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REDUCIBILITY OF SELF-ADJOINT LINEAR RELATIONS
AND APPLICATION TO GENERALIZED NEVANLINNA FUNCTIONS

3BIJHICTh CAMOCIHPSI)KEHUX JIHIMHAX CIIBBITHOIIEHD
1 3ACTOCYBAHHSI JIO Y3ATAJIbHEHUX ®YHKIIIA HEBAHJITHHUA

We present necessary and sufficient conditions for the reducibility of a self-adjoint linear relation in a Krein space. Then a
generalized Nevanlinna function @) represented by a self-adjoint linear relation A in a Pontryagin space is decomposed by
means of the reducing subspaces of A. The sum of two functions Q;€ N, (#), ¢ = 1,2, minimally represented by the
triplets (/C;, A;, T';) is also studied. For this purpose, we create a model (I€7 A, f) to represent @ := @1 + Q2 in terms
of (KC;, Ai,T';). By using this model, necessary and sufficient conditions for k = k1 + K2 are proved in the analytic form.
Finally, we explain how degenerate Jordan chains of the representing relation A affect the reducing subspaces of A and
the decomposition of the corresponding function Q).

HaBeneno HeoOXiqHI Ta JOCTaTHI YMOBH 3BITHOCTI CaMOCHIPSKEHOTO JIIHIHHOTO CIiBBiTHOIIEHHS y mipoctopi Kpeitna. Jaimi
y3aranbHeHa ¢yHkuis Hepansminau (), 1o npecTaBieHa cCaMOCIpsDKeHUM JTiHiitHUM criBBigHoumeHHsM A y npoctopi [Ton-
TpsriHa, PO3KIANA€ThCS 3a JOIOMOrolo 3BinHUX mimnpoctopiB A. Takox BUBYA€ThCS CyMa IBOX GyHKIIH Q€ Ny, (H),
i = 1,2, MiniManbHo mpeacTaBiena Tpiiikamu (K, A;, T;). 3 mieio metoro ctBopero mozens (K, A, T'), mo npexcrasmse
Q = Q1+ Q2 B Tepminax (IC;, A;,T';). 3a monomororo miei Mozesi HeOOXi/IHI Ta TOCTATHI YMOBH IS K = K1 + K2 JIOBE-
JIeHO B aHaNITHYHIK Gopmi. HacaMkiHenb MU IOSICHIOEMO, IKUM YHHOM BHPOKEHI )KOPIAHOBI JIAHIIIOTY MPEICTaBHUIBKUAX
CHIBBiZHOIIEHb A BIUIMBAIOTH Ha 3BiIHI mianmpocTopu A Ta Ha po3kiaj BinnosigHol GpyHKIT Q.

1. Preliminaries and introduction 1.1. Preliminaries. Let N, R, and C' denote sets of positive
integers, real numbers, and complex numbers, respectively. Let (.,.) denote the (definite) scalar
product in the Hilbert space H, and let £(#) denote the space of bounded linear operators in #.

Definition 1.1. An operator-valued complex function Q : D(Q) — L(H) belongs to the class of
generalized Nevanlinna functions N, (H) if it satisfies the following requirements:

Q is meromorphic in C\R,

Q(2)* = Q(2), = € D(Q),
and .

the Nevanlinna kernel Ng(z,w) := Q(Z)Z_Q_(w), z,w € D(Q)NCT,
has k negative squares. In other words, for arbitrary n € N,z1,...,z, € D(Q) N C* and
hi,...,hy, € H, the Hermitian matrix (NQ(zi, zj)hi, hj)ijl has k negative eigenvalues at most,
and, for at least one choice of n; z1,...,zn, and hy, ..., hy, it has exactly k negative eigenvalues.

It is easy to verify that Nevanlinna kernel is a Hermitian kernel, i.e., Ngo(z, w)* = Ng(w, 2),
z,weDQ)NCT.

The following definitions of a linear relation and basic concepts related to it can be found, for
example, in [1, 4, 18]. In the sequel, H, K, and M are inner product spaces. Recall, a set M is
called linear manifold (or linear space) if, for any two vectors x,y € M and for any two scalars
a,B € C, it holds ax + By € M. A linear relation from H into K is a linear manifold 7" of the
product space H x K. If H = K, T is said to be a linear relation in K. We will use the following

concepts and notations for linear relations, 7' and .S from H into K and a linear relation R from K
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into M:

D(T) :={f € H|{f,g} € T for some g € K},

R(T):={g € K|{f,g} €T forsome fec M},
kerT := {f € H|{f,0} € T},
7(0) = {g € KI{0,g} € T},

T(f) == {g € KI{f.g} € T}, fe D),
T = {{g,f} € Kx H|[{f, 9} € T},
2T :={{f, 29} e HxK|{f,g} €T}, z€C,

S+T = {{£9+k}1f.g} € S, {f. K} € T},
RT := {{f, k} e H x M|{f, g9} € T,{9,k} € R for some g € K},

T" = {{k,h} € K x H|[k,g] = (h, f) forall{f,g} €T},

Tw :={{0,9} € T}.

Note that in definition of the adjoint linear relation 7", we use the following notation for inner
product spaces: (#, (.,.)) and (K, ][.,.]).

If mulT := T(0) = {0}, we say that T is an operator, or single-valued linear relation. A linear
relation is closed if it is a closed subset in the product space H x K.

Let A be a linear relation in K. We say that A is symmetric (self-adjoint) if it holds A C A™
(A = AT). Every point a € C for which {f,af} € A, with some f # 0, is called a finite
eigenvalue. The corresponding vectors are eigenvectors belonging to the eigenvalue «. The set that
consists of all points z € C' for which the relation (A — zI )71 is an operator defined on the entire
K, is called the resolvent set p(A).

Let k € NU{0} and (K, [.,.]) denote a Krein space. That is, a complex vector space on which
a scalar product, i.e., a Hermitian sesquilinear form [.,.], is defined such that the decomposition

K=K +Kk_

of K exists, where (K4,[.,.]) and (K_,—[.,.]) are Hilbert spaces which are mutually orthogo-
nal with respect to the form [.,.]. Every Krein space (K, [.,.]) is associated with a Hilbert space
(}C, (., )), which is defined as a direct and orthogonal sum of the Hilbert spaces (IC+, [, ]) and
(K—,—[.,.]). The topology in a Krein space K is the topology of the associated Hilbert space
(K, (.,.)). For properties of Krein spaces see, ¢.g., [5] (Chapt. V).

If the scalar product [.,.] has k(< oo0) negative squares, then we call it a Pontryagin space of
the index «. The definition of a Pontryagin space and other concepts related to it can be found, e.g.,
in [11].

The following construction of a Pontryagin space can be found in [9, 10, 12] and a similar
construction of a Hilbert space can be found in [14]:
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For any generalized Nevanlinna function (), a linear space L((Q) with a (possibly degenerate)
indefinite inner product [.,.] can be introduced as follows:
Consider the set of all finite formal sums

Y eha, zeDQ),

where h, € H, and ¢, is a symbol associated with each z € D(Q). Then an inner product is defined
by

(2, uhu] = (th, hw), fweDQ), z£ @, hahy €,

g

le2hz,ezhs) = (Q'(2)hs, hz), 2z € D(Q).

To ease communication, let us call L(Q) the state manifold of Q). The linear relation defined by

Ap :=Lls. {{Zszshs, Zzsszshs} : Zhs =0, z € D(Q)}

is symmetric. For zp € D(Q), the operator I',,: H — L(Q) is defined by I',)h = e, h. The
Pontryagin space K is obtained by factorization of L(Q) with respect to its isotropic part L :=
=L(Q)N L(Q) ] and by completion of the factor space. It is called the state space of Q. In the
process, Ag and I';, give rise to the self-adjoint relation A in X and bounded linear operator I':
H — K, with 29 € p(A). Then the following theorem holds.

Theorem 1.1. A function Q: D(Q) — L(H) is a generalized Nevanlinna function of the index
Kk, denoted by QQ € N, (H), if and only if it has a representation of the form

Q(2) = Q(20)" + (= )T (I + (2 — 20) (A~ 2)" )T, zeD(Q), (1.1)

where A is a self-adjoint linear relation in some Pontryagin space (K, |.,.]) of the index k > k; T':
H — K is a bounded operator. (Obviously p(A) C D(Q)). This representation can be chosen to be
minimal, that is,

K=cls{T.h:z € p(A),h €M},
Where
I,:=(I+(z—2)A—-2)" "I

If realization (1.1) is minimal, then QQ € N(H) if and only if i equals k. In the case of minimal
representation p(A) = D(Q) and the triple (K, A,T") is uniquely determined (up to isomorphism).

Such operator representations were developed by M. G. Krein and H. Langer [12, 13] and later
converted to representations in terms of linear relations (see, e.g., [9, 10]).

In this paper, a point « € C' is called a generalized pole of () if it is an eigenvalue of the
representing relation A. It may be an isolated singularity, i.e., an ordinary pole, as well as an
embedded singularity of (). The latter may be the case only if « € R.

1.2. Introduction. We start Section 2 with extending the definition of reducibility of operators in
Hilbert spaces to reducibility of linear relations in Krein spaces. Then in Lemma 2.2 we prove several
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statements about decompositions, i.e., about relation matrix, of a linear relation in a Krein space C
that we need in the proof of the main result, Theorem 2.1. In that theorem we give necessary and
sufficient conditions for a self-adjoint linear relation A in K to be reduced to the sum A = A; [+] Aa,
where [+] is direct and orthogonal sum of linear relations, A; are self-adjoint linear relations in the
reducing subspaces K;, and K = Ky [+] K2. Then, by means of reducing subspaces and reducing
linear relations, we study decompositions of a generalized Nevanlinna function Q).

The number of negative squares x € N U {0} is an important feature of the generalized Nevan-
linna function @). Recall that, if functions @Q;, ¢ = 1, 2, satisfy

(i) Qi€ Ny,(H), 0 <k, i=1,2,
(i) Q(z) = Q1(2) + Q2(2),
then @) belongs to some generalized Nevanlinna class N (#H) and k < k1 + k2 holds.

There are two basic questions:

(a) Given function Q€ N (H), under what conditions does there exist a decomposition Q(z) =
= Q1(2) + Q2(2), Qi€ Ny, (H), i = 1,2, that satisfies k = K1 + k2?

(b) Given two functions Q;€ N, (H), i = 1,2, is the number of negative squares preserved in
the sum @@ = Q1 + Q2 or not?

In other words, we investigate the circumstances under which functions @, ()1 and @) that
satisfy (i) and (ii) also satisfy

(i) K1 + Ko = K.

The question of preservation of the number of negative squares of the sum of Hermitian kernels
K(z,w) = Ki(z,w) + Ko(z,w) was studied in [3]. The authors give necessary and sufficient
conditions for k1 + ko = k in terms of complementary reproducing kernel Pontryagin spaces K1,
Ko, c.f. [3] (Theorem 1.5.5). We alternatively give necessary and sufficient conditions for k1 +k9 = K
in terms of triplets (C;, A;,T';), ¢ = 1,2, associated with minimal representations of the form (1.1),
c.f. Theorem 3.2.

The question of preservation of the number of negative squares in products, sums, and in some
transformations of generalized Nevanlinna functions has been, among other topics, summarised in
the survey [15]. In the present paper, we prove analytic criteria that establish whether the sum of the
indexes of the functions that comprise the sum is equal or it is greater than the negative index of the
sum.

It is very difficult to determine the negative index x of a given generalized Nevanlinna function.
The established relation between negative indexes of the above sum (ii) gives us information that
might help in determining the numbers of negative indexes of the functions in the sum.

There are interesting results about decompositions of generalized Nevanlinna functions in [8, 13],
for matrix and scalar functions represented by unitary and self-adjont operators. In those papers, the
decompositions of Q € NI*™ were obtained by means of spectral families of the representing
operators and their appropriate invariant spectral subspaces. The decomposing functions (; obtained
by that method must have disjoint sets of generalized poles (see [8], Proposition 3.1). In the present
article, we do not use spectral families and spectral subspaces; we use instead a concept of the
reducing subspaces of the representing self-adjoint relation in the Pontryagin state space. That way
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we obtain decomposition where decomposing functions @);, ¢ = 1,2, may have common generalized
poles.

In Theorem 3.1, we give a general answer on the question (a); we decompose function () by
means of reducing subspaces C; and reducing relations A; of the representing relation A.

Regarding sums of generalized Nevanlinna functions, in [8] (Proposition 3.2) it has been proven
that the sum of two generalized Nevanlinna matrix functions preserves the number of negative squares
under the condition that functions in the sum have disjoint sets of generalized poles. In our study we
do not use that condition.

We start the study of the sum @ := Q1 + Q2 with two functions Q; € N, (H), i = 1,2,
represented minimally in Pontryagin spaces by triplets (KC;, 4;,;), ¢ = 1,2. Then we create Pon-
tryagin space K := K [+] K2, and representation of the function Q := Q; + Qo in terms of the
triplets (KC;, A;, IT';). That representation, denoted by (3.3) in the text, we call orthogonal sum repre-
sentation. Then, in Theorem 3.2, we describe the structure of the possibly nonminimal state space
K := Ki[+] Ko representing the sum Q = Q; + Q. In Corollary 3.1, we give necessary and
sufficient conditions for kK = k1 + ko in terms of the inner structure of the state space K.

In Theorems 4.1 and 4.2, we prove some analytic criteria for kK = k1 4+ kg or K < K1 + k2.
These criteria are easy to use; we do not need to know operator representations of the functions
comprising the sum. Given how Definition 1.1 is impractical for use and how difficult it is to find
operator representations, our criteria are useful tool for research of both, the underlying state space,
and features of the sum Q := @1 + Q.

In Proposition 5.1, we decompose a function () by means of Theorem 3.1 using linear spans
of nondegenerate Jordan chains as reducing subspaces. Proposition 5.1 is a straightforward result
that we needed to approach the more complicated case of degenerate chains which we study in
Proposition 5.2. In Proposition 5.2, we consider the model where the self-adjoint operator A in a
Pontryagin space X has two simple, independent, and degenerate chains (neutral eigenvectors) at
a € R. We prove that, unlike nondegenerate chains, studied in Proposition 5.1, the two degenerate
chains at @ € R cannot reduce the representing operator and cannot induce two different functions
Q; in any decomposition of (). The conclusion of Section 5 is in Corollary 5.1.

2. Reducing subspaces of the self-adjoint linear relation in the Krein space. In the sequel
[+], rather than [}], denotes direct and orthogonal sum of both, relations and vectors. From the
context it is usually clear when we deal with “operator-like” addition of linear relations, as well as
when we deal with addition of relations as subspaces, and addition of vectors. If necessary, we will
specify.

Lemma 2.1. Assume that K1 and Ko are Krein spaces and A; C lCl2, l = 1,2, are linear
relations. We can define direct orthogonal sum

K=K [+] K

i) () <=
A:A1[+]A22: : €A, l=1,2 QICZ
hi [+] R h)

The linear relation A := Aj [+] Aa is symmetric (self-adjoint) in K if and only if linear relations
A C ICZQ, Il =1,2, are symmetric (self-adjoint).

and
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Proof. This lemma is a straightforward verification and left to the reader.
Let A be a linear relation in the Krein space /C,

K =K1 [+] Ka,

where nontrivial subspaces K; are also Krein spaces and E; : I — K, | = 1,2, are the corresponding
orthogonal projections. The following four linear relations can be introduced:

. h; :
Az = {<h3> h; € D(A) ﬂlCi,hg € E]A(hz)} CK x Ky, 4,j=1,2.

i
In this notation the subscript ¢ is associated with the domain subspace XC;, the superscript j is

associated with the range subspace K;. For example (Z%) € A2

Let us now extend the definition of the reducing subspaces of the unbounded operator in the
Hilbert space, (see, e.g., [2], Section 40), to the reducing subspaces of the (multivalued) linear
relation in Krein space.

Definition 2.1. Let (K, [.,.]) be a Krein space, K1 C K be a nontrivial Krein subspace of K,
and Ko = K[—]K1. We will say that the subspaces K1 and Ky reduce relation A if there exist
linear relations A; C IC; X KC;, i = 1,2, such that it holds

A=A [—l—] AQ,

where [+| stands for direct orthogonal addition of relations, as defined in Lemma 2.1. The relations
A; are called reducing relations of A.

Recall, if K is a Pontryagin space and X; is a nondegenerate closed subspace, then K =
= K1 [+] K2 and both K;, i = 1,2, are also Pontryagin spaces, see [11] (Theorem 3.2 and Corol-
lary 2).

Lemma 2.2. Let A, Az, Ki, Ei; 1,5 = 1,2, be introduced as above. If for either of orthogonal
projections E;: IC — K;, i = 1,2, it holds E;(D(A)) C D(A), then:

() Ei(A(0) = A}(0) = AL(0), Ex(A(0)) = A3(0) = A3(0);

(i) A= (A} + A}) + (A3 + A3), where + stands for operator-like addition, and + stands for
addition of the subspaces, not necessarily direct;

(iii) if B: K; — K;, i,j = 1,2, is a closed relation, then

B(0) = D(BM)H(C K)); 2.1
(iv) If A is symmetric, then it holds A} C A%M, A2 C A%M, Ai - A%M, A2 C A%M;
(v) if A is symmetric and D(A) N IC; is dense in IC;, then Al is single-valued relation and

A(0) C K5, ie., A(0) = AL(0) = A(0), j #1i, 1,5 =1,2.
Proof. Note that from F;(D(A)) C D(A) it follows E;(D(A)) C D(A), i # j, and

Then the first two statements of the lemma follow directly from the definition of the relations Ag .
(iii) If B is a linear relation in a Krein space, not necessarily closed, then it holds
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B(0)C D <B[*]>m.
k

k/
To prove the converse inclusion (2) we need assumption that B is closed. Then we have

) "N e g o (O 2 gt _ 5
yeD(B) =Lk =0 v| |eBt= ) e BHY = B =B = ye BO).

0 [1]
Indeed, y € BO) = () € B= [yl =0V( ;) € B = BO) D(B[*]> .

Hence, the converse inclusion holds too, which completes the proof of (2.1).
(iv) Let us here clarify notation that we will frequently use in this lemma and the next theorem.
For h; € D(A) N K; it holds

i cAe hi _ & cA + A2 i=1,2

7

where ) = h! [+] h? € K1 [+] K2 and A} + A? is operator-like sum. For h = hy [+] h2 it holds

h h hi[+]ha hi ~
cAe = , €Al i,j=12.
' ' hi[+]h? + hd [+] b3 h

In the sequel we will for addition of vectors frequently use simply + rather than [+] because the
notation of the vectors in the particular sums indicate when the direct orthogonal sum applies.
Let us now assume that A is a symmetric relation and let us, for example, show that it holds

AL c a2t

Let us select arbitrary (h2> € Al. Then, for every <h1> € A3, there exist (

h% h% > € A and

ha
h + h3
( Bl }_li_l h%) € A. Because A is symmetric, it holds
[h1, hy + h3] = [h1 + h3, ha).

Hence,
[ha, hb) = [hi, ha).

This proves A2[*] ie, Al C A%[*].

ha
hl
By the same token it holds:
Acal =12
(v) We will prove this statement for ¢ = 1, j = 2. Hence, we assume that D(A) N K; is dense
in ;. Let us apply formula (2.1) on the (closed) relation B = A%[*]. We get B(0) = A%M 0) =
= D(Al)m D(AH = {0}. Then it follows

[L]

AL0) € AM0) = pah = {0} =
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= A(0) = E2A(0) = A3(0) = A3(0) C K.

In the following theorem, we give necessary and sufficient conditions for a self-adjoint linear
relation in a Krein space to be reduced in the sense of Definition 2.1. The important statement
is (vii). Some of the other listed statements are merely the important steps in the proof of the
statement (vii).

Theorem 2.1. Assume that A is a self-adjoint linear relation in a Krein space (IC, [.,.]),
K1 C K is a nontrivial nondegenerate subspace, and Ko is the orthogonal complement of K1
in K, ie.,

K = Ki[+] K.
If it holds E1(D(A)) C D(A) and A(K1 N D(A)) C K1, then:

(i) A= Al+(A)+ A3),

(ii) A3 is single-valued self-adjoint relation in K,

(iii) A3 and AL are densely defined operators in K,

() A = A}(0) = D (4)" = Dy,

(v) A} M single valued,

i) A = Al < R(ad) C 4}(0),

(vii) A = Al[+] A% if and only if Al is self-adjoint,

(viii) if A(D(A)N K1) C Ky is dense in K1, then A%M = Al is operator as well.

Proof. By assumption h? = 0 Vhy € K1 N D(A). Then the statement (i) follows from
Lemma 2.2 (ii).

(ii) Because A(K; N D(A)) C K it holds A(0) C K;. Hence, E2A(0) = A3(0) = {0}, i.e., A2
is single-valued. Let us now prove that A3 is a self-adjoint operator. Assume that (Z%) € A3 .

2

hi + ho

We will first verify that for every ( B+ bl + b2

> € A it holds

[kg, hi + bl + h3) = [k3, h1 + ha].
This equation is obviously equivalent to

[k27 h’%} = [k%a h2] ;

which holds according to assumption (Zg) e A2 Therefore, (Z%) € Al = A. Hence, (Zg) €
2 2 2

€ A2. This proves (ii).

(iii) Because, A3 is self-adjoint and single-valued it holds
4\ [
{0} = A2(0)=D (Ag[ }) .
Hence, D (Ag[*]) = D(A3) is dense in K. Then also D(A3}) = Ey(D(A)) is dense in Ks.
(iv) Because A is self-adjoint and A} C A, the following implications hold:

[L]
C

Alca=acaP o p (A#*]) c D(A)H,
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1\ [ .
It also holds A}(0) C D (A%[ ]> , see the proof of (2.1). Because, A = AP is closed we can
apply formula (2.1) to A. We get

(L]
-

Aloyc D (A%[*]) D(AH = 4(0).

According to the assumption A(Ky N D(A)) C Ky, it holds A(0) = Al(0) and, therefore, the C
signs become = signs in the above line, which proves (iv).

L
v) A%[*] (0)=D (A%[*”*]y } = D(A%)M. According to (iii) D (A}) = D(A3) is dense in KCs.

Therefore, Al 0y = {0}, which proves (v).
(vi) Let us first prove
Al = At & R(4b) C A0).

(=) Let us assume that A%[*] = A}, and observe two arbitrary elements

hi + ho k1 + ko
€A, € A.
hi+hi+ h3 ki + kd + k2

Because A is self-adjoint, it holds
[+ ho, ki + k3 + k3] = [h] + hg + B3, k1 + ko) &
& (b1, by + ko] + [ha, k3] = [hy + hy, k] + [, Ko).
Because, A1 and A3 are symmetric this equation reduces to
[, k3) = [Rg, Ka).

Because of A(D(A) N K1) C Ky, we have hf = 0. Then, according to claim A} C A%[*] in
Lemma 2.2, it holds
0= [h], ko] = [h1, k3] = [h, k1)

Hence, R(A}) € D(AHM = 41l (0) = 4L(0) = A(0).
(<=) Assume now that R(A}) C A(0) and prove that A} is self-adjoint.

Assume that (k1> € A%[*]. We will first prove that, for every

ki
hl + hQ
€ A,
hi + hi + h3

(R + ha, k] = [h1 + hd + h3, k1. (2.2)

it holds

This equation is equivalent to
o, k] = [b) + B .
According to our assumption (Z%) e A it holds [h1,kt] = [hl, ki].
1
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It remains to prove 0 = [hd, k1].
)\ [
According to our assumption, and (iv), it holds R(A}) C A(0) = A}(0) = (Al[ ]) . Then
we have

R(A})[L]D (Ay*l) = [hd, k1] =0

k1

Hence, (2.2) is satisfied. It further means <Z%> ceAH =A== ( 11
1 1

> € Al. This proves that Al is
self-adjoint relation, i.e., it proves (<=).
Now (vi) follows from A(0) = A}(0).
(vii) Assume that A = A%M. According to (i), we have
A= A{+(A] + A3).

According to (vi), we obtain

Al =AM o R(ab)

) e

Therefore, for arbitrarily selected element from A = A}+ (A3 + A3), it holds

() (o) = i) () ()

From A3(0) C A1(0) it follows
h1 0 1
(i)~ () <4

Therefore, A = A1+ A3. Because of [hy, he] = 0 and [h}+h], h3] = 0, we conclude A = A} [+] A2
Conversely, from

A=Al A3

and from Lemma 2.1 it follows that relations AZ:: are self-adjoint in the corresponding C;, i = 1, 2.

(viii) This statement also follows from (2.1).

Theorem 2.1 is proved.

3. Direct sum representation of generalized Nevanlinna functions. 3.1. Let us assume that
functions Q; € Ny, (#) are minimally represented by triplets (K;, A;,T';), ¢ = 1,2, in representations
of the form (1.1), where A; are self-adjoint relations in Pontryagin spaces K; and I'; : H — KC; are
operators. We define the domain of Q) := @)1 + Q2 by

D(Q) = D(Q1) ND(Q2),

space K as the orthogonal direct sum,

~ (o) }
K=Ky [+] K2 = cls. i €D(Q:), €M, i=1,2%. 3.1)

oz, ho
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Scalar product in K is naturally defined by

<f1>7 <91>] = [f17g1]+[f2792]7 fivgiEKia Z:172
f2 92

In this subsection we will create a minimal state space of @ within K by means of the elements

~ Plzh
I.h = , 2e€D(Q), heH.
Ia.h

First, we will find state manifold of L(Q). We start with linear space
L:=ls. {fzh: 2 €DQ), he 7{} c K. (32)
The closure of L in K is given by
L= L[L]M =c.ls. {fzh: 2e€DQ), he ’H} ,

where LI denotes the orthogonal complement of L in (K, [.,.]). It is important to note that, in
general case, an indefinite scalar product |.,.| may degenerate on the closure of a manifold even if
it does not degenerate on the given manifold (see [11, p. 39]). Later, we will prove that it is not the
case with L and L (see Lemma 4.1).

We define operator I’ = <11:1> :H — Ky [+] Ko by
2

Th:=T1h[+]Toh, Tihek;, i=1,2.

It holds R -
[rh, ky [+] k:g} = (b, T ky +T§ka) Yy [+ k2 € K.

Therefore, TF : K1 [+] Ko — H satisfies

I+ =T +T},
where we consider that I'", | = 1,2, is extended on the whole space K1 [+] K2 by I} (k;) = 0
Vk‘j S ’Cj, J #i.

Let the functions (; again be minimally represented by (1.1). For the function @) := @1 + Q2,
consider the following representation:

Q(2) = Q1(20)" + Q2(20)"+
I+ (z—20) (A — 2)7 ! 0 I
2z —z)(DT TS , 3.3
+( 0)( 112 ) ( 0 I+ (2 — 2)(As — z)_1> <F2> (3.3)

where z € D(Q) and I; denote identities in /C;. Note that (3.3) is defined only when I'; and I'y
simultaneously map the same vector h € H into K. That means that manifold L is the linear span
of the vectors
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[.h = (I 4 (2 — 20)(A— z)*l) Th, 2e€D(Q), heH, (3.4)

where the resolvent is defined by

We know that the following holds:
(Qz‘(z) — Qi(w)

zZ—Ww

h2’7 hw) = [Fizh27riwhw]7 Z,Ww S D(Ql)a z 7é TI], h2’7 hw S Ha

(Qi/(Z)hZ,hg) = [Fizh27ri2hé]7 1= 172
Then it is easy to verify that for function QQ = Q)1 + @2, the following holds:

<th, hw> = [ohe, Tuhu],  2weDQ), 2#@ hahe € H,

zZ — W
(Q/(Z)hzv hZ) = [fth7 fzhz] .

According to thse equations we can, as in [7], identify building blocks of the state manifold L(Q)
with the building blocks of L C K defined by (3.2). In other words, the following holds:

e,h=T,h= (I +(z— zo)(;l — z)_l) Th

and L = L(Q).

3.2. In Section 2, we have proved that relation A can be reduced in the sense of Definition 2.1
if it satisfies conditions of Theorem 2.1. In the following theorem we will describe decomposition
of @ in terms of the reducing nontrivial subspaces K; and reducing relations A4;, i = 1,2, of the
representing relation A of Q.

Theorem 3.1. (i) Assume:

(a) A4 function Q € Ny(H) is minimally represented by (1.1) and there exist nondegenerate,
nontrivial subspaces K1 and Ko that reduce the representing relation A, i.e., A = A; [+] As. Then:

(b) 3Qi€ Ny, (H), i = 1,2, minimally represented by the triplets (ICZ-, A;, FZ-),

(©) Q(z) = Qi(2) + Q2(2), i = 1,2,

(d) the representation (3.3) of Q is minimal, i.e., K1 [+] Ko is the minimal state space of Q.

(i1) Conversely, if conditions (b), (¢) and (d) are satisfied, then the representation (3.3) is of the
form (1.1), and subspaces K1, Ko are reducing subspaces of A := A, [+] Az, i.e., (a) holds.

(i) In that case it holds k1 + k2 = k.

Proof. (i) We know that negative index of the minimal state space IC is equal to «, the negative
index of Q. Let Ky and Ko be nontrivial nondegenerate subspaces that reduce representing relation
A. Then K = K [+] K2 and A = A; [+] Aa. If K4, 0 < k;, denote negative indexes of /C;,i = 1,2,
then obviously 1 + kg = K.

Because A is a self-adjoint relation, according to Lemma 2.1, A; are also self-adjoint relations
in IC;. Let E;: K — K; be orthogonal projections and I'; := E; o', ¢ = 1,2. Then the following
decompositions hold:
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T+ (z—2)(A—20)"t =

(et oy,
0 I+ (2 — 20)(Ay — 2) 7!
and
Q(z) = Q1(2) + Q2(2),
where
Qi(2) = Qi(20)" = (2 — )T} (I + (2 — 20)(Ai — 2I) )T, (3.6)

The constant operators @Q;(z)" can be arbitrarily selected as long as Q1(20)" + Q2(z0)" = Q(20)".
Hence, the minimal representation (1.1) of ) can be expressed as the orthogonal sum representa-
tion (3.3). This proves (c) and (d).

Because A; are self-adjoint linear relations in the Pontryagin spaces K;, functions (3.6) are gener-
alized Nevanlinna functions. From (3.5) and from the minimality of representation (1.1), minimality
of representations (3.6) follows.

Indeed, for y; [+] y2 € K1 [+] K2 minimality of (1.1) means

(1 G PR PR [ 4} R
) 0 I+ (2 — 2) (A1 — )" ) \Iah) |

Vz € p(A) VheH= @1) = 0.
2

If we keep y2 = 0, we can conclude that (); is minimally represented by (K1, A1,T1). By the
same token we can conclude that ()2 is minimally represented by (K2, A2, I'2). This further means
that negative indexes of functions (); are equal to x;, the negative indexes of space ;. Hence,
Qi € Ny, (H), i = 1,2. This proves (b).

From the equation «; + k2 = k established for negative indexes of K; and K, now we can con-
clude that the same equation holds for negative indexes of the functions @); and . This proves (iii).

(ii) Assume now that conditions (b), (c) and (d) are satisfied, where A := A; [+] A2 is the
representing relation of ¢). Then subspaces C; and relations A; satisfy conditions of Definition 2.1,
i.e., they are reducing subspaces and reducing relations of the representing relation A in (3.3).
Because, A; are self-adjoint relations, according to Lemma 2.1 the relation A is also self-adjoint.
According to assumption (d) and Theorem 1.1, the triplet (IC, A, f) is uniquely determined (up to
isomorphism). Hence, representation (3.3) is of the form (1.1). This proves statement (a), which
completes the proof of (ii).

Theorem 3.1 is proved.

If the conditions of Theorem 2.1 are satisfied, then A, is densely defined (single-valued) self-
adjoint operator in Ks. In that case function ()2 has some nice features at infinity, see, e.g., [13]
(Satz 1.4) for scalar functions. If A, is bounded, see [6] (Corollary 1) for operator valued functions.

3.3. As discussed in Subsection 3.1, vectors [,h, z € D(Q), h € H, are building blocks of
the state manifold L(Q) = L of Q := Q; + Q2. Let us now consider the structure of K introduced
by (3.1). Denote

Lo:=LnLH.
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Recall that the minimal state space K of () is defined as completion of the quotient space L/ LY

where
Ly:=LnrH

(see Section 1.1 or [9, 12] for more details).
Note, L) C Ly in general case. We will see in Lemma 4.1 that in our setting it holds

LY = {0} = Ly = {0}.

For our purpose, we need to decompose K by means of Lg. Obviously, Ly is finite-dimensional
because it is isotropic subspace of L C K. According to [11] (Theorems 3.3 and 3.4) the following
decompositions hold:

L = Ly [+] Lo, LM = Lo [+] Lo,

K = Ly [+] (Lo+F)[+] L2, (3.7)

where L; and Lo are non-degenerate subspaces and F' is a neutral subspace of K, skewly linked
to Lg. Then &g := dim Lg is the negative index of the non-degenerate subspace Lo-+F. Let &;,
i = 1,2, denote the negative indexes of subspaces L; in decomposition (3.7). (K, A,I') again
denotes the triplet that minimaly represents Q) = Q1 + Q2.

Theorem 3.2. Let functions Q;€ N, (H) be minimally represented by formulas of the form (1.1).
Assume that the function Q) := Q1 + Q2€ N (H) is represented by orthogonal sum representa-
tion (3.3).

Then the subspace Ly in decomposition (3.7) is unitarily equivalent to the minimal state space
K of the function QQ = Q1+ Q2. Therefore, K and Ly, including the corresponding scalar products,
can be identified, i.e., K = L1 and k1 = k.

Proof. Observe representation (3.3) of @)

Q(2) == Q(z0)" + (= — 2)T* (I + (2 — 20) (A — zf)*l) r

and decomposition (3.7) of K. In Subsection 3.1, we have proved that we can consider e, = I, i.e.,
we can identify manifold L defined by (3.2) with the state manifold L(Q), the starting manifold in
the building of the minimal state space X of the given function (). Therefore, we can use the usual
construction to obtain the minimal Pontryagin state space K of @ by means of I', and L. Then we
will prove that X is unitarily equivalent to L.

Let us first prove that the minimal space K of Q = Q1 + @2, which is equal to completion
of L/ LY is also equal to the completion of L/ L, For that purpose, let us prove that the naturally
defined mapping

f+Lo—f+LY Vfel (3.8)

is an isometric bijection between L/ LY and L/ Lo-
It obviously holds L) C Lo. Now we have

0#f+Loeljp = f¢Lh=0#F+ L5/
In order to prove the converse implication, let us assume the contrary
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Oyéf+L86L/L8 and  0=f+Loely,.

Then 0 = f + Lo means f € L and f € Lg. It further means that f € L and f[L]L. Because,
L D L it follows f[L]L; hence f € LY, which is a contradiction. This proves that the naturally
defined mapping (3.8) is a bijection, and we can identify L/ LY and L/ Lo

Recall that the scalar product is introduced in X in the following manner: If for f, g,... € L the
corresponding classes in the quotient space L/ LY are denoted by f,4,..., then the scalar product is
defined by X

(£,9) = 1f gl (3.9)

Then the quotient space L/ Lo = L/ L can be completed in the usual way (see, e.g., [5], Section 2.4).
The completion X is unitarily equivalent to space L; introduced by equations (3.7).

Indeed, according to the above definition (3.9) and [11] (Theorem 2.4 (i)), the sequence {f,} C
C Ly N L converges to some fo € Ly if and only if the sequence {(fa}oo = {fu+Lo}2, CK
converges to fo € K. Therefore, equation (3.9) extends to L; and K. This proves that /C and L; are
unitarily equivalent and we can consider

K=1L
and K1 = K.
Theorem 3.2 is proved.
Remark3.1. From (3.4) it follows . .
r,=r

and, therefore, )
Lo € LM Cker It

Hence, the operator I'" : K — # defined by 't f := T'" f is well defined. If we also set T'h := I'h
YheH, A:= fl‘ 1, in representation (3.3) of (), then we obtain representation (1.1).

Corollary3.1. Let functions Q;€ N ,(H) be minimally represented by formulas of the form (1.1)
and Q = Q1 + Q2.The following statements hold:

() K is the minimal state space of Q if and only if L1 = L = K; in that case k = k1 + Ko;

(i) k = k1 + ko if and only if K = Ly [+] Ly, where Ly = {0} or Ly = LI is a positive
subspace;

(iii) Lo = {0} is necessary but not sufficient condition for k = k1 + Ka.

Proof. (1) Assume, K is minimal state space of (). According to first equation of (3.7) it holds
Iy CLCK. According to Theorem 3.2, L, is minimal state space of Q. Therefore, L, = L = K.

Conversely, if Ly = L = K holds, then minimality of K follows from Theorem 3.2. Then
K = K1 + K9 follows from Theorem 3.1.

(ii) Assume x = ki + ko. That means that the numbers of negative squares of L; and K are
equal, and & = 0. According to (3.7) it must be Ly = {0}. Therefore, K =1L [+] L2, where
Ly = {0} or Ly is a positive subspace.

Conversely, K = L, [+] L2 and Lo = {0} or Ly is positive, means that the numbers of negative
squares of L and K are equal, i.e., kK = K1 + k2.

In Example 4.2 we will prove that there exists the case where K= L [+] Ly and Ly is positive.

(iii) & = K1 + k2 = Lo = {0} = L3 = {0}. In Example 4.3 we will show that there exists the
case where K = L; [+] Lo and Ly is negative subspace. That is an example where it holds Lo = {0}
and Kk < K1 + Ko.

Corollary 3.1 is proved.
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4. Analytic criteria. 4.1. In this section, we will prove criteria that enable us to research the
underlying state space, and negative index of the sum @ := ()1 4+ (2 analytically, without knowing
operator representations of ), (Q1, and (). In order to derive equations in those criteria we will have
to use Definition 1.1 and definitions of scalar products in terms of formal sums (see Subsection 1.1).

Let us consider any function Q € N,(H). By definition x is the maximal (finite) number of

negative squares of the sesquilinear form [.,.] defined by the sums
- ~ (Q(z) — Q%)
> o Tohy] o= > (}Zl_»z'-’hd,hj : (4.1)
ij=1 ij=1 v

where z; € D(Q), hy € H, 1 =1,...,n. In other words, x is the negative index of the state manifold
(L(Q), [, D According to Theorem 1.1, the negative index of the minimal state space K is also
equal to K.

Let us now focus on the sum () = Q)1 + Q2. Then sum (4.1) can be written as

3 (2=, G-, ) 5 th) (Fujhj)]

_ — (2RA] - I I
=1 %= 4= ig=1 L\I'2zhi/ \D2z;h
where z; € D(Q1) ND(Q2) =: D(Q), hy € H, I = 1,...,n. Such sums are subset of sums (4.2)
below, which generate the inner product in K := Ky [+] Ks. Indeed, here )1 and Q2 take the same
domain points z; € D(Q), while in (4.2) @1 and @, take domain points z; € D(Q1) and (; € D(Q2)
independently. This means that the space K created by means of the sums (4.2) may be larger than
the state space IC, which is created by means of the sums (4.1).

Now we can prove the following lemma.

Lemma 4.1. Assume that functions Q;€ N,(H) are minimally represented by triplets (IC;, Ai,
Ty), i =1,2, and Q := Q1 + Q2. If scalar product does not degenerate on the state manifold L =
= L(Q), i.e., if LY = {0}, then scalar product does not degenerate on L, and it holds K = K [+] Lo,
where K = L is the minimal state space of Q.

Proof. According to (3.2), L C K. Let us assume that form [.,.] induced by (4.1) in the state
manifold L = L(Q) does not degenerate, i.e., L) = {0}. Then L/L8 = L, and the minimal state
space K is by definition equal to the completion of L.

Because Pontryagin space K is complete, the closure L C K is also complete. Then it holds

LCKCL.

Pontryagin space, K is nondegenerate. Because, completion K is a closed set in K, and L is the
smallest closed set which contains L, we conclude K = L. Hence, L is nondegenerate.

Then according to (3.7) it holds K = K [+] L.

Lemma 4.1 is proved.

4.2. By definition of K (see (3.1)), the negative index x := k1 + k2 of K is equal to the maximal
number of negative squares of the form defined by means of the sums

i1 L\, fi) \Dag /i
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_ Z”: <Q1(zi)—c_21(5j)hi7hj> N <Q2(Ci)_Q2(C_j)fi7fj>’ 42)

Zi = % G—¢

1,j=1

where z; € D(Q1), ¢ € D(Q2); hi, fi € H, | = 1,...,n. Because points z;,(; are arbitrarily
selected in their domains, we can create the following sums out of (4.2):

n L, i Fiw, by n iz h .k
=1 L\ 2wihi ) \T2w;h; =1 L\T2ci fi) \D2¢; fj

where w; € D(Q), z1 € D(Q1), ¢ € D(Q2), and the second sum is created by vectors that satisfy

condition
Flzl hl
[L]L
FQQ fl

Note that the first sum here is associated with L. The orthogonality condition for vectors from the
second sum in (4.3) can be written with simplified notation as

12 Iwg
, =0 YweDQ) VgewH,
[ocho Towg

where z € D(Q1), ¢ € D(Q2), h; € H, i = 1,2. Because, scalar product (.,.) in H is nondegene-
rate, this condition can be written as the equation
Qi(2) — Ql(w)h Q2(¢) — Q2(w)

— = ho=0 Yw e D(Q). (4.4)

Lemma 4.2. Let QQ € N, (H) be any minimally represented function by a triplet (IC, A,T).
(i) If there exist z € D(Q) such that ker ', # {0}, then

kerI', = kerI'y, =: kerI' Vw € D(Q).
(i1) h € ker T if and only if
Q(z) — Q(w)

Z—w

h=0 Vz Ywe D(Q).

Proof. (i) For function @ minimally represented by (1.1), it holds p(A4) = D(Q) and
.=+ (z—w)(A- z)_l)Fw Vw € p(A) = D(Q)

(see [9, 10]). Assume the contrary to the claim (i), that for some w € D(A) it holds I',h # 0,
I',~h = 0. Then we have

0=Th=(I+(z—w)(A—2z) NTyh= (2 —w)(A—2)"'Tyh=-Tyh.
According to [1] (2.11) it holds
(A=2)(A—=2)"' DT = (z—w)wh C —(A - 2)Tyh.
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Therefore, wl'y,h € A('yh), i.e., w is an eigenvalues of A. This contradicts to the fact that w is a
regular point of A. This proves kerI', C ker I';,. The converse inclusion is obvious. This proves the
first equation of (i).
Because, ker I'y, is independent of w € D(Q), we can introduce ker I' := kerI',, w € D(Q). It
is obvious now that claim (i) holds for any two points z, w € D(Q). This completes the proof of (i).
(i) We have

hekerT' & [[Lh,Tywg =0 VzeD(Q) YweD(Q) VgeHe
Qz) — c_z(w)h

Z—w

STiT,h=0 VzeD(Q) YweDQ) <= =0 Vz Yw e DQ).

The following statement is a criteria that identifies zero-symbols £.h = I',h, i.e., the symbols
that do not play any role in the state manifold L(Q).

Corollary4.1. Let Q € N.(H) be a minimally represented function by a triplet (IC, A,T"). If
there exists a solution (zg,h) € D(Q) x H, h # 0, of the equation

Q(z) — Q(w)

Z—w

h=0 YweDWQ), (4.5)

then T';h =0 Vz € D(Q).
It is easy to find regular matrix functions that satisfy (4.5), i.e., that have ker I" # {0}.
Example4.1. Consider the following regular matrix functions:

zZ+a z
Q(Z)—< b)eNﬁ(Cz); a,b€ R, (a,b)#(0,0), re{0,1,2}.
z z+

Then, for vector h = (_1 1) , identity (4.5) holds.

Now we can classify solutions of equation (4.4). According to Lemma 4.2, if (Zl> € kerI'; x
2

x kerI'9, then for both functions @; it holds

Qi(2i) — C?i(w)

Zy — W

. h . .
Let us call such solutions ( hl) of (4.4) singular solutions. Then, according to Lemma 4.2, the
2

vectors (Flzlh1> =0V <Zl> € D(Q1) x D(Q2), i = 1,2, i.c., they do not exist in K. Therefore,
Loz, ho 2

we can exclude singular solutions of (4.4) from the following considerations about structure of
K, without loss of generality. Hence, in the following definitions we assume that we deal only
with nonsingular solutions. It is consistent with the standard assumption that the functions I", are
injections.

The obvious solutions (z1, z2; hi, ha) € D(Q1) x D(Q2) x H x H of (4.4), i.e., the solutions
with h; = he = 0, we call trivial solutions. Hence, the nonsingular solutions of (4.4) with
(h1,h2) # (0,0), we call nontrivial. We will solve equation (4.4), later in couple of examples.

Let us introduce expression
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E = E(z1,29;h1,hg) = <Q1(21) - Ql(il)hh h1> + <Q2(22) — ?2(22)@, h2>7

21— 2 2 — 22

| PO | PO
E = E(z1,29;h1,hg) := , .
oz, ho oz, ho

A nontrivial solution (z1, z2; h1, ha) of (4.4) we call positive, negative, neutral if it satisfies

1.e.,

E(z1,29;h1,he) >0, <0, =0, respectively.

For z; = 29 = z and h; = ho = h we get an important special case of equation (4.4):

(Ql(z)—Q1(w)+Q2() QQ( )>h:0 Yuw € D(Q). (4.6)

zZ— W zZ— W

Q1(2) — Q1 (w)

Z— W

Why is this equation important? Equation (4.6) identifies when term cancels

Q2(2) — Q2( )
5 —
reduced in sum @)1 + Qg. Then in the underlying space K we have the following:

Assume that (z;h) is a nontrivial (and nonsingular) solution of (4.6). That means that there
.k
[P}
symbol I',h corresponding to ()(z) in the minimal state space K of @ it holds I',h = 0. Hence, we
learn that (0 #)I',h € L) C K corresponds to (0 =)[',h :=T,h + L € L/L8 cK.

Let us interpret this explanation in terms of almost Pontryagin spaces. Recall that an almost
Pontryagin space is a Pontryagin space to which a finite dimensional degenerate linear space has
been added orthogonaly (see [17]).

According to Theorem 3.2 we have L = Ly [+] Ly = K [+] Lo, i.e., L is an almost Pontryagin
space, with isotropic subspace L. By similar method we obtain almost Pontryagin spaces L' =
= K;[+] L}, i = 1,2. Because L) N K = {0}, i = 1,2, the overlap L' N L? does not have any
nonzero elements in K. The symbols T, z € D(Q), h E ‘H that belong to the overlap are char-
acterized as singular solutions of the equation (4.4), and excluded from the considerations. Hence,
the overlap does not affect the negative index . However, the negative index « is affected by the
existence of nonzero elements I'.A in the isotropic subspace Lg of the almost Pontryagin space L.
Those elements are characterized by the nonsingular, nontrivial solutions of the equation (4.6).

The following theorem gives us further analytic means to investigate structure of the state space
K and to compare number of negative squares x of Q) := Q)1 + Q2 with the sum k1 + Ko.

Theorem 4.1. Assume Q; € N,,(H) are functions minimally represented by triplets (IC;, A;,T;),
1=1,2, and Q :== Q1 + Q2 is represented by (/C, fl,f), ie., by (3.3).

(1) There exists a nontrivial solution of equation (4.4) if and only if K is not minimal state space
of Q. )

(ii) Equation (4.6) has a nontrivial solution (z,h) € D(Q) x H if and only if e,h :=T',h € LY.

(iii) If any nontrivial solution of equation (4.4) is neutral or negative, then k < K1 + Ka.

(iv) If all nontrivial solutions of (4.4) are positive, then L) = Lo [+] Ly is a nonnegative
subspace of K, where Ly is positive definite subspace. In this case k = k1 + ko if and only if the
state manifold L = L(Q) is nondegenerate.

out with term . That is, how a negative square is lost, i.e., the negative index is

exists a nonzero vector I',h := < > € K. On the other hand, according to Corollary 4.1, for the
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(v) A necessary condition for k = K1 + kg is that equation (4.6) has only trivial solutions. Evan
the stronger condition, that equation (4.4) has only trivial solutions, is not sufficient for k = k1 + Ko.
(Recall, we exclude singular solutions.)

Proof. According to Theorem 3.2 and Corollary 3.1, the following possibilities exist:

(@) K= L=L,

(b) K = Ly [+] Lo, where Ly is a nonpositive (nondegenerate) subspace,

(¢) K = Ly [+] Lo, where Ly is a positive subspace,

(d) K= Ly [+] (Lo+F)[+]L2.

(i) By defintion the existence of the nontrivial (which is also nonsingular) solution (z1, z2; h1, h2)
of (4.4) means that for at least one function Q);, i = 1, 2, it holds

hi #0A Fizihi #0.
In other words, the existence of the nontrivial solution (21, zo; h1, ho) of (4.4) is equivalent to
| P 0
#
oz, ho 0

and

This is equivalent to existence of
0 # (Flzihl) e LY,
[ozyh2
This is further equivalent to the claim that one of the cases (b), (c), or (d) is satisfied, which is
according to Corollary 3.1 (i) equivalent to the claim that K is not minimal state space of Q.

(ii) In Subsection 3.2 we showed that we can identify e,k = I,. Solution (z;h) is a nontrivial
solution of (4.6) if and only if ',k € L and [f‘zh, fwg] =0 Yw € D(Q) Vg € H. This is equivalent
to 0 # I,h € LN LM, ie., it is an isotropic element in L.

(i) If nontrivial and nonpositive solutions of (4.4) exist, then (b) or (d) holds. Therefore,
K=K < k=K + Ka.

(iv) Let us first prove the claim: if G = Ls.{x: [z, z] > 0}, then G is a positive manifold.

If z and y are two positive and linearly dependent vectors, i.e., y = Bz, § # —1, then obviously
[z +y,z+y] > 0.

Assume now that x and y are two positive and linearly independent vectors. For every a =
= |ale?¥ € C it holds |a|?[z,z] = [ax, ax] = |a|*[e*?z,e?¥x] > 0. Because of this property, in
the sequel we can consider @ € R in the linear combinations of the form ax + y, without loss of
generality.

Then, for every o € R and two positive independent vectors x,y € G, it holds

P(a) := [ax +y,ax +y| = o’[z, 2] + 2Re[z, yla + [y, y] > 0.
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Quadratic polynomial P(«) > 0 because [z,x| > 0 and its discriminant is nonpositive, according
to Cauchy - Schwartz inequality. As we know, equality sign in Cauchy —Schwartz inequality holds
only when z and y are two linearly dependent vectors. Hence, for positive independent vectors
x,y € G, which we have here, it holds [az + y, ax + y| > 0. Because we already proved that linear
combination of two linearly dependent positive vectors x and y is positive, we can claim that linear
combination of any two positive vectors is a positive vector.

Then the positivity of a linear combination of n positive vectors follows by induction.

Assume now that all solutions of (4.4) are positive. According to the above claim, quadratic form
in the second sum of (4.3) is positive. Then the scalar product in the subspace

Ty h T bt
i _c.l.s.{< = 1): 2 € D(Qy), [( = 1>,ng] — 0 Yw e D(Q) VgEH}
Iz ho Tozyho

is nonnegative or positive definite. We know that L] = L [+] Lo, where L is isotropic subspace
of LW and L, is a positive definite subspace (see [11], Theorem 3.3). Therefore, if there exist a
neutral vector e € LI, then it has to be in L. That is equivalent to K1 < k1 + k2. Lo # {0} means
that L is degenerate. According to Lemma 4.1, then L(Q) is also degenerate.

If Lo = {0} we have case (c), which is equivalent to k = k1 + k2. In Example 4.2 we will prove
existence of the case (c).

(v) If we assume, in contrast to the first claim of (v), that (z; k) is a nontrivial solution of (4.6),

then we get
Lk (Tiwg
, =0 YweDQ) VgeH.
Fth I‘2wg

This means that 0 # I,h € LY. According to Corollary 3.1 (iii), it holds x < k1 + k2. This is a
contradiction that proves the first claim of (v).

In Example 4.3 we will see that even when equation (4.4) has only trivial solution it is possible
to have Kk < k1 + k2. That will prove the second claim of (v).

Theorem 4.1 is proved.

The following theorem gives us some analytic tools to research existence of positive, negative,
isotropic and neutral vectors in L.

Theorem 4.2. Assume that Q;€ N, (H) are minimally represented by triplets (IC;, A, T), i =
=1,2, and Q := Q1 + Q2 is represented by (l@, /Nl,f)

(i) There exists

e:= lim I, h, (€ L), e#0, 4.7
n—oo
if and only if it holds:
(a) <Q1(zn) - C%l(wl)hzn,gl> + <Q2(zn) - QQ(wQ)hzn,f) — a(wy,wa, g*, ¢%) 0 (n —
Zn — W1 Zn — W2

— 00) Yw; € D(Q;) Yg' € H, i=1,2,

(b) @1 (zn) = 6_21(’2”) + Q2(2n) = C22(Zn)>hzn,hzn> — b # Foo (n — o) for some

Zn — Zn Zn T Zn

sequences {zn}22 1 C D(Q), {hn}2, CH.
In that case e € L is positive, neutral, negative element if and only if b >, =, < 0, respectively.

(1) If in addition to (a) and (b) it holds
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(©) <<Q1(zn) : 31(10) + Q2(zn) = %(w)) hzmg> — 0 (n— o0) weDQ) Vg €H,

Zn Zn —

then element e given by (4.7) is an isotropic vector of L, b = 0, K is not minimal state space of Q
and Kk < K1 + Ka.
Proof. (i) Let us assume that (4.7) holds. According to [11] (Theorem 2.4), it is equivalent to

- Ly gt Ly gt 4
Toh | e [ £0 (n—o0), weDQ), geH, i=12
T2, 6° T2, 9
w2 2

and

Lzl Do hz, ] = [ese](n — o0).

Those limits can be written as

<Q1(Zn) - Cgl(wl)hzn,gl> N (Qz(zn) - ?2(“72)@”,92) R
w1

Zn — Zp, — W3
— |€, 9
Fngg

((Ql(?«‘n) — Q1) | Qazn) = Qa(4n)

Zp — Zn Zp — Zn

=a#0 (n—o00)

and

)hzn,hzn> —le,e] =:b (n— ).

Because, b := [e, €], the last statement of (i) holds by definition. This proves (i).
(ii) Assume now that condition (c) is satisfied as well. Then for all w € D(Q) and g € H it
holds

<<Q1(z") —Qul®) | Qo) - %(w))%’g) = |Pehzys Tug] = [e,Tug] =0,

Zp — W Zn —

when n — oo. This means that e # 0, and e € L N Lt = Ly. Hence, it must be b = 0. According
to Corollary 3.1 (iii) it must be x < k1 + k2.

Theorem 4.2 is proved.

4.3. The following simple examples clarify the previous statements. In addition, they serve as
proofs of existence of the cases theoretically anticipated in Corollary 3.1 and Theorem 4.1.

Example4.2. Consider the following matrix functions that satisfy conditions of Theorem 4.1:

271 0 272 71
Q1(z) = — ( 0 z‘l> € No(C?), Q2(z) = — (z‘l 0 > € Ni(C?).

Then

R -
Q(z) = Q1(2) + Q2(2) = — ( 1 —1>'

z z

We can then solve (4.4):
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1 Zo +W 1
— 0 hl 2 o N h2
am e 2 2T ) =0 vwe D).
0 — )\ I A\
1w 2oW
Solving this system gives
h} 0
ht = , W=
(+) i
21

Then we easily verify that all nontrivial solutions are positive. Indeed,

o (@G- (M) (M), (@t - o) [ ] '
zZ1— 21 0 7 0 29 — 22 —Qh% ’ _@h%

<1 <1

i

=210 > 0.

|21]

According to Theorem 4.1 (i), the representation (3.3) is not minimal.
To determine whether the number of negative squares is preserved we can apply Definition 1.1.

Wecantake n =1, 21 € O, Rez1 <0, h = <_11> Then from

(Ng(z1, 21)h1, h1) =

and k1 + k2 = 1, we conclude x = 1. Hence, we have that all nontrivial solutions are positive, and
number of negative squares is preserved even though representation (3.3) is not minimal. This also
proves existence of the case (c) in the proof of Theorem 4.1.

We have already proved that LIt contains positive elements. Because of k = k1 + kg = 1
we know that L is nondegenerate. Therefore, Lo := LI is a positive subspace. This proves the
existence of the case anticipated in Corollary 3.1 (ii) and thus completes the proof of Corollary 3.1 (ii).

Note that without Theorem 4.1, we would have to find operator representations of the functions
(; and (@) to obtain the above answers, which would make the task much more difficult.

Example4.3. Consider the functions Q1(z) := —227! — 272 € Ny and Q2(z) := 227! € NVy.
Then

Q(2) == Q1(2) + Q2(2) = -2 2 € Ny.

Hence, k1 + ko =2 > 1=k.
In this example, (4.4) is given by

, )
<_ + Zl;_;”) hy — —hg —0 VweD(Q).
7wz

This equation has only the trivial solution h; = hy = 0. Hence, this is an example of the sum
Q := @1 + Q2 that has only a trivial solution of (4.4) and still does not preserve the number of
negative squares. This completes the proof of Theorem 4.1 (v).
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According to Theorem 4.1 the subspace L should be non-positive. We will prove that L is
negative. This will also prove existence of the case (b) in the proof of Theorem 4.1. In order to do
that we will use operator representations:

Ql(z) = FT(AI — ZI)_1F1 = —22_1 — Z_2 € Ny,

where
0 1 0 1 1 1 0 1
A = : J1 = , I : Iy =TIjJ; =
0 0 1 0 1 1 1 0
and
QQ(Z) = F;(AQ — ZI)_1F2 =271 € Ny,
where

A= (0),  Jo=(-1), Ty= (\2/5) T} =Ty = — (3/5)

According to the definitions in Section 3, we have

0 1 0 0 1 0 1
A=|o o of, J=|1 o o], T=[1],
0 0 0 0 0 -1 V2
0 1 0
rr=1 1 v2)[1r o o[,
0o 0 -1
z71 272 0 1 z7l 4272
I.=(A-zI) Th=—| 0 =z! 0 1 |h=- z' |helL,
0 0 21 V2 V2271
and
2714 272
L=cls.{— 271 h:z2eD(Q), heH
V221
n ~
Then, for y = [ 4o | € LI CK = K} [+] K2, we obtain
Y3
Y —z7l =272
0= [y, ([1 — zI)flfh] = v |, J —z71 h|=
Y3 —V2z7!

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 7



REDUCIBILITY OF SELF-ADJOINT LINEAR RELATIONS AND APPLICATION TO GENERALIZED ... 917

-1

Y1 —Zz
=]y, | 2t-22|h]| V2eDQ) VheH=
Y3 V2271
Y1
=y = 0 ,
yi/V2
Y1 U1
7 ly1|?

yl/\/§ yl/\/§

Hence, vector y € LI is strictly negative. This is indeed the case (b) anticipated in the proof of
Theorem 4.1.

5. The final decomposition of Q. 5.1. Let the function @ € N, () be minimally represented
by (1.1) and a € R be a generalized pole of () that is not of positive type. It is customary to say
that A and I" are closely connected if representation (1.1) is minimal. Let us decompose the function
(@ by means of the Jordan chains of the representing relation A at «.

According to [6] (Lemma 1), there is no loss of generality to assume that & € R is a single
generalized pole that is not of positive type. In that case A is an operator. For given eigenvector xg
of A at a € R, let us denote by X one of the maximal Jordan chains of x(. Let us denote by

Sa(zo) :==1s{X}.

Let the Hilbert subspace, denoted here by Ky C K, consist of all positive eigenvectors of the
representing operator A at . Let Ey: K — Ky be the orthogonal projection E' := I — Ey, K' :=
:= E'K and T'g := EyI'. Subspaces Ky and K’ obviously reduce operator A. We define IV := E'T’
and A’ := F'AFE'.

Now let z§,... ,xlll_l be a maximal nondegenerate Jordan chain of A’ at « in the Pontryagin
space K'. We define the projection: Fj: K’ — S, (z}), and subspace K; := E1K’. Then A; =
= E1A'Ey and I'y := E1Y are closely connected operators. Let k1 denote the negative index of the
Pontryagin space ;.

We can repeat these steps until we exhaust all nondegenerate Jordan chains. At every step we
can decompose the corresponding function as in Theorem 3.1.

Assume that there are r > 0 such (nondegenerate) chains at a. We introduce F := Fg+ FE1+. ..
...+ E,.. Then K = EK[+] (I — E)K. Let us introduce E, 1 :=1—E, K41 := E,11K, T =
= FE,1I'. Subspaces FK and K, obviously reduce A. From the construction of the Pontryagin
space KC,+1 we conclude that all degenerate chains of A at « are in /C,y.

By using the above notation, we can summarize these results in the following proposition.

Proposition 5.1. Let o € R be a generalized pole that is not of positive type of QQ € N(H),
where () is given by minimal representation (1.1). Then

K= ICO H—] ICl ['H ce [+]ICT [+] ICT-H: (5-1)
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where v € N is the number of independent nondegenerate Jordan chains of A at o;K; are A-

invariant Pontryagin subspaces of indices rk;, 1 = 0,1,...,r, r + 1, respectively, kg = 0, Kk =
r+1 . . . . .

= Z | fie For every i = 1,2,...,r, subspace K; is a linear span of the corresponding maximal
1= . .

nondegenerate Jordan chain xy, . . ., xj. ;. All positive eigenvectors are in K. All degenerate chains

of A at o arein K,41.

The corresponding nontrivial decomposition Q) := Qo + Q1 + ... + Q, + Q.11 satisfies k =

r+1

= Zi:o Kj.

5.2. Because K;, ¢ = 1,...,r, is a linear span of a maximal Jordan chain, it does not have
a nontrivial invariant subspaces of A. In Proposition 5.1, we separated non-degenerate maximal
Jordan chains X and X7 by A-invariant disjoint subspaces K; and K, i.e., X' C K;, X/ C Kj,
KiNK; = {0} Vi # j. The following natural question arises: Is it possible to separate degenerate
Jordan chains in a similar way? More precisely:

Let A be a self-adjoint operator in a Pontryagin space K. Given two degenerate maximal Jordan
chains X', i = 1,2, at an eigenvalue o € R, is it possible to find an A-invariant nondegenerate
subspace K1 such that it holds X' C Ky and X?°NKy =27?

In order to address this question, we introduce the following model with two independent degen-
erate chains at o = 0 of the first order, i.e., two neutral eigenvectors. We denote (k) = l.s.{k}.

Proposition 5.2. Assume that

K =H[+] (((20)[+)(25) + (), (5.2)
I 0 0 0 O A1 0 0 a a9
0 0 0 1 0 (b)) 0 0 a1 0
J=]0 0 0 0o 1|, A=]|(.a) 0 0 0 asl,
0 1 0 0 O 0 0 0 0 0
0O 0 1 0 O 0 0 0 0 0

where (H, (., )) is a Hilbert space, A1 is a bounded self-adjoint operator on H, 0 # «; € R,
0#a; € H, i = 1,2, are linearly independent. Then:

(1) operator A is a self-adjoint operator in the Pontryagin space K;
(ii) vectors x{ are neutral, simple eigenvectors of A at « =0 and f* = Jx}, i =1,2;

(iii) if operator Ay1: H — H is irreducible, then operator A does not have any eigenvalues
different from o = 0;

(iv) if operator Ay is irreducible, then operator A does not have any invariant nondegenerate
subspace that contains one eigenvector x{ and not the other, x},i # j, i,j = 1,2.

Proof. For vectors from K we will use notation (h, 81, B2,71,72)", h € H, vi, 8 € C, i = 1,2.
Statements (i) and (ii) are straightforward verification.

(iii) In contrast to the statement, assume that the operator A has the eigenvalue 5 # 0. Then
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h h Anth+ a1 + azye h
B b1 (hya1) + a1m B1
Al B =p|F|= (h,a2) + aayo =B B2
ga! ! 0 "
72 72 0 2

Hence, v; = 0,¢ = 1, 2. Therefore,

h Aq1h h
B (h,a1) B
AlB2 | = (ha) | =8B =h#0 and Ai1h = Bh.
0 0 0
0 0 0

919

This means that operator A1; has a nonzero eigenvalue 3. Because Ap; is a bounded self-adjoint
operator on 7, it is reduced by the eigenvector h € H, see also definition of reductibility in [2]

(Section 40). That contradicts the assumption that A1y is irreducible. This proves (iii).

(iv) In contrast to the statement, assume that operator Aj; is irreducible in 7/ and that there exist
a nondegenerate, A-invariant, nontrivial subspace K1 of K such that a:(l) € K1 and x% ¢ Ki. Then
KC1 must contain f!; otherwise, according to (5.2), the subspace }C; would be degenerate. Similarly,
KC1 cannot contain f2, because then K; without :1:(2) would be degenerate. Hence, vectors from Ky
must satisfy v, # 0,79 = 0, and H; := H N Xy must contain vectors of the form Ay1h+ a1y € H.

This means that Cy is of the form

K1 =Ha[+] ({zo) + (1),

where H; # {0}. It is easy to verify, that it holds 22 € IC[lL].

For an arbitrarily selected k; € K1, we have

h h Aprh +am
B B (hya1) +oam
ki=]0]lekKi=A|¢g|= (h,a2) €Ki, Bi,meC, heH.
a! " 0
0 0 0

Because K is A-invariant, Ak; must be of the form (5.3). Hence, it must be
(hya2) =0 Vh e H,;

and
A h + a1vy1 € Hi Vh € Hy V’Yl e C.
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Hence as L Hy, where 0 # ay € H. This means {0} C H; C H, i.e., H; is a nontrivial subspace
of H.

If we set 71 = 0 in the second equation, then we conclude that A1k € Hy Vh € H;. Therefore,
‘H, is an Aj;-invariant, nontrivial subspace in H. Because A1; is bounded self-adjoint operator on
the Hilbert space H, operator A;; is reduced by ;1 (see again [2], Section 40). That contradicts the
assumption of irreducibility of A1; and proves (iv).

This example shows that there does not exist an A-invariant subspace that contains one and not
the other degenerate eigenvector of A at a.

CorollaryS.1. There is no nontrivial decomposition of K41 and Qr41, i.e., decomposition (5.1)
of K and corresponding decomposition of Q) are final.
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