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FIRST COHOMOLOGY SPACE OF THE ORTHOSYMPLECTIC
LIE SUPERALGEBRA osp(n|2) IN THE LIE SUPERALGEBRA
OF SUPERPSEUDODIFFERENTIAL OPERATORS

MPOCTIP NEPIIOI KOIrOMOJIOI'II OPTOCUMILJIEKTUYHOI
CYNEPAJITEBPHU JII osp(n|2) ¥ CYHNEPAJTEEPI JI
CYHNEPIICEBIOAU®EPEHIIAJIBHUX OIIEPATOPIB

We investigate the first cohomology space associated with the embedding of the Lie orthosymplectic superalgebra osp(n|2)
on the (1,n)-dimensional superspace R!"™ in the Lie superalgebra SYDO(n) (for n > 4 ) of superpseudodifferential
operators with smooth coefficients. Following Ovsienko and Roger, we give explicit expressions of the basis cocycles. This
work is the simplest generalization of a result by Basdouri [First space cohomology of the orthosymplectic Lie superalgebra
in the Lie superalgebra of superpseudodifferential operators, Algebras and Representation Theory, 16, 35-50 (2013)].

BuBYaeThCS POCTIP MepIoi KOrOMOJIOTIT, MOB’SI3aHMH 3 BKIAJACHHAM OPTOCHMILIEKTHYHOI cynepanrebpu Jli osp(n|2) Ha
(1, n)-BUMipHOMY CyMEepIpOCTOpi R!™ y cynepanre6pi JIi SYDO(n) (aa n > 4 ) cynepncesroaudepeHIianbHuX
oreparopiB 3 miaakuMu koedimieHtamu. Hacmimyroun OscieHka Ta Pomkepa, MU HaBOAMMO TOYHI BHpasu Uil Oa3uCy
koukIiB. LI poboTa € HalmpocTimuM y3araabHEHHSIM pe3yasrary Basdouri [First space cohomology of the orthosymplectic
Lie superalgebra in the Lie superalgebra of superpseudodifferential operators, Algebras and Representation Theory, 16,
35-50 (2013)].

1. Introduction. The procedure of contraction is opposite to deformation. This procedure is
important in physics because it explains, in terms of Lie algebras, why some theories arise as a limit
regime of more “exact” theories. Motivated by the need to relate the symmetries underlying Einstein’s
mechanics and Newtonian mechanics, Inonii and Wigner introduced the concept of contraction, which
consists in multiplying the generators of the symmetry by “contraction parameters”, such that when
these parameters reach some singularity point, one obtains a “different” Lie algebra with the same
dimension [13]. A similar procedure had been mentioned previously by Segal [16]. The method
has been generalized a few years later by Saletan [17]. Another physical example is the contraction
of the de Sitter algebras to the Poincaré algebra, in the limit of large (universe) radius. These
examples suggest that deformations are likely to be more useful than contractions in the investigation
of fundamental theories [10].

In the 1960, deformation theory of Lie algebras began with the works of Gerstenhaber and,
Nijenhuis and Richardson. Recently, multiparameter deformations of Lie (super)algebras and their
modules were intensively studied.

To study the formal and polynomial deformations of the natural embedding of the Lie algebra
pect(S1) of smooth vector fields on the circle S! into the Lie algebra WDO(S!) of pseudodifferential
operators, Ovsienko and Roger [15] calculate the first cohomology space H'(vect(S1), WDO(S!)),
where the action is given by the standard embedding. The graded space Gr(¥DO(S!)) associated
with the natural filtration given by order of pseudodifferential operators coincides with P the Lie—
Poisson algebra of symbols of pseudodifferential operators (formal Laurent series in the symbol &
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of ; with coefficients in the space C*°(S!) of smooth functions on S!). Since the Vect(S!)-
x

module P is isomorphic to a direct sum of Vect(S')-modules of tensor densities on S*, the space
H!(Vect(St), P) can be deduced from the cohomology of Vect(S!) with coefficients in tensor
densities computed by Feigin and Fuchs [11, 12]. The method of Ovsienko and Roger goes over
from the graded space P to the filtered space ¥DO(S') using the spectral sequence.

In paper [1, 2], using the same methods as in the paper [15] the authors computed
HL(K(1),8¥DO(1)) and HL:(K(2),SYDO(2)). The spaces Hl.q(osp(n|2); SP(n)) and
Hli; (0sp(n]2); SYDO(n)) was calculated in [4] for 0 < n < 2 and for n = 3 in [3].

In this paper, we restrict ourselves to the cases n > 4 and we restrict the action to the orthosymp-
lectic Lie (super)algebra osp(n|2) and we consider the spaces SP(n) as osp(n|2)-modules. We
compute the cohomology spaces H!(osp(n|2), SP(n)) and H! (0sp(n|2), S¥DO(n)). We show
that these cohomology spaces are nontrivial. These cohomology spaces are closely related to the
deformation theory (see, e.g., [6, 7, 9, 10, 14, 15]. These spaces arise in the classification of
infinitesimal deformations of the osp(n|2)-modules. We hope to be able to describe in the future all

the deformations of these modules SYDO(n) .

2. Definitions and notations. 2.1. The Lie superalgebra of contact vector fields on RI™,
Let RY™ be the superspace with coordinates (z,01,...,6,), where z is an even indeterminate and
t1,...,0, are odd indeterminates: ¢;0; = —0;0;. This superspace is equipped with the standard
contact structure given by the distribution D = (7;,...,7,) generated by the vector fields 7; =
= Op, — 0,;0,. That is, the distribution D is the kernel of the following 1-form:

=1

Consider the superspace C'*° (R””) which is the space of functions F' of the form

F= > fo.i(@b...0;, where f i €C®R). 2.1

1<iy <...<ip<n

Of course, even (resp., odd) elements in COO(R””) are the functions (2.1) for which the summation
is only over even (resp., odd) integer k. Denote by p(F') the parity of a homogeneous function F.
On C>°(R!™), we consider the contact bracket

(F.G} = FG = FG = 500 30O, (.2)

0 .
where the superscript ’ stands for e Consider the superspace K(n) of contact vector fields on R*I™.
x

That is, K'(n) is the superspace of vector fields on R!™ preserving the distribution (7. .., 7,):
K(n) = {X € Vect(R'") | [X, ;] = Fx7; for some Fx € C*™(R'")}.

The Lie superalgebra K(n) is spanned by the vector fields of the form

Xp =Fo, — %(—1)p<F> > mi(F)m;, where F e C®(R'M).
=1
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The vector field X has the same parity as F. The bracket in C(n) can be written as
[(XF, X¢] = X{ray-

For every contact vector fields X, one define a one-parameter family of first-order differential
operators on C'>®°(R!"):

Lx, =Xp+AF', XeR
We easily check that
A A A
[QXFW QXG} = SX{F,G} °

We thus obtain a one-parameter family of &(n)-modules on C>°(R'™) that we denote 3§, the space
of all weighted densities on C>(R'") of weight A with respect to a,:

= {Fay | Fec=®in}.

In particular, we have §) = Fy. Obviously the adjoint K(n)-module is isomorphic to the space of
weighted densities on C°(R!") of weight —1.
The orthosymplectic Lie superalgebra osp(n|2) can be realized as a subalgebra of K(n):

osp(n|2) = Span(X1, Xy, Xp2, Xua,, Xo;, Xo;), 1<i,5<n.
We easily see that osp(n — 1]2) is a subalgebra of osp(n|2):
osp(n — 1]2) = {Xp € osp(n|2) | s, F = 0}.
Note also that, for any i € {1,2,...,n — 1}, osp(n — 1|2) is isomorphic to
osp(n — 1|2); = {Xp € osp(n|2) | 9p,F = 0}.
Therefore, the spaces of weighted densities §% are also osp(n — 1|2)-modules. In [5], it was proved
that, as osp(n — 1|2)-modules, we have

HeF el (s;:;) : 2.3)

where II is the change of parity operator.
As osp(n — 1|2);-isomorphism
osp(n|2) ~ osp(n — 1]2); ® II(H,),

1 1

, _ R |
where H; is the subspace of §* , spanned by {6;0 *, za; *, oy *}, where i =1,2,...,n — 1. To

Jun

2
be more precise, any element X is decomposed into Xp = Xg, + Xp, 9, , where 89 F =

=0y, _,Fn_i =0, and then X, € osp(n—1|2); and X _. can be identified to I1(F,_;c; ? ) €
€ II(H;). Moreover, we can see easily that

[osp(n — 1|2);, II(H;)] C II(H;) and  [II(H;), IL(H;)] C osp(n — 1[2);.
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764 M. BOUJELBEN

2.2. Superpseudodifferential operators on R'"™. The superspace of the supercommutative al-
gebra of superpseudodifferential symbols on R'I™ with its natural multiplication is spanned by the
series

SP(n) =

= F= Z Z ak,e(a:,O)f*kOHQ .. .0;l€n Qe S COO(R””), & = O, 1; M eN s
k=—M

e=(e1,....n)

where ¢ corresponds to 9, and 6; corresponds to 9y, (p(0;) = 1).
The space SP(n) has a structure of the Poisson — Lie superalgebra given by the following bracket:

(F. G = o(F)a(G) o(F)9(G) (_1)p(p)z":<a(F) 2(G)  O(F) 6(G)>'

o6 ox  Ox O o0; 90; 00; 00;

=1

It endows SP(n) with a Lie superalgebra structure (still denoted SP(n)).
The space SP(n) is Z-graded where the degrees of = and € are equal to 0 and the degrees of £
and 6 are equal to 1. A homogeneous element of degree m has the following form:

n
A =Fo™+Y . Y. Fiy 8" 0, .. 0y, where Fy, F,_, € C®(R'™).

k=11<i1<...<ip<n

We will denote SP,,(n) the space of homogeneous elements of degree —m.
This definition endows the space SP(n) with a Z-grading:

SP(n) = DSPu(n).

meEZ

Where®: (@)@ H and

meZ m<0 m>0
SPm(n) =
= {Fffm + G1§7m71971 + szfmflég +...+ H172§7m72971972 + ... ‘ F,G;, Hi,j S COO(RH")}

is the homogeneous subspace of degree —m.
The associative superalgebra of superpseudodifferential operators SYDO(n) on R!™ has the
same underlying vector space as SP(n) by the multiplication is now defined by the following rule:

e+ .
FoG= > ()Id(aga@ZF)(a’;aegG).
k>0,v;=0,1 ’

This composition rule induces the supercommutator defined by

[F, Gl = FoG— (—1)PPOGo F.
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Of course, the case n = 0 corresponds to the classical setting: [C(0) = Vect(R) and the corre-
sponding orthosymplectic Lie algebra 0sp(0|2) is nothing but the classical Lie algebra s(2), which
is isomorphic to the Lie subalgebra of Vect(R) generated by

d d ,d
2 e e _— B —
5[(2) = Span <dx’ T, & dx>

and 39\ are the classical A-densities, usually denoted

A={r@’ rec=®}.

SP(0) is the classical spaces of symbols, usually denoted

P= {F@:,s» Fl,¢) = me)sk} ,

kEZ

and SUYDO(0) is the classical associative algebra of pseudodifferential operators, usually denoted
UDO.

2.3. The structure of SP(n) as a osp(n|2)-module. The natural embedding of osp(n|2) into
SP(n) defined by

—1)pU)+1 2 B _ _
( )2 > m(F)G, where G =6; — 6:¢,

i=1

m(Xp) = F¢+

and 7(Xp) = F¢ for n = 0, induces an osp(n|2)-module structure on SP(n). Setting degz =
=deg; =0, deg& = degf; = 1 for all 1.
Each element of SUDO(m) can be expressed as

A= (Fe+ G0 +... + H?¢720,0, + .. )67k,
kez

where Fy, Gi, H,lc] € C>®(R™). We define the order of A to be
ord(A) = sup{k | Fx # 0 or G% # 0 or H,i] # 0}.
This definition of order equips SYDO(n) with a decreasing filtration as follows: set
F,, = {A € SYDO(n), ord(A) < —m},
where m € Z. So, one has
..CF, 1 CF,C....

This filtration is compatible with the multiplication and the Poisson bracket, that is, for A € F),
and B € F,, one has Ao B € F,, and {A, B} € Fp,,1. This filtration makes S¥DO(n) an
associative filtered superalgebra. Moreover, this filtration is compatible with the natural osp(n|2)-
action on SUYDO(n). Indeed, if Xr € osp(n|2) and A € F,,, then

Xp. A= [XF,A] eF,,.
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The induced osp(n|2)-module structure on the quotient F,,, /F,,, 11 is isomorphic to that the osp(n|2)-
module SP,,(n). Therefore,

SP(n) ~ PFum/Frmi1.
meEZ

Therefore, SP(n) is osp(n — 1]2);-module.

Fori e {1,2,...,n—1}, let 3’271’2 be the osp(n —1|2);-module of weighted densities of weight
A on R,

3. Theory of cohomology. Let us first recall some fundamental concepts from cohomology
theory (see, e.g., [12]).

Let g = g5 @ g7 be a Lie superalgebra acting on a superspace V = Vg @ Vi . The space of
k-cochains of g with values in V' is the g-module

C*(g,V) := Hom(Ag; V).

The coboundary operator 6}, : C*(g,V) — C**+1(g, V) is a g-map satisfying 6, o 0;_; = 0. The
kernel of &, denoted Z¥(g, V), is the space of k-cocycles, among them, the elements in the range
of 0;,_1 are called k-coboundaries. We denote B¥(g, V') the space of k-coboundaries. By definition,
the kth cohomology space is the quotient space

H"(g,V) = Z"(g,V)/B*(g, V).

We will only need the formula of 4,, (which will be simply denoted §) in degrees 0 and 1: for
veC%g, V)=V, dv(z) = (—1)P@PO)g .y for T € C(g,V),

5(00) (@, ) 1= (~1)P@P Oz X (y) = (~1pOED Ty ¥ (@) = X(fe, y)).

The spaces H}4(0sp(n|2); SP(n)) and Hl.4(0sp(n|2); SEDO(n)) for 0 < n < 3 was calculated
in [4] for 0 < n <2 and for n = 3 in [3].

In this paper, we study the differential cohomology spaces H!(osp(n|2),SP(n)) and
H!(0sp(n|2), SYDO(n)) for n > 4.

We recall that the space H'(0sp(n|2), S¥DO(n)) is equal to the space H!(osp(n|2),P), and
this two spaces are spanned by the same generators.

Proposition 3.1 [2]. 1. As a osp(n — 1|2);-module, i € {1,2,...,n — 1}, we have

SPp(n) :S%@H(&'&+% @S"er%)@anH Jor m=0,-1.

2. For m # 0, —1:
a) the following subspace of SPp,(n):

S’Pm7 ,(n) =

myi n —m— = 1 v —m— ) n—
= {B} D = Fbp_ifpi& ™ 4 0, (nn_i - 2m> (F)CiCns€ ™2 | F € C(R! 1)}

is a osp(n — 1(2);- module, i = 1,2,...,n — 1, isomorphic to F,_ 1;
b) as a osp(n — 1|2);-module we get

SPm(n)/SPm. i(n) ~ Fr & T(F" @3;%), i=1,2,....,n—1.

1
m+3
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To prove Proposition 3.1, we need the following result (see [2]).

The space H'(0sp(n|2), SP(n)) inherits the grading (2.2) of SP(n), so it suffices to compute
it in each degree.

4. The space H).(0sp(n|2); SP(n)) for n > 4. In this section, we will compute the first
differential cohomology spaces H}.q(05p(n|2); SP(n)) for n > 4. Our main result is the following
theorem.

Theorem 4.1.

H'(0sp(n|2), SP(n)) ~ R™.

The nontrivial spaces H'(0sp(n|2), SP(n)) are spanned by the cohomology classes of the 1-
cocycles A1, Ao, A3 and Ay:
AI(XF> = F/7
Ao(Xp) =F'¢' 0. Ca,
Aa(Xp) = (M(F)Gs + -+ 7a(F)C, )€

A4(XF) = F//£_251 - En

We know that any element Y € Z!(0sp(n|2), SP,,(n)) is decomposed into T = Y’ + T” where
Y € Z (osp(n — 1]2);, SPm(n)) and T € Hom(I1(H;), SPm(n)).

To prove the Theorem 4.1 we need first to proof the following lemma and propositions.

The first cohomology space H'(0sp(n|2), §3) was computed in [8]. The result is the following.

Theorem 4.2. The space Hl.;(0sp(n|2); §Y) has the following structure:

;

R%2 if n=2and \=0,
n=0and \=0, 1,

Hiig(05p(n]2);F%) ~ SR, if {n=1 and A= 0, %,

n>3and A =0,

0 otherwise.

Moreover, basis for nontrivial cohomology spaces are given in the following table:

(n, \) 1-cocycles
(n, 0) T3 (Xp) = F'
(0, 1) T)(XF) = F"dz*
1 1
1 5) | 1)) = maf
(2,0) | AJ(Xp)=mi(F)

Proposition 4.1. The space H},z(0sp(n — 1]2);;§Y) has the following structure:

R, if A=0,
n . 1
Hig(osp(n —12)5F0) ~{ R, if A= —5

0  otherwise.
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Moreover, basis for nontrivial cohomology spaces are given in the following:

Ci(Xp) = F', if A=0,
) (4.1)
Co(Xp) = F'bnis if A=—3.

Proof. From the isomorphism (2.3), we have

Hise(0sp(n — 112)i3 8) = Hise (0sp(n — 112):3 83 7") & Haye <°5p<n —112)511 (m» |
By using the Theorem 4.2, we get
Hlig(osp(n — 1)2)5 3071 ~ R, if A=0,

and .
Hlig <05p(n —1)2); 11 (32;2)) ~R, if A= —5

Proposition 4.1 is proved.

The proof of Theorem 4.1 need the following lemma.

Lemma 4.1. The 1-cocycle Y € Z}(osp(n|2),SPm(n)), m € Z, is a coboundary if and only if

losp(n112); 1 <1 < n, is a coboundary.

Proof. 1t is easy to see that if T is a couboundary for osp(n|2) then T (n_1]2, 1S @ coboundary
" 1 < 4 < n. Now assume that T‘nsp(nflﬂ)" 1 < i < n, is a coboundary over

1 <i < n, that is, there exists A € SP,,(n) such that, for all X, € osp(n — 1|2);,

over T|05p(n71‘2
losp(n—1/2),
T(Xp) = {XF, , A}
Using the condition of a 1-cocycle, we have
Y (Xg,0,) = {Xo0, , A}

We prove that Y(Xp) = {Xp, A} for any X € osp(n|2), and, therefore, Y is a coboundary of
osp(n|2).

4.1. Proof of Theorem 4.1. According to Lemma 4.1, the restriction of any nontrivial 1-cocycle
of osp(n|2) with coefficients in SP,,(n) to osp(n — 1|2); is a nontrivial 1-cocycle.

We see that if m # 0, —1, and by Lemma 4.1, the corresponding cohomology H'(osp(n|2),
SPn(n)) vanishes.

If m € {0, —1}, from the Proposition 3.1, we have

Haig (05p (1 = 1[2)i; SPim(n) = Hir(0sp(n — 112)i; §7,) © Ha(osp(n — 112);: TI(F7, 1) @
@ Hyigr (0sp(n — 1/2);; H(Sf%%) @ Hig(0sp(n — 112)i5 §ppsr)-
By using the Proposition 4.1, we obtain

R3,  if m=—1,
Hiig(osp(n — 1]2);; 8P (n)) ~ (R, if m =0,

0 otherwise.

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 6



FIRST COHOMOLOGY SPACE OF THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(n|2) ... 769

Casel: m = —1, the space H'(0sp(n—1|2);, SP_1(n)) is spanned by the following 1-cocycles:
P} (Xp) = 9" 1(C1(XF)),
4 (Xp) = W_l,%(ﬂ(@(XF))),
®4(Xr) = Ji_lyé(H(CQ(XF)))'
Case2: m = 0, the space H! (0sp(n — 1]2);, SPy(n)) is spanned by the following 1-cocycle:
@4(XF) = ¥5,0(C1(XF)),

where the cocycles Cy and (5 are defined by the formulae (4.1) and wﬁn’ o an ; are as in [2].
Now, any a nontrivial 1-cocycle of 0sp(n|2) with coefficients in SP,,(n) can be decomposed as
T = (Y, YT") and

Y :osp(n —1|2); — SPn(n),
Y T(H;) — SPm(n),

where Y/, T” are linear maps.

The space H!(osp(n — 1]2);,8P,(2)),i = 1, 2,...,n, determines the linear maps Y’. Then
Y’ = ®°. More precisely, we get:

case 1: m =0, Y = a1 P,

case 2: m = —1, T = aa® + a3®} + ay P}, where the coefficients «y, are constants.

In each case, the 1-cocycle conditions determines Y”. We obtain, for m = 0, Tg = a;A; and
m=—1, T_1 = agAs + agAg + as\y4.

Thus, the space H'(osp(n|2), SPy(n)) is spanned by the nontrivial cocycle A; and the space
H(0sp(n|2), SP_1(n)) is generated by the nontrivial cocycles: Az, A3 and Ay.

Theorem 4.1 is proved.

5. Cohomology of osp(n|2) in SYDO(n). 5.1. The spectral sequence for a filtered module
over a Lie superalgebra [15]. The reader should refer to [15], for details on homological algebra
used to construct spectral sequences. We will merely quote the results for a filtered module M with
decreasing filtration {M,, },cz over a Lie (super)algebra g so that M,, .1 C M,,, UpczM, = M and
gM, C M,.

Consider the natural filtration induced on the space of cochains by setting:

Fn(C*(gv M)) = C*(gv Mn)v
then we have

dF"(C*(g, M)) C F"(C*(g, M)) (i.e., the filtration is preserved by d),

FTY(C*(g, M)) € F™"(C*(g, M)) (i.e., the filtration is decreasing).
Then there is a spectral sequence (E,",d,.) for r € N with d,. of degree (r,1 —r) and
Eg? = FP(CP*4(g, M))/FP*H(CPT(g, M)), E}P? = HP™(g, Grad”(M)).

ISSN 1027-3190. VYkp. mam. scypn., 2022, m. 74, Ne 6
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To simplify the notations, we have to replace F"™(C*(g, M)) by F"C*. We define
ZP4 = FrCrta ﬂ d-Y(Frtrortatly,
BPY = Fropta m d(prGCHfl)’

Ept = 209/ (27507 + B,

il
The differential d maps Z2% into Z2T"%""*! and hence includes a homomorphism
d, : BP9 —y prira-rl
The spectral sequence converges to H*(C, d), that is,
EP ~ FpHerq(C, d)/Fp+1Hp+q(C, d),

where FPH*(C,d) is the image of the map H*(FPC,d) — H*(C,d) induced by the inclusion
FrC — C.

5.2. Computing H' (0sp(n|2), STDO(n)). Now we can check the behavior of the cocycles
A1, ..., Ay under the successive differentials of the spectral sequence. The cocycle A; belongs to
EY! and this cocycles Ag, Az, Ay belong to F;'. Consider a cocycle in SP(n), by compute its
differential as if it were with values in SUDO(n) and keep the symbolic part of the result. This gives
a new cocycle of degree equal to the degree of the previous one plus one, and its class will represent
its image under d;. The higher order differentials d, can be calculated by iteration of this procedure,
the space EFT™4~"*! contains the subspace coming from HP T4+ (0sp(n|2); Grad?* (STDO(n))).
It is now easy to see that the cocycles Aj,..., A4 will survive in the same form, we obtain the
following corollary.

Corollary 5.1.

H'(0sp(n|2), SYDO(n)) ~ R

The nontrivial spaces H'(0sp(n|2), S¥DO(n)) are spanned by the cohomology classes of the 1-
cocycles A1, Ao, As and Ay:

Ai(Xp) = F,
Ao(Xp) =F'¢ G Gy
Bg(Xp) = (M(F)Cy + o+ (), ) €7

A4(XF) = F”f_2§1 . En
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