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A NOTE ON THE REMOVABILITY OF TOTALLY DISCONNECTED SETS
FOR ANALYTIC FUNCTIONS

3AVBAKEHHS PO YCYBHICTbH CKPI3b PO3PUBHUX MHOXKUH
JUISI AHAJIITUHYHAX ®YHKIII

We prove that each totally disconnected closed subset £ of a domain GG in the complex plane is removable for analytic
functions f(z) defined in G \ E and such that for any point zop € E the real or imaginary part of f(z) vanishes at zo.

JloBezneHo, mo Oyap-sika CKpi3b PO3pUBHA 3aMKHEHA IMiaMHOKHHA F obmacti G Ha KOMIUIEKCHIH TUTOMIKHI € YCYBHOIO ISt
anamitnuHux QyHKifd f(z), BusHauennx y G \ F i Takux, mio 1yis A0BiUIbHOT TOUKU 2o € E milicHa abo ysABHA 4acTHHA
f(2) 3HuKae B 2o.

Let G be a domain in the complex plane C, F a totally disconnected closed subset of G, and
f(2) = u(z) + iv(z) an analytic function in G \ E (u(z) = Re f(2), v(z) = Im f(2)). Fedorov
[1] proved that, if f(z) is continuously extended from G \ E to G and w(z) vanishes on E, then
this extension is an analytic function in G. Ischanov [2] (see also [3, 4]) generalized this result as
follows: if u(z) vanishes on FE, then f(z) is analytically extended from G \ E to G. The aim of
this paper is to prove the following generalization of the mentioned results.

Theorem 1. Let G be a domain in C, E a totally disconnected closed subset of G, and f(z) =
u(z) + iw(z) an analytic function in G \ E such that for any zy € E we have either u(z) — 0 or
v(z) = 0as z — 29, z € G\ E. Then the function f(z) can be analytically extended from G \ E
to G.

Proof- Let the conditions of Theorem 1 be satisfied and let zyp € E. Then we have one of the
following cases:

(a) the function f(z) is bounded in the intersection of G \ E with some neighborhood of the
point zp;

(b) u(z) >0asz—2p,2€ G\ E,and limsup |v(z)| = —4oc;

z—20,2€G\E

(c) v(z) >0as z— 2z, z€ G\ E,and limsup |u(z)| = +o0.
2—20,2€G\E

Consider the case (a). Then there is an r > 0 such that the disk D(zo,7) := {z € C: |z—z| < r}
is contained in G and the function f(z) is bounded in D(zp,) \ E. Define the function

fi(z) = —z’f2(z)7 z € D(z,7) \ E.

Then we have
w(z) = Refi(z) = 2u(=)v(z),  wi(z) = Im fi(2) = v3(2) — u?(2).
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Since the functions u(z) and v(z) are bounded in D(zg,7) \ E, then for any ¢ € D(zp,7) N E we
have u1(z) — 0 as z — (, z € D(zp,r) \ E. The Ischanov theorem implies the existence of an
analytic extension F'(z) of the function fi(z) from D(zg,r)\ E to D(zg,r). Let ( € EN D(zp, 7).
Suppose that F'(¢) # 0 and take an € € (0,7) such that

D((,e) C D(z0,7) and |F(z)— F(Q)| <|F(¢)|/2 forall ze& D((,e).

Then /iF(z) is a univalent analytic function in D((,¢), where the branch of the square root in
D(iF(C),|F(¢)|/2) is fixed by the condition /iF(z) = f(z) forall z € D((,e) \ E.

Thus we justified the existence of an analytic continuation f(z) of the function f(z) from
D(z0,7) \ E to D(z9,7) \ (F~(0) N E), where the set F~1(0) := {z € D(z9,7): F(z) = 0}
contains only isolated points. Since the function f(z) is bounded in D(zg,7) \ (F~1(0) N E), then
each point of the set F~1(0) N E is a removable singular point for the function f(z).

The above arguments show that we can assume without loss of generality in the proof of Theorem
1 that for any 25 € F we have either the case (b) or the case (¢). Fix an arbitrary domain Gy € G,
define 1 and E» as the sets consisting of all points zg € F N G satisfying the conditions (b) and
(¢), respectively, and denote

diSt(El,Eg) = inf{|21 — ZQ| 21 € B,z € Eg}.

Suppose that dist(E7, E2) = 0. Then there are sequences {z1,}7>; C Eq and {z2,}°2, C E3 such
that |21, — 20| — 0 as n — oo whence the compactness of the set £ NGy, where Gy is the closure
of Gy, implies the existence of a point zg € E N G such that

limsup |u(¢)|= limsup |v(z)| = +oc.
(—20,(€EG\E (—20,(EG\E
Therefore, the case (b) or (c) is impossible. Hence, dist(FE;, F2) > 0 and consequently EF; and
E, are totally disconnected closed subsets of Gg such that for any 2y € E; we have u(z) — 0 as
z — 20, 2 € G\ (E1UE»), and for any zg € E we have v(z) — 0 as z — 20, 2 € Go \ (E1UE»).
Since dist(FE1, E2) > 0, then applying Ischanov’s theorem once again we conclude that the function
f(2) has an analytic continuation from Gy \ E to Go. Taking into account the arbitrariness in the
selection of the domain Gy we complete the proof of Theorem 1.
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