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g-DEFORMED CONFORMABLE FRACTIONAL NATURAL TRANSFORM
qg-AE®OPMOBAHE KOH®OPMHE JIPOBOBE HATYPAJIBHE IIEPETBOPEHHS

We develop a new deformation and generalization of the natural integral transform based on the conformable fractional
q-derivative. We obtain transformation of some deformed functions and apply the transform to solve linear differential
equation with given initial conditions.

Po3pobneno HOBy naedopMaliiio Ta y3arajJbHCHHS HAaTYpaJbHOTO iHTETPAILHOTO IEPEeTBOPEHHS Ha OCHOBI KOH(OPMHOI
npoboBoi g-nmoxigHoi. OTpUMaHO HEpeTBOPEeHHS AeAkuxX aedopmoBaHux ¢(yHKUii. Lle mepeTBOpeHHS 3acTOCOBAHO [0
PO3B’s3yBaHHS JIIHIHHOTO AH(epeHIianbHOTO PIBHAHHS 3 3aJaHUMHU IIOYaTKOBUMH YMOBaMH.

1. Introduction. Differential equations appear in many problems of physics, engineering, and
other sciences. So we need powerful mathematical tools to handle them. The integral transforms
are one of the widely used techniques applied for solving differential equations. Generalizations
of integral transforms turn them into more flexible tools to deal with complicated problems. Some
generalizations are based on an extension of transforms to multivariate cases. Other generalizations
can be done by deforming a differential operator and, consequently, an integral. Two leading kinds
of deformations are fractional calculus and g-calculus. Some applications of fractional calculus can
be found in [23], and of g-calculus and fractional g-calculus in [1].

In this paper, we develop a new deformation of the natural integral transform. We define new
extensions of some special functions and apply our deformed transform to them. Among other tools,
a new extension of g, a-Taylor series is proposed. We start here by recalling three integral transforms,
namely the Laplace, the Sumudu, and the natural transform. Further, we develop a new deformation
of the natural transform and show its application to some deformed differential equations.

The Laplace transform is one of the most famous of the integral transforms. It is defined as

F(s)—/f(t)eStdt.
0

This transform is very useful in solving differential equations with given initial and boundary condi-
tions. Moreover, it can be used for evaluating new identities for functions and integrals (see [18, 21]).
One of its important features is the transformation from the time domain to the frequency domain.

In 1993, Watugala [20] proposed a new integral transform, named Sumudu transform, which is
defined as

S{f(t)} = Fs(u) = /ieif(t)dt.
0
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q-DEFORMED CONFORMABLE FRACTIONAL NATURAL TRANSFORM 1129

Among its properties, Watugala remarks an easier visualization. This transform was further widely
studied by different researchers (see, for example, [4, 9, 14] and references therein). In his works
Belgacem (see [4] and references therein) denotes the Sumudu transform as an ideal tool for solving
many engineering problems. The Sumudu transform, unlike the Laplace transform, is not focusing
on transformation into the frequency domain. One of its main features is preserving units and scale
during transformation [4].

In 2008, Khan and Khan [12] defined a new transform, called N -transform and renamed later to
natural transform, as following:

R(u,s) = N(f(t)) = /f(ut)e_Stdt.
0

It is easy to see that in the case ©w = 1 we obtain the Laplace transform, and in the case s = 1
we obtain the Sumudu transform. Due to its dual nature and close relationship with both, Laplace
and Sumudu, transforms, the natural transform is more flexible and lets easily to choose during
the problem solution, what way is preferable in each concrete case. In 2017, Kiligman and Omran
generalized this transform for the two-dimensional case [13].

For both Sumudu and Laplace transforms their q-analogues were obtained and studied. The ¢-
analogues of the Sumudu transform based on Jackson g-derivative and g¢-integral were studied by
D. Albayrak and others (see [3] and references therein). The g-analogues of the Laplace transform
based some on the Jackson’s and some on the Tsallis g-derivative and ¢-integral were studied in
[6, 10, 1517, 19]. Recently a g-analogue was proposed also for the natural transform [2].

In this paper, we define and study a deformation of the natural transform based on the conformable
fractional g-derivative defined by Chung [7]. This deformation is actually a generalization of the g-
deformation based on the Jackson g-derivative. In case when certain transform’s parameters equal
1, it proposes another definition for the g-Sumudu transform, different from [3]. Moreover, our
transform generalizes some results for ¢ analogue of the natural transform defined in [13]. Finally,
we demonstrate some applications of the g-deformed conformable fractional natural transform.

2. Definitions and some properties of the conformable g-derivative. We start from a defini-
tion of a conformable fractional g-derivative D,”* given by Chung in [7], namely,

Dge f(a) = Y ((f”l)_‘qﬁ ()q@ — 21-9DIf(a), @

1 . . o .
where o] = 7 T s the g-number of «, and D, is the Jackson g-derivative with respect to the

variable x. It is easy to check that the operator DJ'® defined by (2.1) is a linear operator. One can
see that in case o = 1, this differential operator coincides with Jackson g-derivative. The following

(a4 ¢’b). Accordingly, with this definition,

-1
notation is widely used in g-calculus (a + b)y = Hn o
‘]:

we have

Hn o (a+q*b) forinteger n >0,
‘]:

(a+b)k = 2.2)

1 for n=0.
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1130 O. HERSCOVICI, T. MANSOUR

Another notation closely related to g-calculus is a g-Pochhammer symbol

Hn (1 —aq’) for integer n > 0,
(a:q)n = q =970
1 for n=0

and
(a; @)oo = [ (1 — ad?).
=0

The conformable fractional g¢-integral is an inverse operation of the conformable fractional g¢-
derivative

1 o 3
120 f(2) = —(1 - ¢")a* 3 ¢ flgiz) = I3 (),
where I, is the Jackson g-integral. Then, for c.-monomial %", we have
a(n+1)
DI = [nalz®"Y, [t = 2.3)
[(n+1)a]

It can be shown that the Leibniz rule for the conformable fractional g-derivative has the following
form:

D (f(x)g(x)) = flqe) D g(x) + (DF f(x)) 9(x). (2.4)

Therefore, by integrating both sides of (2.4), we obtain a rule for integrating by parts

[ (D21@) g(a)dyaz = Fl@)g(w) ~ [ Flar) DL g(w)dya @5
Chung defined also a conformable fractional g-exponential function
xa] (6 (e
ega(r) = === (1-q)z%q"), (2.6)
— [ja!
Jj=20
where [na]! = [@][2q] ... [na], with the property
Dl%q o(ax) = a“eqq(ax). (2.7

Note that, as usual, [0]! = 1.
Two new deformations of trigonometric functions were proposed in [7]

eq,a(z’éaz) = ¢qal(T) +isqa(x), (2.8)

where

—1)" 2an (—1)” a(on
Coale) = 3 o™ 0l =2 Gt
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From (2.8) one can obtain
1 1 Nt
c1a(@) = 5 (eqali7) + eqal(=i)7a)), (2.9)
1 1 Nt
Sqalx) = % <eq,a (ioz) — eq,a((—z)ax)) (2.10)
By applying (2.7), it is easy to show that

D} %cqa(x) = —8¢,0(2), D%sqa(x) = cqa(z).

By using the definition of the deformed conformable fractional derivative (2.1), we evaluate con-
formable derivative of a function

eqalax)’

1 1
— ploa egalar)  eqa(qax)

T —qx

pge— 1 _aps !
; egalaz)
l—« eqva(qa:'U) — €q7a(a$) _
=2 =
egalqaz)eqa(az)(z — qx)
and, by applying (2.7), we obtain

Df’ae%a (ax)

- eqa(qaz)eqalar) ’

9,0 -
D}

«
eg.alax)

L .11
eq.a(qax)

It is easy to see that D,”*C = 0, where C is a constant (C' does not depend on z). Indeed, from
(2.1), we have DJ°C = z'=*DJC = 0.

a%eq o(ax) B

B eq.a(qazx)eq q(az) -

We can see that D;/“z® = [a]. We would like to build a sequence of polynomials Py(z), P;(x), ..
., Pp(z) of degrees 0, a, . . ., na, respectively, so that

D Po(x) =

Pn,1($),
Py(aw) =0

with initial condition Py(x) = 1. Therefore, the polynomial P;(z) has the form P;(x)

— a)/[a]. Obviously, Py (ai) = ((aé)a - a)/[a] =0and DFPy(z) =1 = Py(x).

(% -
Proposition 2.1. For all n € N, we have

DIz — a)ga = [na](z* — a);‘a_l.

Proof. We proceed the proof by induction on n. It is easy to see that, for n = 1, we have

DI (™ — a)clla =DI%z% —a) =

[,

and statement holds. Let us assume that statement holds for some integer k. We will prove it for
k + 1. By (2.2), we have (z“ — a)];f{l = (2% — a)ka(a* —

¢“*a). By applying (2.4), we obtain

= Do~ <(moz _ a)’;a(xa _ qaka))
ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 8
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1132 O. HERSCOVICI, T. MANSOUR

= (g% — ¢°*a)[ka](2* — @)l + o] (@ — )k =

= ¢"(2* — """ Va)[ka] (a* — a)g! + [a] (2" — a)

) g — qa(k+1) +1—¢°

— (O _ _
= (2% — a)go -
1— qa(k+1)
= (2% — a)gaﬁ =[(k+ Da(z™ — a)l;a,
which completes the induction.
Proposition 2.2. For all n € N, we have
DF*(a —a%)ga = —[nal(a — qaxa)ga_l.

Proof. By (2.2), we have
(a—12%)ga = (@ —2%)(a — ¢*2%)(a - ¢z ... (a— gz =
—(n—1a

= (a—2%)¢"(¢"“a — z*)¢** (¢ **a — 2*)...q" (g a—a1%) =

= (-1)"qE T (@ = V) L (@ - g ) (@ — g %) (@ — ) =

an(n—1)

=(-1)"¢ 2z (2% —q ")

Now, by using Proposition 2.1, we obtain
Di%(a—a) = D2 ((-1)"¢™ 5 (@ — "Dy ) =

an(n—1)

=[na](-1)"¢ 2z (z%— ¢ (""V%)!

_ (_1)n[na]qaq2a o q(nfl)a(wa - qf(nfl)aa) o (:Ea o q72aa)(‘ra - qfaa) —

_ _[na]qana o q(n—l)a(q—(n—l)aa _ l‘a) o (q—2aa _ :L,a)(q—oca _ xa) _

= —[nal(a —¢" V%) .. (a - ¢**2")(a — ¢"2") =

and the proof is complete.

(2% — a)ga 1
Now, we can state that P, (z) = ﬁ Indeed, P, (aa) =0 and
nal!

Gap () — DO > _ =
D}Py(x) = D/ [na]! [na]! [(n —1)a]

@ _ g\ no xa_ana_l xa—ana_l
(z ) [na( )a ( )g ! = P, 1(x)

Therefore, by using the [11] (Theorems 2.1 and 8.1), we can state the following result.
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q-DEFORMED CONFORMABLE FRACTIONAL NATURAL TRANSFORM 1133

Theorem 2.1. Any polynomial or formal power series function f(x) can be expressed via the
generalized conformable fractional q-Taylor expansion about © = as as

n>0
Let us define one more g-deformed conformable fractional exponential function
J]
= g = (14 (1 — g)a®)%. (2.12)
3>0 ]

It is easy to see that £, ,(0) = 1. By using (2.3), we obtain

aj .a(j—1) a(j+1),.aj
DI, o (az) = anj(j 1/2a z° Zq (G120
— [(G—1)aft = ]!
J= J=
¢ a0
—q an] j—1)/24 "% "L " Ja] _ aaEq’a(anL‘).

7>0

Let us define the ¢-deformed conformable fractional Gamma function for some n > 1:

oo

/x dgax. (2.13)
eq o(qz)

0

Proposition 2.3. For all n > 0, the function Iy o(n + 1) defined by (2.13) satisfies the recur-
rence relation

Fga(n+1) =[na]lyaq(n)

with the initial condition T'y (1) = 1.
Proof. We proceed the proof by induction on n. For n = 0, we have

©0 oo

1
/ qam = / = — =1.
, eq,a(qT) egal €q.a(T) 0

0

Let us assume that the claim holds for £ — 1 and let us prove it for k. Let us consider now the
function I'y o (k + 1) for some k. By (2.13), we have

o

qa k+ /m qozxa
Eqa
0

from where, by rearranging and using (2.4), we get

o

1
Tyalk+1)=— [ 2°% (D2 dg ot =

0
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1134 O. HERSCOVICI, T. MANSOUR

oo
1
= g0k +/ qu‘ O‘k dg ot =
eq.a s eq,a(q$>

o0
x dg.ax = [ka]T g o (k),
0/ eqa ) q [ ] q

which completes the proof.
One can immediately obtain from the last proposition the following result.
Corollary2.1. For all n € N, it holds that

Fga(n+1) =[nal.

The function I'y o (n) defined as (2.13) is a g-deformed conformable fractional extension of the
I'-function. It is well-known that I'-function is closely related to the B-function, that is, for the

B-function, defined as
1
= /aﬁml(l — x)" dz,
0

holds that
I'(m)I'(n)
B = 77 2.14
Let us define the function
1
/ a(m—1) oz‘r )n 1dqa$
0

Proposition 2.4. For all natural m, n, it holds that

Lga(m)Tga(n) ‘

B —
a(m-m) Lya(m+n)

Proof. With the notations f(gz) = (1 — ¢®a®)js" and D “g(z) = 2*(""Dd, o, we obtain
flz) = (1 —2%)5 " and g(z) = ]’

= —[(n = Da](1 - ¢*2%)pa 2. Applying (2.5) with our notations yields

Therefore, by using Proposition 2.2, we get D,/” f(z) =

am

1
%
B ’ 1— anl / 71 17 a\n— 27d —
galm,n) =(1—z J n q*z%)ga [am] 7ot

1
—1
[(n /m 1—qm)a2dq,ax.
0

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 8



q-DEFORMED CONFORMABLE FRACTIONAL NATURAL TRANSFORM 1135

Thus, by assuming m and n are natural numbers, we obtain
1

B o(m,n) = /xa(ml)(l — qaa:a);la_ldq@x =
0

1
—1
[(n /az (1—q"z%)ga 2dyat =

=]

1
1 —2)a .
_ [(n ) 7”L /xa m+1) axa)gafddq’ax -
0

fmal [<m+1>ay“[<m+n_ y
_ [(n=1)a] [(n—2)a] o]
[ma]  [(m+1)a] " [(m+n—3)a]
go(min=2) ! ; po(m+n—2)
“\ra—za" >\0+0/[“]W_2>04%‘6 -
[(n—1)a][(n —2)a]...[2a][a] polm+n—1) |1

ma][(m + 1)a]...[(m+n—3)a][(m+n—2)a] [a(m+n—1)] |,

_ [(n —1)a]! [(m —1)a]! _ L'ga(n)lga(m)
[(m+n—1)a]! Lja(m+n)

(2.15)

Proposition 2.4 is proved.

Remark2.1. 1t is easy to see that for « = ¢ = 1, (2.15) turns into (2.14). Thus, functions Iy .
and B, are g-deformed conformable fractional extensions of the well-known I'- and B-functions,
respectively. This proposition may be extended for all positive m, n.

3. g-Deformed conformable fractional natural transform. We define now a ¢-deformed
conformable fractional natural transform as

1
N, o(f(1) = ) dy o, s> 0. 3.1
ol F0) = [ flut) s dyat, s G
Then we have
oo
/eqa qst q’
0
_ 1 g, 1 _ 1 1 OO_ 1
S s@ t eg.al(st) et ga eq.alst) |y e
0

Let us now to obtain a transform of «-monomial.
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Proposition 3.1. For all integer N > 0,

uoeN

aN
Naalt™) = S

Fga(N+1).

Proof. By definition (3.1), we have

t =
algst)

o0
1 1
:—uO‘N/ D& tNd, ot
s* €q.a(st) 7
0

Integrating by parts of the last equation leads to

00
1
qua(taN) — /uaNtaN d
0 ‘o

oo
alN

u 1 aN‘OO

1
N (toN)y — — — | —— (D&NMg ¢\ —
20(t7) 5% eq,a(st) 0 /eq,a(qst)( t ) e
0

o0
alN
1
_u / (NajteV-D_ L4
s / eq.algst)

o0

/ a(N-1)a(N-1) 1 dyot =
eqalgst) ™

0
_u a(N—1)
= % [Na]N, o (1), (32)
S
Thus, by (3.2), we obtain
Nyt = 1N 1V = Da] . el = 7 (va 33
q,a e ozs — a"'saasa_sa(NH) all. 3.3)

Applying Corollary 2.1 completes the proof.

Now let us consider the transform of two deformed exponential functions.

Proposition 3.2. The q-deformed conformable natural transforms of the q-deformed conformable
exponential functions are given by

1

Ny.a(€qalat)) = prym——l

> an(n=1) (ua)*"
Nya(Bgalat) =) a = oy
n=0

Proof. By applying transform (3.1) to the deformed exponential funciton (2.6), we obtain

dgot =

,Q

oo
N, olegalat)) eq.aaut)
aal€aal O/qa €qa(qst)

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 8
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B 7i QoM enpom 1 P
- mall  eqalast) '~
0

e san S — gl :

By applying transform (3.1) to the deformed exponential funciton (2.12), we obtain

oo
Ny o(E t) = | E, t)————dg ot =
q7a< q,Oé(a )) ! q7a(au ) €q7a(q8t) q,x
/ooi an(;—l) QO e pom 1 g
pu— q , e
) [nall  eqalgst) ¢

o0
an(n—1) a® om an
= 2 t dgat =
= [ e

e an(n—1) aCVTL u '
—2 0 [nall san+1) [na]! =

and the proof is complete.
Let us consider now the transform of the deformed trigonometric functions (2.9), (2.10).
Proposition 3.3. The deformed conformable fractional natural transform of deformed trigono-
metric functions, defined by (2.9) and (2.10), is given by

«

S
NialCaal®) = s,

u()!
Nya(saa(®) = s

Proof. 1t follows from the definition (2.9) and the linearity of the transform N, that

Nyaleqa(at)) = 5 (Nya (ega(iat) + Nyalega((—i)2at)) ) ) =

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 8
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1 Lo, B
2 \s® —i(au)® s +i(au)® )

¢ —i(au)® s“

1 s*+i(au)*+s
82 4 (qu)2e

T 2™ — i(aw)®)(s* + i(au)®)

In the same way, from the definition (2.10) and the linearity of the transform N, ,, we obtain

! (Mo (eqa(iat) = Nyaleqa((=i)7at)))) =

Nyga(sqalat)) = o=
L ( L ! ) _
20 \ so — (jma)ou®  (s* — ((—i)aa)oue

1 1 1 B
© 20 \s* —i(au)®  s*+i(au)*)

1 s i(an) — s 4 i(an)®
2i (5 — i(au)®)(s* + i(au)®)

B (au)®
- g2 T (au)Qa’

and the proof is complete.
Suppose that function f(¢) has a polynomial or formal power series expansion in c-monomials
t*". Let us denote such function f(¢) by f.(t). We consider now the transform of a derivative

D fa(t):
T 1
Nyga(D& fa(t)) = /(Dq’ fa) (u )m dgat =
0 9
1 7 1
= — Dq’a o d o —_—
ua0/< : f)(y)ew L
1 1 yi
= —Ja o d o]
) | e 0/ faly i) e
= al0 Sa/faut et Yot =

Let us rewrite it as
ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 8
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Nya(DF ful8) = 2 Nyl alt)) = - fa(0). G4

Therefore,

Naa((DF)a1) = S Nya(DIa9) = (D £2)(0) =

= 2 (S Naalhalt) = o)) = (DF12) 0) -

S 2 1 s 1 q,x
= <> Noa(fa(t)) = === fa(0) = — (D" fa) (0)-

ua

Thus, we can state the following result.
Theorem 3.1. Suppose that function f.(t) has polynomials or formal power series expansion
in a-monomials t*. Then, for all integer n > 0, it holds that

n—1

Mo (08" 5t0) = (1) Naalbol®) ~ 32 3 () ey o

Proof. The proof is by induction on n. The theorem statement holds for n = 1 as it shown in
(3.4). Let us assume the formula holds for k&, and let us prove it for k£ + 1. By using (3.4), we have

«

Ny (DF) 1 fa(0) = 22Ny ((DF)'0l8)) = - (D) 1) 0)

and, by induction’s assumption, we get

Nq,a <(Dt4,a)k+1fa(t)> _ _u?((th,a)kfa) (O)—|—

which completes the proof.

Let us consider now two examples of applying the conformable fractional g-deformed natural
transform for solving differential equations.

Example3.1. This example is an extension of the Example 4.2.4 in [8]. We have a differential
equation

((Df*)* + (D*)* = 6D*) () = 0,

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 8
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with the initial condition
(67 o 2
f(0) =1, DS f(0) =0, (D&*)7F(0) = 5.

We apply our conformable fractional natural g-transform to the differential equation, and, by using
the Theorem 3.1, obtain

2
- w w 1 g,

W — 2 £(0) = 2 DIF(0) — (D) F(0) +w -

w 1 - 6
—-— - —D>” — — =
—af(0) = 5D f(0) = 6wf + 2 f(0) =0,
and, by applying the initial conditions, we obtain

Fo 1 wi4w-1
~ u®w(w? +w — 6)

1 1 1 1

B U SRR S B

6s*  3s*43u* 284 —2u”
BRSNS Lo
6%  3go — ((=3)a)%ue 25“—(2é)au0‘

Now, by using the results of the Proposition 3.2, we can find the original function f(¢) as following:

ft) = é + %eq,a((—3)it) + %eq,a (2ét).

1 1 1 .
— + —e 3t 4+ —e?! which

One can easily see that this solution for ¢ = 1, & = 1 becomes f(t) = 63 5

coincides with the solution of [8].
Example3.2. Let us consider now an extension of the differential equation appearing in Example
4 of [22]:

DICF(t) + 3f(t) = 13s40(201),

with the initial condition f(0) = 6. Again, let f = N, (f(t)). By applying the integral transform
to this differential equation, we obtain the equation

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 8
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s _ 1 — 2u”
u*af*u*af(o)ﬁL?’f:l?)'mv
which, by applying the initial condition, can be rewritten as
§* 4 3u”* 26u” 6
ue r= §20 4 4y 20 +@‘

Now we can express the transformation f as

- 1 5 — u® 4 652
f: pr—

s& + 3uo 52a _|_4u2a

A Bs* + Cu®
= . 3.5
5% + 3u® T + 4u?e (3-3)

The unknown constants A, B, C can be found by comparing two expressions for f. One can easily
check that A =8, B = —2, and C' = 6. Therefore (3.5) can be rewritten as

8 s¢ 43 2u®
s + 3u@ S2a + 42 g2 + 4u2a7

F=

where, by Propositions 3.2 and 3.3, we can obtain the original function f(t) as following:

F(£) = 8eqa((—3)71) — 2040 (251) + By (251).

Note that for ¢ = 1, o = 1 we obtain the solution of [22].

We have considered transforms of functions and their derivatives. Let us consider now derivatives
of the transform. We would like to emphasize that a function f(t) is, actually, polynomial or formal
power series in t*-monomials. Let us denote by R, .(u,s) the conformable fractional g-deformed

1
eq.a(t)

natural transform (3.1). With the notation e;l (t) =

o we can state the following lemma.

Lemma 3.1. For all integer n > 0,

(DE) ezl (g™ Vst) = (~1)"emg= e L (gst).

q7a
Proof. By applying the operator D 9 with respect to s consequently n — 1 times to the function
el (q_(”_l)st) and using (2.11), we obtain

q7a

(D&Y " egala™ " Vst) = (=(a " V0)") . (=(g7')") DEegalst).

q7a

Applying (2.11) one more time, we have
(DI et (g™ Vst) = (™)) ... (—(a7'0)") (—t%)egalgst) =
= (—1)"ta"q_(g)ae;i(qst),

where from the lemma’s statement follows.
Proposition 3.4. Suppose that function f(t) has polynomials or formal power series expansion
in a-monomials t. Then, for all integer n > 0, it holds that

n

Nq,a (tomfa(t)) — (_1)nq(2)auan(Dsq,a)an’a(u’ q—ns)’

where Ry q(u,s) = Nga(fa(t)).
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Proof. We have

(D29)" Ry (u,7"s) = (DE*)" / falut)eqa(q="st)dgat =
0

oo
— /fa(ut) (Dsq’a)ne;é (qf(”fl)st)dq,at.
0
By using Lemma 3.1, we get

(D8) Ryalsa™s) = [ Falut) (=17t~ ast)dyat =
0

n

2
an

= (-1

q;( ) /(ut)a”fa(ut)e%é (q*(”*l)st)dq@t =
0

n

- 2)0‘
_ (—1)”qucm Ny (1% fa(1)).

The rearrangement of the last equation completes the proof.

The natural transform is a function of two variables, namely v and s. The previous proposition
establishes a connection between the transform of product of f,(¢) with a positive power of -
monomials ¢t and ¢, a-deformed derivative with respect to one of the variables, namely s, of
q, a-transform. Let us consider now a derivative of deformed transform with respect to its another
variable u.

Proposition 3.5. Suppose that function f,(t) has the following expansion:

falt) = Z A t™™.
m=0

Then, for all integer n > 0, it holds that

uOﬂ'L

Nq,a (tomfa (t)) — 7(Dg,a)nuaan’a (u7 8).

SO(’VL

Proof. 1f f,(t) = Z::o amt®™, then

Nya (tomfa (t)) = Nga (Z amta(m+n)) .
m=0

By using the linearity of the transform and applying (3.3), we get
o0 ua(ner)
Noa (1" fal®) = D satnrmry L0t m)alam =

m=0
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uem & uem
= Z (D) [(n +m)allay, =
m=0
_ur i(Dq,a)n[ma]!amua(n—km) B
T ogan . u ga(m+1) -
m=
B uan oo Dq7a nuan . [ma]!amuam B
— gon Z()( u ) ga(m+1) -
m=
et
= ~an (D) U Noa(fa(t))-

The replacement N, o(fa(t)) by Rg.q(u,s) in the last equation completes the proof.

These results are in complete agreement with those obtained for non-deformed Sumudu and
natural transform investigated by Belgacem and others (see [5] and references therein). Now we
will give another representation of the g, a-deformed natural transform of the product of f,(t) with
positive degree of a-monomial t®. This proposition extends the [S] (Theorem 4.2).

Proposition 3.6. Suppose that function f,(t) has polynomial or formal power series expansion
in a-monomials t“. Then, for all integer n > 0, we have

n
an
u

Npa(t fo(t)) = — > b su (DI Ry o (u, s),

gan
k=0

where the coefficients b, . satisfy the recurrence relationship

[na]bnfl,o, k‘ = 0,
bue = [(n+k)alby_1h + ¢y, 1, 0<k<n,
qa@n_l)bnfl,nfla k= n,

with initial condition by = 1.
Proof. We proceed the proof by induction on n. For n = 0, we have N o(fo(t)) = Ry,a(u, s),
so that bp o = 1. By previous proposition, for n = 1 we get

uOé
Noa(t®fa(t)) = 5 D *u® Ro.a(u, 5),

which, by applying deformed Leibniz rule (2.4), can be rewritten as

Nq,a(tafa(t)) = g([a]Rq,a(uy s) + anaDg’aRq,a(ua 3))

Thus, b1 o = [a] = [a]bo,o, b1,1 = ¢¢ = ¢*boo, and the claim holds. Assuming that the claim holds
for m < n, we will prove it, for m =n + 1,

Nq,a (ta(n—l-l)fa (t)) = Nq,a (tOé (tomfa (t))) =

an "1

u® q,x alh ak q,a\k
= S—@Du’ U by k™ (DL*) Ry o(u, s) =
k=0
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a(1+n+k)
Dq 0 Z bpp—————(DI*)V Ry o (u,s) =

n a(n+k)
_u® S b [(n+k+1)au (DI R, (. 5+

Som

1+n+k) a(l4+n+k)
+ Sa Z bn k San (D’g:a)k‘i’qu,a(u’ S) -

ua(nJrl) n )
= D ank (n+ k + 1)a]u®*(DI*)* Ry o(u, s)+
k=0

a(n+1) n—1
N by 1R (DI R, (0, ) =
k=1

+ Sa(n—i—l)

ua(n+1) n+l

=~ 2 b (D) Ry (u.5),
k=0

where

bn+170 = bmo[(n + l)a],

b1k = burl(n+k+1)a] + bpp_1¢°"H, 1<k <n,

bn+1,n+1 - bn7nqo¢(2n+1),
which completes the proof.

We end this paper by the following conclusion. Our new generalization of the natural trans-
form proposes also new generalizations of other widely used integral transforms. By applying the
techniques described here, one can solve a k-order linear g-differential equation with constant co-
efficients. There is no need to find separately homogeneous solution and a particular solution. In
order to solve a differential equation by applying the integral transform one need to know the integral
transform of the right-hand side function of the differential equation

S a4 (DY () = b(x)

0<j<k
« e I q,x ] _ L
and the initial conditions (Dx ) y(0) =y; for j=0,...,k—1.
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