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NEAR-ISOMETRIES OF THE UNIT SPHERE
BJIW3LKI I3OMETPII COEPU OB’€THAHHSA

We approximate e-isometries of the unit sphere in £5 and £, by linear isometries.

HagezneHo HaGMKeHHS €-130MeTpilt onfMHUYHOI cdepu B £ 1 £, NiHIHHUME 130METPisIMH.

1. Introduction. Notation. Throughout the paper X and Y denote real normed spaces. The
sphere and closed ball with center z and radius r are denoted by S(z,7) and B(z,); we also write
S(0,7) = S(r) and B(0,7) = B(r). The unit sphere and ball are denoted by S and B (or Sg and
Bp when we need to specify the space). For a point « in R™, z; denotes its ith coordinate in the
standard basis {e;}" ;.

A local version of the classical Mazur — Ulam theorem asserts that a local isometry f, which maps
an open connected subset of X onto an open subset of Y, is the restriction of an affine isometry of
X onto Y (see, for example, [1, p. 341]). This classical result was generalized in several directions.
One of them is the study of the isometric extension problem posed by D. Tingley [8]: Let 1" be
a surjective isometry between the spheres of X and Y. Is T necessarily the restriction of a linear
isometry between X and Y'? There are a number of publications devoted to Tingley’s problem (see
[2] for a survey of corresponding results) and, in particular, the problem is solved in positive for
many concrete classical Banach spaces.

When distances are known only imprecisely, it is natural to study how close f is to be an
isometry. There are various different useful concepts of an approximate isometry, and one may then
ask whether such a mapping, which only nearly preserves distances, can be well approximated by a
true isometry, especially by an affine isometry (see [1], Chapters 14 and 15, and surveys [6] and [7]
for more complete exposition and literature on this subject).

Definition. Let A be a subset of X and ¢ > 0. Amap f: A —Y is called an e-isometry if

f(x) = f)ll = llz—yll|< e (1)

forall x,y € A.

The author [9, 11] has presented sharp results on approximation of e-isometries of balls in 5
and /7.

In the present paper we study approximation of e-isometries of spheres in ¢5 and (7 . We give
the following results, proceeding the way of [9, 11].
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Theorem 1. Let f: Spp — Sin be an e-isometry. Then there is a linear isometry U of U3 such
that

If(x) = Uz|| < Clog(n+ 1), =€ Sy, )

for some absolute constant C.

The upper bound in (2) is sharp.

Theorem 2. There are absolute constants C and c with the following property: Let 0 < € < ¢
and f: Sgn — Sen be an e-isometry. Then there is a unique linear isometry U of {7, such that

If(z) —Uzx| < Ce, x € Spn_. 3)

2. Proofs. We need the following lemma, which is proven, in fact, by the proof of Lemma 6
in [9].

Lemma 1. Let A be a subset of X and f: A — Y be an c-isometry. Then there is a continuous
be-isometry fi1: A —Y such that || fi(x) — f(z)| < 2¢ for every z € A.

(The word “open” is redundant in the statement of [9], Lemma 6.)

Proof of Theorem 1. By Lemma 1, we can assume that f is continuous. We will use the
following statement that follows from [10] (Theorem II).

Proposition 1. Let f: By — By be a continuous map satisfying

[(f (@), F(y)) = (. y)| < e

Then there are an absolute constant C and a linear isometry U such that
If(x) = Uz| < Clog(n+1)e,  x € Byy.

Deﬁnef:B—>Bby

i 0, =0,
T@ =\ e1s <"’;H> . otherwise.
Then
2|(F(@), ) — (2.0} =

=21ttt (7 (557) (o)) = ()| -

(Gl -2 () )+ ()
(Il (v )+ Il -
=t ||« (sz) =+ ()|~
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=t || () -+ (i) |- |7
| ) - Gl +

The result follows by Proposition 1.

Sharpness of the estimate in (2):

Let n be an even natural number, say n = 2m. Following Matouskova [4], identify R" with
C™. For z € C set @.(2) = ze*1°8 2l (if z = 0 then p.(z) = 0). Now set

lzll iyl H’

1 | <

fe(ziy ooy zm) = (pe(21)s - ooy e(2m))-

Then f. is an e-isometry of Byy onto Byy and, for every 0 <t < 1, f-(tSep) = tSep.

2
Kalton in the proof of [3] (Proposition 2.1) actually proved that if 0 < ¢ < i T then, for any

ogm
affine isometry U of £, we have

1
ma 1:(5) ~ V@) 2 s (4alog m) .

xT

Proof of Theorem 2. We set ¢ = 1/210 and fix an e-isometry f, satisfying the conditions
of Theorem 2.
Lemma 2. There is a permutation w of {1,...,n} such that, for every i < n,

| fr@iy(ei) = fr@y(—ei)| 22 —¢

and

\frle:) — fu(—e)| < 1+e, k().

Proof. Set, for each i < n,
Ap:={j<n:|fjle) = fi(—ei)| > 1 +¢}.
By (1), we have, for every ¢ < n,
[f(e) = f(=e)| =2 —e>1+e. 4

Thus A; is nonempty.
Now we show that A; N Ay = @ for i # k, which implies that all A; are disjoint singletons.
Assume to the contrary that there is j € A; N Ag, i.e.,

ile) — fi(—e)l >14e  and  |fj(en) — fil—en)] > 1+ e
Let 0;,0; € {—1,1} be such that
|fi(ei) = fi(=e) | + | fi(er) — fi(—er)| = fi(Oiei) — fi(=Oiei) + fj(Orer) — fi(—Orer).
Then f;(0ie;) — fi(—0iei) + fj(Orex) — fi(—Oker) > 2(1 +¢).
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On the other hand, since ||e; X ex| = 1, we have ||f(0ie;) — f(Orer)| < 1+ ¢ for every
0;,0r € {—1,1}. In particular,

|fj(0iei) — fi(—Oker)| + | fi(—0iei) — fi(Orer)| < 2(1 +e);

a contradiction.

It follows that if {j} # A;, then |f;(e;) — fj(—e;)] < 14 ¢ by the definition of A;; and if
{j} = Ay, then |fj(e;) — fi(—ei)| > 2 —¢ by (4). So, the desired permutation 7 is defined by
7T(’L) € Az

Lemma 3. Forevery i <n, |fru(Eei)| > 1—¢, fr@u)(ei) and fri)(—ei) have opposite signs.

Proof. By the definition of 7, we get

|f7r(i)(6i)| >2—¢c— |f7r(i)(_ei)| >1—c.

The final comment follows directly from |fy;)(ei) — fr@)(—ei)| > 2 — € and | frq)(£e;)| < 1.
It follows that there is a map s: {1,...,n} — {—1,1} such that

sgn fr.i)(e:) = s(i) and sgnfriy(—ei) = —s(i), i <n. Q)

Denote by H; the hyperplane {x: x; = 1} and by H_; the hyperplane {z: x; = —1}. Denote
by S; and S_; the following (n — 1)-dimensional faces S; = SN H;, S_; = SN H_,.

Lemma 4. Forevery i <n, f(ei) € Sy)r(i) and f(—ei) € S_g(iyx(s)- Moreover, for any k # i
f(ei), f(—€i) & Str(r)-

Proof. Let f(e;) € Sj and f(—e;) € Sy, for some —n < j,k < n.

Assume to the contrary that j # +7(i). Then j = sw(l) for some s = +1 and [ # i. Assume
without loss of generality s = s(I) = 1. By Lemma 3, f;(—e;) < —1+¢. Hence, |f;(—e;)— f;(ei)| >
> 2 — ¢, while |le; + ¢;|| = 1 is a contradiction. Thus, j € {—n(i),n(i)}. Similarly, k£ €
e {—n(i),n(7)}.

By (5), the result follows.

It follows that fr;)(e;) = s(i) and fr(;)(—ei) = —s(i).

Lemma 5. Let v € Sy;. Then f(x) & Sxs(i)r(i)-

Proof. Assume without loss of generality = € S;. Then ||z — ;|| < 1, dist(f(es), S_g(i)r(s)) =
= dist(SS(i)W(i), S_s(i)ﬁ(i)) = 2 and the result follows.

Lemma 6. Forevery i <n, | f(e;) — s(i)eryll <€ and [|[f(—ei) + s(i)erp| < e.

Proof. We prove only the first estimation; the second one can be proved following the same path.
Assume to the contrary that || f(e;) — s(i)ex(; || > €. Then there is k # 4 such that [fr()(ei)| > e.
It follows by Lemma 4 that either

| fary(€) = fay(er)]l > 1+ or |frwy(ei) — frpy(—ex)| > 1 +e.

But this contradicts ||e; — ex|| = 1.
Lemma 7. For every —n < i < n, there exists a linear isometry U;: {3 — (7 such that
Uie,- = S(i)ew(i) and
Il f(x) — Uiz| < 100e, x € S;.

Proof. We will use the following statement (see [11], Proposition 2).
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Proposition 2. Let0 < ¢ < 1/6. Let f: Byn, — Byn be a continuous c-isometry with f(0) = 0.
Then there is a unique linear isometry U of £, such that

|f(z) = Usz|| <2¢,  x € B(1-2e).

Assume without loss of generality ¢ > 1. As [|f(e;) — s(i)ery)ll < &, f(Bn,(1—-3¢)) C
C BH, ;) (f(€),1 — 22) C Sy(iyn(i)- Denote by V' the linear isometry of £, defined by

4 Z (zrek) + Tiei + Trpyerpy | =
ke{im(i)}

= Z (zrer) + 8(1) T e + Tieq(s.-
k¢{i,s(i)m(i)}

Denote Fy = V o f. Then ||Fi(e;) — ei]| < ¢ and F} is an e-isometry such that
Fy (BHZ(l — 38)) C BHi(Fl(ei), 1-— 26) C S;.

We consider now H; as an (n — 1)-dimensional normed space with the origin @y, = e;. Then
By, = S; and ||[F1(0)]] <e.

Define a map Fy: By, — By, by Fa(x) = Fi((1 — 3¢)z) — F1(0). Then F» is an Te-isometry
with Fg(()) = 0. By Lemma 1, there is a continuous 35e-isometry F3: By, — Bp, such that
| F5(z) — Fa(x)|| < 14e for every = € By,. By the choice of ¢, Fj satisfies the conditions of
Proposition 2. Hence there is a linear (in H;) isometry U such that

| F5(z) — Uzx|| < 70¢, x € By, (1 —2¢).

x
1-—3¢

Since Fl(.f) = FQ (

S ‘

Let x € By, \ B, (1 — 5¢). Then

) + F1(0), we have, on By, (1 — 5¢),
[1F1(z) — Uz| <

A rw) s ()| e (Fa) -

9
F .
U] + I F(0)]] < 89

/()|

+

[1F1(z) — Uz|| <

mte) = (S ) e

+’Fl((1—58):ﬂ>_U(1_55)3;

[zl
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Obviously, U is the restriction on H; of the linear isometry U’ of ¢7 defined by

U’ Z(ﬂﬁk@k) + zie; | = Z Ulzrer) + Tie;.
k#i ki

Thus, U; = VU’ is a desired isometry.
Define a linear isometry U by

U inei = Zs(i)xieﬂ(i).
i i
Lemma 8. Forevery —n <it<n, U;=U.
Proof. Suppose that U; # U for some 7. Then there is j # |i| such that Use; # Ue;. Assume
without loss of generality 4, j > 1. Then there are k ¢ {m(i),m(j)} and s € {—1,1} such that
Uiej = sey. Hence,

1Ui(ei + e5) — Uj(ei + €;)|| = [|s(D)exqy + sex — Ujei — s(d)exc |l > 1.
On the other hand, by Lemma 7
[Ui(ei + ;) — Uj(ei + ;)] <
< |Uilei +¢j) — flei + ;)| + [1f(e; + €5) — Uj(es + ej)|| < 200e < 1;

a contradiction.

Thus, U satisfies (3) with C' = 100.

Uniqueness: Suppose that U’ is another linear isometry of ¢ satisfying (3) with C' = 100.
Then

|l f(e;) — Ue;i|| <100e and ||f(e;) — U'e;]| < 100e for every i < n.
Thus, ||U’e; — Ue;|| < 200e < 1, which means U'e; = Ue;.
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