UDC 517.537.38

A. V. Pokrovskii (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

A NOTE ON THE REMOVABILITY OF TOTALLY DISCONNECTED SETS FOR ANALYTIC FUNCTIONS

ЗАУВАЖЕННЯ ПРО УСУВНІСТЬ СКРІЗЬ РОЗРИВНИХ МНОЖИН ДЛЯ АНАЛІТИЧНИХ ФУНКЦІЙ

We prove that each totally disconnected closed subset E of a domain G in the complex plane is removable for analytic functions f(z) defined in $G \setminus E$ and such that for any point $z_0 \in E$ the real or imaginary part of f(z) vanishes at z_0 .

Доведено, що будь-яка скрізь розривна замкнена підмножина E області G на комплексній площині ϵ усувною для аналітичних функцій f(z), визначених у $G \setminus E$ і таких, що для довільної точки $z_0 \in E$ дійсна або уявна частина f(z) зникає в z_0 .

Let G be a domain in the complex plane \mathbb{C} , E a totally disconnected closed subset of G, and f(z) = u(z) + iv(z) an analytic function in $G \setminus E$ ($u(z) = \operatorname{Re} f(z)$, $v(z) = \operatorname{Im} f(z)$). Fedorov [1] proved that, if f(z) is continuously extended from $G \setminus E$ to G and u(z) vanishes on E, then this extension is an analytic function in G. Ischanov [2] (see also [3, 4]) generalized this result as follows: if u(z) vanishes on E, then f(z) is analytically extended from $G \setminus E$ to G. The aim of this paper is to prove the following generalization of the mentioned results.

Theorem 1. Let G be a domain in \mathbb{C} , E a totally disconnected closed subset of G, and f(z) = u(z) + iv(z) an analytic function in $G \setminus E$ such that for any $z_0 \in E$ we have either $u(z) \to 0$ or $v(z) \to 0$ as $z \to z_0$, $z \in G \setminus E$. Then the function f(z) can be analytically extended from $G \setminus E$ to G.

Proof. Let the conditions of Theorem 1 be satisfied and let $z_0 \in E$. Then we have one of the following cases:

(a) the function f(z) is bounded in the intersection of $G \setminus E$ with some neighborhood of the point z_0 ;

(b)
$$u(z) \to 0$$
 as $z \to z_0$, $z \in G \setminus E$, and $\limsup_{z \to z_0, z \in G \setminus E} |v(z)| = +\infty$;

$$\text{(c)} \ \ v(z) \rightarrow 0 \ \text{as} \ z \rightarrow z_0, \, z \in G \setminus E, \, \text{and} \ \limsup_{z \rightarrow z_0, z \in G \setminus E} |u(z)| = +\infty.$$

Consider the case (a). Then there is an r > 0 such that the disk $D(z_0, r) := \{z \in \mathbb{C} : |z - z_0| < r\}$ is contained in G and the function f(z) is bounded in $D(z_0, r) \setminus E$. Define the function

$$f_1(z) := -if^2(z), \qquad z \in D(z_0, r) \setminus E.$$

Then we have

$$u_1(z) := \operatorname{Re} f_1(z) = 2u(z)v(z), \qquad v_1(z) = \operatorname{Im} f_1(z) = v^2(z) - u^2(z).$$

 ${\hbox{\fontfamily{l} @}}$ A. V. POKROVSKII, 2020

426 A. V. POKROVSKII

Since the functions u(z) and v(z) are bounded in $D(z_0,r)\setminus E$, then for any $\zeta\in D(z_0,r)\cap E$ we have $u_1(z)\to 0$ as $z\to \zeta$, $z\in D(z_0,r)\setminus E$. The Ischanov theorem implies the existence of an analytic extension F(z) of the function $f_1(z)$ from $D(z_0,r)\setminus E$ to $D(z_0,r)$. Let $\zeta\in E\cap D(z_0,r)$. Suppose that $F(\zeta)\neq 0$ and take an $\varepsilon\in (0,r)$ such that

$$D(\zeta, \varepsilon) \subset D(z_0, r)$$
 and $|F(z) - F(\zeta)| < |F(\zeta)|/2$ for all $z \in D(\zeta, \varepsilon)$.

Then $\sqrt{iF(z)}$ is a univalent analytic function in $D(\zeta,\varepsilon)$, where the branch of the square root in $D(iF(\zeta),|F(\zeta)|/2)$ is fixed by the condition $\sqrt{iF(z)}=f(z)$ for all $z\in D(\zeta,\varepsilon)\setminus E$.

Thus we justified the existence of an analytic continuation $\bar{f}(z)$ of the function f(z) from $D(z_0,r)\setminus E$ to $D(z_0,r)\setminus (F^{-1}(0)\cap E)$, where the set $F^{-1}(0):=\{z\in D(z_0,r):F(z)=0\}$ contains only isolated points. Since the function $\bar{f}(z)$ is bounded in $D(z_0,r)\setminus (F^{-1}(0)\cap E)$, then each point of the set $F^{-1}(0)\cap E$ is a removable singular point for the function $\bar{f}(z)$.

The above arguments show that we can assume without loss of generality in the proof of Theorem 1 that for any $z_0 \in E$ we have either the case (b) or the case (c). Fix an arbitrary domain $G_0 \in G$, define E_1 and E_2 as the sets consisting of all points $z_0 \in E \cap G_0$ satisfying the conditions (b) and (c), respectively, and denote

$$dist(E_1, E_2) := \inf\{|z_1 - z_2| : z_1 \in E_1, z_2 \in E_2\}.$$

Suppose that $\operatorname{dist}(E_1,E_2)=0$. Then there are sequences $\{z_{1n}\}_{n=1}^{\infty}\subset E_1$ and $\{z_{2n}\}_{n=1}^{\infty}\subset E_2$ such that $|z_{1n}-z_{2n}|\to 0$ as $n\to\infty$ whence the compactness of the set $E\cap\overline{G}_0$, where \overline{G}_0 is the closure of G_0 , implies the existence of a point $z_0\in E\cap\overline{G}_0$ such that

$$\limsup_{\zeta \to z_0, \zeta \in G \setminus E} |u(\zeta)| = \limsup_{\zeta \to z_0, \zeta \in G \setminus E} |v(z)| = +\infty.$$

Therefore, the case (b) or (c) is impossible. Hence, $\operatorname{dist}(E_1,E_2)>0$ and consequently E_1 and E_2 are totally disconnected closed subsets of G_0 such that for any $z_0\in E_1$ we have $u(z)\to 0$ as $z\to z_0,\,z\in G_0\setminus (E_1\cup E_2)$, and for any $z_0\in E_2$ we have $v(z)\to 0$ as $z\to z_0,\,z\in G_0\setminus (E_1\cup E_2)$. Since $\operatorname{dist}(E_1,E_2)>0$, then applying Ischanov's theorem once again we conclude that the function f(z) has an analytic continuation from $G_0\setminus E$ to G_0 . Taking into account the arbitrariness in the selection of the domain G_0 we complete the proof of Theorem 1.

References

- 1. W. Fédoroff, Sur la continuité des functions analytiques', Math. Sb., 32, № 1, 115-121 (1924).
- B. Zh. Ischanov, On one Fedorov's theorem, Vestn. Moskov. Univ. Ser. Mat., № 3, 34-37 (1981).
- 3. B. Zh. Ischanov, Generalization of Fedorov's theorem for harmonic functions of several variables, Vestn. Moskov. Univ. Ser. Mat., № 1, 100–102 (1986).
- 4. B. Zh. Ischanov, Generalization of Fedorov's theorem to M-harmonic functions, Math. Notes, **56**, № 5-6, 1132 1136 (1994).

Received 19.04.17