
condition in (1.1),

21 K|Q 2K’
LA(K,K’):4(1+2b)2°‘\/max{ Uiyt T }

log2 *K(1+2b)2+4

The hyperbolically Lipschitz continuity for (K, K')-quasiconformal harmonic mapping from
upper half-plane onto itself was obtained by Min Chen and Xingdi Chen (see [8], Theorem 2.2). The
first aim of this paper, we study the hyperbolically Lipschitz continuity for the class of (K, K')-
quasiconformal harmonic mappings from unit disk onto itself. Our result reads as follows.

Theorem 1.2. Suppose that w is (K, K')-quasiconformal harmonic mapping from unit disk onto
itself satisfying |w=1(0)| <1 < 1, where [ is a constant, then w is hyperbolically Lipschitz continuity.

In 1994, Astala [8] proved that if f is a K -quasiconformal mapping from the unit disk D onto
itself, normalized by f(0) = 0, and if E' is any measurable subset of the unit disk, then A.(f(E)) <
<a(K) Ae(E)l/K, where A.(+) denotes the Euclidean area and a(K) — 1 when K — 1. In 1998,
Porter and Reséndis [13] obtained some results about area distortion under quasiconformal mappings
on the unit disk ID onto itself with respect to the hyperbolic measure. They also showed the existence
of explodable sets; this kind of sets has bounded hyperbolic area, but under a specific quasiconformal
mapping its image has infinite hyperbolic area. In [1], Hernandezmontes and Reséndis studied the
hyperbolic and Euclidean area distortion of measurable sets under some classes of K -quasiconformal
mappings from the upper half-plane and the unit disk onto themselves, respectively. The Euclidean
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and hyperbolic area distortion theorems for (K, K')-quasiconformal harmonic mapping from upper
half-plane onto itself were obtained by Min Chen and Xingdi Chen [9]. It was showed by Kalaj and
Mateljevi¢ [2] (Example 1.5) that a (K, K')-quasiconformal harmonic mapping from unit disk onto
itself is generally not a (K, 0)-quasiconformal harmonic mapping. So, it is interesting to study the
Euclidean and hyperbolic area distortion for (K, K')-quasiconformal harmonic mapping from unit
disk onto itself. We have the following theorem.

Theorem 1.3. Let w be a (K, K')-quasiconformal harmonic mapping from unit disk D onto
itself satisfying w(0) = 0. If w|r = f is normalized, then, for any measurable set E C D, we have

Ac(w(B)) < (K$(K, K') + VE')? Ac(E)
and )
Au(w(B)) < °- (K(K, K') + VE')? Ay(E),
where A.(-) and Ay (-) denote the Euclidean and hyperbolic area, respectively. Here,

TK[2K(1+m)? —1]
2

2K (1+7)2—1
(K, K') m 7RG 4 @)

ot 1) = (

and

2K (1+7)2

2K 2 2K’ 2K(+m?-1
K. K= (401 . 91l/K(14m)? .

In [7], Zhu obtained the coefficient estimates for K -quasiconformal harmonic mappings from
unit disk onto itself. Here we consider the coefficient estimates for the (K, K')-quasiconformal
harmonic mappings of unit disk D onto itself. We have the following theorem.

Theorem 1.4. Given K > 1,K' > 0. Let w(z) = h(z) + g(z) be a (K, K')-quasiconformal
harmonic mapping from unit disk onto itself satisfying w(0) = 0, where

h(z) = ianz” and ¢(z) = i bp 2"
n=1 n=1

are analytic in D. If the boundary function f of w is normalized, then

4p(K, K')

’an|+|bn‘§T, n=12...,
where
2 - S 2K (147)? -1
¢<K, K/) _ <7TK[2K(1;— 7T) 1] QO(K7 K’)ﬂ-QK(l+7r)2—1 + \/ﬁ)
and

2K (1+4)2

2K 72 2K’ 2K (1km)*
K, K= [4(1  Ql/K(14m)? .
(K, ) ( (1) e log2  K(1+m)%+4

The remainder of this paper are devoted to prove Theorems 1.2, 1.3 and 1.4, which will be
presented in Sections 2, 3 and 4, respectively.
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2. Hyperbolically Lipschitz continuity. The aim of this section is to prove Theorem 1.2. We
need the following lemma which will be used in the proof of Theorem 1.2. (See [3], Remark 2.4, for
the case of a = 0.)

Lemma 2.1. Let w be a harmonic mapping from unit disk into itself satisfying w(a) = 0, then

1—|z|? <7T1-|—|a|
1—|w(z)]* = 2 1—lal’

@.1)

zZ+a

Proof. Let =
roof. Let ¢(z) T+ as
disk onto itself satisfying F'(0) = 0. Hence by harmonic Schwarz lemma [5] (Lemma) and the

elementary inequality

and F(z) = w(p(z)), then F(z) is a harmonic mapping from unit

zmal Pt o,
1—az| = 1+ |a|l#]
we have
4 — 4
lw(z)| < — arctan — | < — arctanM. (2.2)
s —az| ~ W 1+ |al|z|
i - 4 2 , 21—t
Consider the function ¢ : [0,1) — R and p(t) = —arctant——(t—1)—1. As ¢/(t) = —— >
™ T w1+ ¢2
> 0, we get
4 2
—arctant < —(t— 1)+ 1,t € [0,1). (2.3)
s s
Combining (2.2) and (2.3), we have
4 2 2 2
, 1_<arctan<12\+’a\>> 1_< (WW_1>+1>
1—w(z)] m 1+ [al|2| m \1+ laflz]
> > =
1—[z* — 1—|[2]? - 1—|[z[?
4 1 1 1—|a))(1—|z
T S 04
a (I +allz)(X+z) 7 (1+]allz])?(1 + |z])
- (1= m)(1 -1
1 1 1I-m)(1-1¢
t) = - — t 0,1
O =G5 masn ratmmeary mElob:
then

2tm +m+1 2(1—m) 2 —tm—m—1

YO = T AT r T« Qs P

2(1 —m)(t?>m —tm —m — 1)

(2tm +m+1)(1 +tm) +

- (14 tm)3(1 +t)2 - <

(2tm+m+1)(1+tm) + (1 —m)(*m —tm—-—m—1)
(L+tm)3(1+1¢)?
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EZm2+2tm2 + E2m+tm+m2+m

B (1+tm)3(1 + )2 =0.
Therefore, ¢(t) is monotonically decreasing on [0, 1), so we get
B 1 1 (1-m)(1—1t) !
o) = (T4+tm)(1+1t) 7 (1+tm)2(1+1t) 2 (1) = 2(14+m)’ @3)

Thus, (2.1) is immediately derived from (2.4) and inequality (2.5).
Lemma 2.1 is proved.

Proof of Theorem 1.2. In order to prove Theorem 1.2, we only need to prove that
[Vw(2)|(1 = |21
1 —Jw(z)[?
self satisfying |w=1(0)| < < 1, hence, by Lemma 2.1, we have

< 400 holds for every z € D. Since w is harmonic from unit disk onto it-

1.2 -1
1—|z| Sil—i—\w (O)|§El+l. 2.6)
I—|w))? = 21—|w 1 0)] — 211
Moreover, by Theorem 1.1, there exists a positive constant M such that the inequality
|IVw| < M (2.7)

holds, for every z €ID. Combining (2.6) and (2.7), we get

|Vw(2)| (1 —|2]?) < M 141
1—jw(z))2 — 2 1-1

< 400

Theorem 1.2 is proved.

3. Area distortion. In this section, we will prove Theorem 1.3. In order to derive an explicit
Lipschitz constant in Theorem 1.2 in the setting of (K, K')-quasiconformal harmonic mapping from
unit disk onto itself, we need the following lemma.

Lemma 3.1. v = 0D satisfies the g-chord-arc condition. Namely, for all g(s), g(t) € OD,

T
there exists b = 5 > 1 such that

l9(s) — 9(0)]. (.1

Proof. Suppose that g(s) = €@, g(t) = e € v = OD. Without loss of generality, we can
assume the angle, denoted by 6, between g(s) and g(t) satisfies 0 < § < 7. Namely, 0 < 6 =

0
= |a — f] < 7, then dy(g(s),g(t)) = 0. Since |g(s) — g(t)| = 2sin 2 by Jordan inequality, we
get

<sin? = l905) —9®)]
= 2

2
T

NGRS
oD

which yields (3.1).
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Proof of Theorem 1.3. Considering the case for D = Q in Theorem 1.1. By Lemma 3.1, we

have o = KA+n)? and A\ = 2K (1 + 7)% — 1. By Theorem 1.1, together with kg = 1, we obtain
T
L<¢(K,K'), (3.2)
where
K[2K(1 21 1 2K (14m)2—1
(b(K, KI) — <7r [ ( 2—+_7T) ] SO(K, K/) 7T2K<1+7.r>2_1 + \/F)

and

2K (1+4)2

2K 2 2K’ 2K(+m?-1
K, K =401 . 1/ K(14m)? .

Using Theorem 1.1 again, we get
w2 (2)] < [Vw| < K ¢(K, K') + VK,
Combining (2.1) and (3.3), we have

|w=(2)]

K¢(K,K") +VK'
1 —|w(2)]? '

I
2 1—z|?

<

Furthermore, the Jacobian J_, of w satisfies

L:M@Hwamxwst@wmwww@?

hence, for any measurable set £ C D, we obtain

A (w(E)) = / dudv = /Jw(z)dxdy < (K P(K,K') +\/ﬁ)2 A(E).

w(E) E

In addition, by (3.4), we have

B ddudv B 4.J,(2) 4w, (2)|?
) = [ o = [ i < [ oo <
w(E) E E

< dedy = Tf (K (K, K') + x/ﬁ)2 Ay (E).

A5 (K (K, &)+ VET)]
e

Theorem 1.3 is proved.
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4. Coefficient estimates. In this section, we will prove Theorem 1.4. We follow the idea in [7]
(Theorem 3).

Proof of Theorem 1.4. For every z = re? € D, w(re'?) = ZOO anr”eme—i—zoo bur™e™.
Hence = =
1 2m
anr™ = o /w(rew)emedﬁ, n=12,...,
0
and
21
_ 1 o
bpr’ = — /w(re’e)emgde, n=12....
27
0
i — e _ iB _ opt Br
For every n, setting a,, = |a,|e'*", b, = |by|e"™, and 6,, = 5 Then
n
2m
(lan| + o)™ = QL /w(rew)[e_mne_me + ewneme]de =
T
0
2 21
1 . : . 1 .
= 2/w(rew)[e_m(e‘”'(’)") + ™0+0n)]1 0| = /w(rew)cosn(ﬂ—i—t%)dﬂ .
T s
0 0
Integrating by parts, we have
27
1 .
(lan| + [bn])r" = — /wg(rew) sinn (6 + 6,)d0| . 4.1)
0

By Theorem 1.1, we can see that f is absolutely continuous, hence,

0

55 () = PIA1(2),
1—r?

27(1 — 2rcosx + 12)

[2] (Lemma 4.1), the radial limits of wy exist almost everywhere and lim,_,,- wg(re’?) = f/(6).

Hence, tending » — 1~ in (4.1) and also by Theorem 1.1 and (3.2), we obtain

2m
where P(r,z) = and P[f](z) = / P(r,z — @) f(e"®)dz. In addition, by
0

27
1 46(K, K’
|an| + [bn| < /|f’(9)||smn(9+0n)ld9 < 49K, K')
nm nmw
0

Theorem 1.4 is proved.
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