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NEW CHARACTERIZATIONS FOR DIFFERENCES OF COMPOSITION
OPERATORS BETWEEN WEIGHTED-TYPE SPACES IN THE UNIT BALL*

HOBI XAPAKTEPUCTHUKHU PI3HUIIb OITEPATOPIB KOMIO3HUIIIT
MIK BATOBUMH ITIPOCTOPAMHU B OJIMHUYHIN KYJII

We present some asymptotically equivalent expressions to the essential norm of differences of composition operators
acting on weighted-type spaces of holomorphic functions in the unit ball of CV. Especially, the descriptions in terms of
(z,¢)™ are described, from which the sufficient and necessary conditions of compactness follows immediately. Also, we
characterize the boundedness of these operators.

3anpornoHOBaHO ACUMIITOTUYHO €KBIBAJICHTHI BUpa3u AJISl CYTTEBOI HOPMH Pi3HMIIb ONEpPaTopiB KOMITO3UIII, SIKi AIIOTh Y
BArOBHX MPOCTOPaX ronoMopdHux $pyHkuil B onuuuusiit kymi 3 CV. 3okpema, HaBeneHo omuc y TepMinax (z, {)™, 3 aKkoro
0e3mocepeIHbO BUILUIMBAIOTE HEOOX1THI Ta JOCTATHI yMOBH KOMIAKTHOCTI. KpiM Toro, oxapakrepn3oBaHO OOMEKEHICTh IIUX
oreparopis.

1. Introduction. Let C" denote the Euclidean space of complex dimension N(N > 1). For
z=(21,...,2n) and w = (w1,...,wy) in CV, (z,w) = Z;V_lszTj and |z| = \/(z,2). B is
the open unit ball of CV with boundary OB. H(B) and S(B) represent the class of holomorphic
functions and analytic self-maps on B, respectively. For ¢, € S(B), the difference of composition
operator associated to ¢ and 1) is defined by (C, — Cy)f = fop — foq forall f € H(B).

For 0 < a0 < o0, let HS° be the weighted-type space of holomorphic functions f on B satisfying

| flla = sup(1 — |22 f(2)] < oco.
z€B

With the norm || f|| == = | f(0)| + || f||«, the weighted-type space becomes a Banach space.
For any point a € B — {0}, the involutive automorphism ®, is defined by

a — Pa(z) - SaQa(Z)

Pu(z) = 1= (ea) ;

z € B,

where s, = \/w , and P,(z) = <fa7 2>a is the orthogonal projection from CV onto the one
dimensional subspace [a] generated by a, Qu(z) = z — P,(z). When a = 0,®,(z) = —=z. It is
well-known that @, interchanges the points 0 and a, that is, ®,(0) = a, ®,(a) = 0. For z, w € B,
the pseudohyperbolic distance between z and w is defined by p(z, w) = |®,,(2)|. For the simplicity,
we write p(2) = p(p(2), 1(2)).

Let X and Y be Banach spaces and 7' : X — Y be a bounded linear operator. The essential norm
of T is the distance form T to the sets of compact operators, that is, ||T'||c, x»y = inf{||T—K||xy :

K is compact from X to Y'}. Notice that || T||c = 0 if and only if the operator 7" is compact, so the
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1130 C. CHEN

estimate on ||| will lead to a condition for the operator 7' to be compact. For the results in this
topic, we refer the interested readers to the recent papers such as [1, 2, 9, 15, 17].

In 2009, Wulan et al. [18] (Theorem 2) obtained a new result about the compactness of compo-
sition operator on the classical Bloch space in the unit disk in terms of the sequence {2"}7 ;. After
that, Ruhan Zhao [19] (Corollary 4.4) showed that ||Cy||. ga_,5s = limsup,, ., n® |C,2"||3 for
0 <a, B< o0 So, Cp:BY — B is compact if and only if limsup,,_,., n® }|C,2"|ls = 0.
Subsequently to this, strong interest has arisen to describe some properties of composition operator
on Bloch-type spaces. For the results in the unit disk, one can refer to [4, 10, 13, 14, 18]. Then some
mathematicians have contributed to development of this new characterizations in the unit ball and
polydisk for some operators (see, e.g., [3, 5—8] and their references therein). In papers [11, 12, 16],
on the unit disk, such new descriptions for differences of classical linear operators was obtained. But
as far as we all known, there has no such characterizations for differences of any classical linear
operators in the unit ball, so these problems are in desired need of response. In this paper, we pay
our attention to start with the investigations for the differences of composition operators acting form
a-weighted-type space to 5-weighted-type space.

This paper is organized as follows. The boundedness of C, — Cy : H® — Hgo is exhibited in
Section 2 and then its essential norm is estimated in Section 3. In summary, this paper has systematic
exposition of equivalent conditions for the differences of composition operators from Hg® to Hg°.

Throughout this paper, we will use the symbol C' to denote a finite positive number, and it may
differ from one occurrence to the other. For two positive quantities A and B, the notations A = B,
A> Band A < B mean that A< CB, A>CB and A/C < B < CA for some positive numbers
C, respectively. Besides, N denotes the set of all positive integers.

2. Boundedness of C, — Cy 0 H3® — Hg°. In this section, we give the characterization for
the boundedness of the operator C, — Cy,: H® — HE®. For any a € B, we define the following
families test functions:

(L= |a*)

O a e

and

() = L 1R@P) (2o(2): o (¥(@)
PO T =G (R @)

ot (2) = (L= [$(@))* (Py(@)(2): Py(a)(p(a))
VEOETT A= @) @y (e(a))]

It is easy to prove that gy (o)l X [|gy(a)lHe = || fallme = 1. For the sake of convenience, we
use the notation as below

(1 [2[»)°
(1= le(z)[?)

The main result in this section is the following theorem.

T o(z) =
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NEW CHARACTERIZATIONS FOR DIFFERENCES OF COMPOSITION OPERATORS ... 1131

Theorem 2.1. Let 0 < o, f < 00, ¢, 9 € S(B). Then the following statements are equivalent:
) Cpo—Cy: HY — H® is bounded,

Top(z) ~ TV ()| < o,

(ii1) supTLo(2)p(z) + sup
2€B 2€B

(iiz) sup Taﬂdj(z)p(z) + sup Taﬁap(z) — Taﬂdj(z)‘ < 00,

z€B zeB
(i) 509 [(Cp = C) fullmge +supmas {|(C = Culgto 1> (Co = Codpallny | < oo,

() sup sup m?(Cy — Cy) (- )"l ar < 0.
meN CedB
In order to prove this result, we need some lemmas. For the first one, it was originally proved in

[19, 20].

1 1/2
Lemma 2.1. LetO<a<oo,meNandOSxSl.Setrm:<7m ) for m > 2
m—1+4 2«
and 1y, = 0 for m = 1. Then Hp, o(x) = 2™ (1 — 22) has the following properties:
1, m=1,
M 0213%(1 Hypo(z) = Hpo(rm) = m—1 (m=1)/2 2a : m > 2
m—1+ 2« m—1+2a) ’ -

] 200\ @
and hmm_mo m maXop<z<1 Hm,a (x) = <e y

(i) for m > 1, Hy, o is increasing on [0, ry,] and decreasing on [ry,, 1],
(i) for m > 1, Hy, o is decreasing on [ry,, "'m+1],

m (m—1)/2 20 a
d i Hm «@ = Hm a\T'm = .
o IE[’T’r:’LI,lgn+l] a(®) alrm+1) <m + Qa) <m + Qa)

Consequently,

2 «
lim m®* min  Hp(z) = (a) .
m—00 TE[rm,Tm+1] e

Lemma 2.2. Let 0 < a < oo,m € N. Then, for each { € OB, we have

lim m® (-, )™ e = (2@) | 2.1

m—o0

Proof. For any ( € 0B,

1G5 O™ e = sup(L — [2%)¥(2, )™ < sup(1 — |2*)%[z[™ = sup (1 —r?)*™,
z€B z€B 0<r<1

and, on the other hand,

sup(1 — |2)*|(z, Q)" = sup (1 —|r¢*)*|(r¢, O™ = sup (1—77)*r™,
z€B 0<r<1 0<r<1

Thus,

m* || (-, )™ || Hee = m* sup (1 — r2)arm =
0<r<1

= (m)a (m+1)* sup (1 —7r?)%™.

m—+ 1 0<r<1
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1132 C. CHEN

It follows from Lemma 2.1 (i) that (2.1) holds.
Lemma 2.2 is proved.

We will also make use of the following lemma. For the proof, see the original source [6].
Lemma 2.3. Let f € H°. Then

(1= [21)f(2) = (1 = [w)*f(w)] < CO||fll e p(z, w)

forall z,w € B.
Lemma 2.4. Let 0 < o, 8 < 00, ¢, ¥ € S(B). Then the following inequalities hold:

@) supTdp(2)p(z) < sup [[(Cp = Co)fally: +sup (G = Co)gia

z€B

(i) sup7z?w<z><><supu<0 Cw)faHHoo+sup||(C — Cy)gy(a)ll e

z€B

(i) sup | Tdp(2) = Taw(2)| < sup [[(Cp = C) fall g + 50D [[(C = Co)giallze-
z€B acB a€B
Proof. For any a € B, we have
1(Cp = Cp) foallrrze = sup(L = [2*)°| fy(a) (9(2)) = fip(a) (¥(2))] =

z€B

> (1= |a])?| fo(a) (9(a) = for (W(a))] =

(1 - pl@))"(1 — pi(a))°
2 TR = @ ey T

P(a)

and
1 = Co)goiay = = (1= 10 1go(a) (£(0)) — go(a) (B(@))] =
e (- le@Pe
A= 1) ), @y @
1 Je(@ )1 [(a))e
S - W@ e v@r):
Thus,

T e(a)p(a) < |[(Cy = Cy) ol p(a) + [(Cop = Cy)gp@llay <
< [(Cyp = Cp) fo(llmge + 11(Co = Cy)gop(ayll e 2.2)

where the last inequality follows from p(a) < 1. Analogously, we deduce that

T (a)p(a) < 11(Cp = Cy) fiallmz + 1(Cp = Cp)gupayll - (2.3)

Taking the supremum about a € B in (2.2) and (2.3), we obtain
() sup 7 p(a)p(a) < sup (ICy — Cy) ool +1(Cp = Coazio g ) <
ae ae

< sup [[(Cp — Cy) fallzge + sup [(Cp — Cp)gop(a)ll g
a€B acB
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NEW CHARACTERIZATIONS FOR DIFFERENCES OF COMPOSITION OPERATORS ... 1133

and

(ii) sgg’@%(a)()quprr(c = Co)allig +5up I(Cop = Co)guio) -

On the other hand, by Lemma 2.3 we note that
1(Ce — Cw)fgo(a)HHgo >
> (1= |a]*)?| fo(a) (9(a) = for (¥(a))| =

o a 2\«

(1 =le(@))* (1= (d(a), p(a)))*

8 ta) — w1 T8w(a) — L 1aP)? (= le(@))*) _
> |Tfe(a) — T (0)| - [TE () b ol | =

Tie(a) = TL0(a)| — T (a)p(a). (2.4)

So together with (ii), we arrive at

Yola) = TE0(@)| = sup (1(C, = Co) ol + T la)pla)) <

<SHPH(C Cw)fa!!Hw+Sup\l(C — Cy)gy(a)ll g

Lemma 2.4 is proved.
Lemma 2.5. Let 0 < o, B < 00, ¢, ¢ € S(B). Then the following inequalities hold:

@ sup [I(C = Cy) fallrg- 2 sup sup m(Cp = Cyp) (- O™ e
eN¢eo

(ii) SupmaX{II(C = Cp)gp(a g, (Co = Cup)gy(a)llmg} =
= sup sup m*|[(Cy, — Cy) (-, ¢)" || g
meN CedB
Proof. For a > 0, recall that

1 B 2 I(k + 2a)
(1— (z,a))2 = kIT(2) (0",

then we express f, into Maclaurin expansion as follows:

ole) = (1= a3 S
k=0

If a =0, fo(z) =1, (i) holds obvious. If a # 0, then
1(C, — Cw)faHHgo <
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I'(k+ 2a)

< (1= 1a)" 3 ey I(Ce = oty < @5
~D(k+2a), g, a
<(1—1a®)*Y = af k% |(C, — Cy) (-, — <
< (1= 1" 32 ey oK, = ol ol <
o o= T(E 4+ 2a o o m
< (1~ Jaye 30 T2 kgm0 sy sup (G — ) ) s .6
= k'T'(2q) meN ¢eoB
Tr
By Stirling’s formula, 7@ +a) = k%1 as k — oco. It follows that
E'T'()
L(k+2a), 1
T = k .
KT (2a) as oo
Hence,
(k+2a k ok N~ LEt+a) g 1
—— ||k =< Y kT — " x ———— 2.7
Ty Z o =<3y e < e @D
which combine with (2.6), we conclude (i).
Next, we prove the inequality (ii). When ¢(a) =0, g,(q)(2) = (2 w(a)>’ then

1(Cy = Cu)gpia HH°°=H<CWCW<"m> H

< sup [[(Cp = Cy) (- Q) lzge < sup sup m®||(Cyp — Cyp) (- Q)" || mrge-

(eoB meN (€oB
For (a) # 0,
g (z> _ (1 — ‘90(0’)|2)a <(I)<p(a)(z) - q)go(a) (¢(a)) + (I)cp(a) (LZJ(CL)), (I)go(a) (?l)(a)» _
AT (1= G p(a)) @) (4(a))
_ Nola 5 <(I)<p(a) (Z) - (I)go(a) (1/)(@)% (pnp(a) (¢(G))>
- f(p(a)( )p( ) + fgp(a)( ) ’q)w(a)(w(a)” ,

thus, for any a € B, we have

1(Cp = Cy)gpllag < (Co = Cp) fo(llage +2(Cp — Cy) fo(allHge =

< sup sup m®|[(Cp — Cy) (-, )"l 2.8)
meN ¢ceoB
P a - a 7(1) a
Here we used the fact that < el )(z) L )(d}(a)) L )(w(a)» < 2.
|<I>go(a)(w(a))’
Similarly, the inequality

1(C, — Cogua iz = sup sup m*[[(Cyp — Cy) (-, )™l 2.9)

meN (€0B
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can easily be obtained by the methods used in the proof of (2.8). Taking the supremum about a € B
in (2.8) and (2.9), (ii) comes ture.

Lemma 2.5 is proved.

Proof of Theorem 2.1. The implications (iv) = (iii)) = (ii1) or (ii2) follow from Lemmas 2.4
and 2.5. We next prove ()= (iv) and (ii))=- (i).

(i) = (iv). Suppose that C, — Cy: H® — HEg is bounded. For any m € N and ¢ €

m
€ OB, consider the function h,, ¢(2) = H<<ZC’>Cm>H’ then it is easy to see that h,, ¢ € H° with
) Hge

||| zzee = 1. Note that from Lemma 2.2, there is a constant C' > 0 independent of m and ¢ such
that ||(-, ()| g < Cm™“. Combining with the boundedness of C, — Cy : H3® — HZ, it follows
that

[(Cp = Cy)({ QO™
oo > HCSD - C?/)||H3°—>H§° > ||(CLP - Cl/’)hm,CHHgo = ”< C>mHH°° . =
= m®[[(Cp — C) (6.
for any m € N and ¢ € 0B. Which shows the statement (i) = (iv).

(i11) = (1). For any f € HZ°, we employ Lemma 2.3 to show that
(Cp = Cp) fllug = S‘ég(l — 121 (p(2)) = f(¥(2)] <

1— 228
gsup( 2]%)

[ S S B _ P 2\« 2)) — - . 2\« 5
sup oy (1= [0S (9() = (1 = W) ) F(w()] +

I e O R A () B
o 1 TeP" (BRI 2
< sup T2p(2)o(2) + sup(1 — WP FW)I|Te() ~ TE()| <
< sup T p()p(z) + sup [ T (2) - TE0()| < oo (2.10)

Thus, C, — Cy: H® — HE® is bounded. Therefore, (i), (ii1), (iii), (iv) are equivalent. The
equivalence of statements (i), (ii2), (iii), (iv) can be proved in a similar manner.

Theorem 2.1 is proved.

3. Essential norm of C, — Cy: HZ° — H §° In this section, we turn our attention to the
estimations for essential norm of Cy, — Cy : HZ® — H°. The proof of the main assertion relies on
the following two lemmas.

Lemma 3.1. Let 0 < o, < 00, 0,9 € S(B). Then the following inequalities hold:

(i) limsup 780 (2)p(z) = limsup [[(Cy — Cy) fallzrz + limsup [[(Cy — Cy)gpialarze,
()1 jal =1 (@)1

(ii) limsup T2y (2)p(z) < limsup [|(C,y = Cy) fall g + limsup [|(Cyp — Cy)gyia L
(=) =1 Jaf 1 (@)l -1

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 8
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(i) limsup  |Tde(2) - T ()| =
min{lp ()| ()] }-+1

=< Timsup || (Cy — Cy) fall e + limsup [|(Cyp = Cy)gy(ayllarze-

la|—1 [ (a)| =1

Proof. From the inequalities (2.2)—(2.4) the assertion follows easily.

C. CHEN

Lemma 3.2. Let 0 < a, 8 < oo, ¢, ¢ € S(B), Cp — Cy: H® — HE° is bounded. Then the

following inequalities hold:
(i) limsup[|(Cy — Cy)fal g = limsup sup m “WCp — Cy) (-, Q" g,

la]—1 m—o0 (€0B

(ii) maX{|hr(n)S|'upH(C = Cy)go(a) e ‘hr(n)s‘lupll(c — Cy)gy(a)llage} =
p(a)|—1

= limsup sup m®||(Cyp — Cy) (-, ()™ || -
m—o0 (€0B

Proof. For any a € B and each positive integer N, employing (2.5) we obtain

T'(k 4 2a) a\"
1(Cy = Co)fullze < (1~ Jaf)® W\ al* |G = Co) {+ Tar
k=0 H
N T (k + 2a)
(1~ [af? ”Z T jal* sup [(Cp — Cy) (- Ol +
— 2a) 7 ceom
0 = T(k+2a N N -
Fa—jep S HEE2 ke gy sup m(Cp — ) O e &
W F(2a) m>N+1¢cok
= J1+ Jo.
For k € {0,1,...,N}, since (z,¢)* € HZ®, for all ¢ € OB and Cp — Cy: Hi® — HE is bounded,
then
sup [[(Cp = Cu) (-, ¥l < oc.
CEOB
Hence,
limsup J; = 0.
la]—1

On the other hand, noting (2.7) we have

Jp 2 sup sup m|(Cyp — Cy){-, Q)" g,
m>N-+1CedB

which leads to

limsupJo <= sup sup m®|(C, — C¢)<'7C>mHH§°.
la|]—1 m>N+1 (OB

Thus, (i) holds. Next based on the result in (2.8), it follows that

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 8
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lim sup [[(Cp — Cp)gp(allmge = Timsup [[(C, — Cy) fo(a)llrg =
lp(a)l—=1 lp(a)|—1

= limsup [|(Cy C¢)fa||Hoo

la]—1

= limsup sup m*||(C, — Cy)(:, C>m||H§°-
m—o0 (€0B

Similarly, we can prove that

limsup [[(Cy — Cy)gy(a)llrge = limsup sup m®[|(Cy — Cy) (-, O™ || e
lo(a)| -1 m—s00 (€O

Thus, we conclude (ii).

Lemma 3.2 is proved.

The following characterization about the essential norm of C,, — Cy, : H® — Hj® appears to be
useful for our purposes. For a proof, see Theorem 2 in [17].

Lemma 33. Let 0 < «, f < o0, ¢, ¥ € SB) such that max{|1|eo,|l¥2]lec} = 1.
If Cyp, Cy: Hy® — HE° are bounded operators, then the essential norm ||C, — C’¢H67HgoﬁHgo
is equivalent to the maximum of the following expressions:

(i) limsup T2 o(2)p(z),
[p(2)|—1

(i) limsup T2¢(2)p(2),
[¢(2)|—1

(iif) limsup | To(z) — T (2)].
min{lp(2)],|¥(=) [} =1

Theorem 3.1. Let 0 < o, < 00,¢,9 € S(B). If the operators C,,Cy: HY® — HE® are
bounded, then the following equivalences hold:

~

1Cy — Collerzm stz =

~ limsup TPp(2)p(z) + limsup TP0(2)p(z) + limsup  |TP(2) - TH0(2)| ~
lo(2)|—1 [¢(2)[—1 min{|p(2)],[4(2)[} =1

~ limsup ||(Cy C’¢)faHH°°

|a|—1

+ max{limsup [|(Cp — Cp)gp(a) [ mge, limsup [|(Cyp — Cyp)guy(a g } =
(@)1 ()] -1

~ limsup sup m®|[(Cyp — Cyp) (-, )™ |-
m—00 (€0B

Proof. The boundedness of C, — Cy 1 HZ” — Hp® comes easily from the boundedness of the
operators C, and Cy from HZ® to HE®. Thus, using the results in Lemmas 3.1-3.3, it suffices to
prove that

ICs = Cylle,ige—rge = limsup sup m*|[(Cy — Cy)(, Q)™ || mze-
m—oo (€0B

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 8



1138 C. CHEN

Choose f,¢(2) =

(z, O™
1€ O™ e ”

, then || fncllgee = 1 and fi, ¢ — 0,m — oo weakly in H3°. Thus,

for any compact operator K : H° — HE, we have limy, o0 || frn.c | Hy = 0. Hence,

|Cy — Cy — K|| > limsup sup [[(Cy, — Cy — K)fm(HHgo >

m—oo (€oB

> lim sup sup I1(Cy Cw)fmg“”H""

m—o0 (€0B

Then, from Lemma 2.2, we obtain

Y

1Co = Cylle, Hg—HE > lim sup SUP [(Cp — Cy) fnc |H°°

m—oo (€0B

= limsup sup m®||(Cy, — C¢)<'>C>m||H§°'
m—oo (€OB

Theorem 3.1 is proved.
In view of Theorem 3.1, it gives equivalent conditions about the compactness of C, — Cly, :

HY — HY.

Corollary3.1. Let 0 < o, < o0,p,v € S(B). If the operators Cy,,Cy: HY® — Hgo are

bounded, then the following conditions are equivalent:

(i) Cp—Cy: HY — H is compact,

(ii) limsup ’ﬁfcp(z)p(z) + lim sup Rﬁzb(z)p(z) + lim sup 7;6@(2') — ﬁw(z)

l(2)]—1 [¥(2)|—1 min{|¢(2)|,|¢¥ ()|} =1
(iii) llﬁsupll(C = Cy)fallHge+
al—1
+ max{limsup [[(Cy — Cp)gop(a)llage, imsup [[(Cp — Cy)gy(a)lage } = 0,
lo(a)|—1 [¥(a)|—1
(iv) limsup sup m®||(Cy, — Cy) (-, )" |lmge = 0.
m—o00 (€0B
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