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GENERALIZED DERIVATIONS ACTING ON MULTILINEAR POLYNOMIALS
AS A JORDAN HOMOMORPHISMS

V3ATAJIBHEHI IIOXITHI, IO ATIFOTh HA MYJIBTAJITHIMHUAX MOJITHOMAX
AK ) KOPJAHOBI TOMOMOP®I3MH

Let R be a prime ring whose characteristic is not equal to 2, let U be the Utumi quotient ring of R, and let C' be the
extended centroid of R. Also let G and H be two generalized derivations on R and let f(x1,...,2,) be a noncentral
multilinear polynomial over C. If G(H (u?)) = (H(u))? for all w = f(r1,...,7a), r1,...,7n € R, then one of the
following holds:

1) H =0;

2) there exists A € C such that G(z) = H(z) = Az for all = € R;

3) there exist A € C' and a € U such that H(z) = Az and G(z) = [a,z] + Az forall € R and f(z1,...,2,)% is
central-valued on R.

Hexait R — npocre KiIbIie 3 XapaKTepUCTHKOIO, 110 He TopiBHIOE 2, U — ¢axrop-kinbue Ytymi it R, a C' — npogosxeHnit

nentpoin st R. Kpim toro, mpunycrumo, mo G ta H — 1Bi y3aranpreni noxinui Ha R, a f(z1, ..., Tn) — HEUEHTpaIb-
Huit MysTHOTIHIEME noninom Hax C. fxmo G(H (u?)) = (H(u))? ana Beix w = f(r1,...,7n), T1,...,7n € R, TO
CIIPABPKYETHCS OJHE 3 TAKHX TBEPKCHB:

1) H = 0;

2) icuye take A € C, wo G(x) = H(x) = Az g Beix = € R;
3) icuyrots Taki A € C'ta a € U, mo H(z) = Az, G(z) = [a,z] + Az gma Beix ¢ € R i f(x1,...,2n)
€ LEHTpalbHO3HAYHUM Ha R.

2

1. Introduction. Throughout the article R denotes a prime ring of characteristic different from 2
with center Z(R) and U denotes the Utumi quotient ring of R. The center of U denoted by C' is
called the extended centroid of R. An additive mapping d on a ring R is said to be a derivation if
d(zy) = d(z)y + xzd(y) for all z,y € R. For a fixed a € R, the mapping d, : R — R, defined by
do(z) = [a, ], for all z € R is a derivation, usually called inner derivation induced by an element
a € R. A derivation is called outer if it is not an inner derivation. An additive mapping H on a ring
R is said to be a generalized derivation associated with a derivation d if H(zy) = H(x)y + xd(y)
for all 2,y € R. For fixed a,a’ € R, the mapping Fi, ) : R — R defined by F{, .\ (7) = az + zd’
is a generalized derivation on R. The mapping F{, . is usually called generalized inner derivation
on R.

An additive mapping on a ring R is a homomorphism if H(xy) = H(z)H (y) for all z,y € R
and H is said to an anti-homomorphism if H(zy) = H(y)H(x) for all z,y € R. An additive
mapping H is said to be a Jordan homomorphism if H(22) = (H(z))? for all x € R. We observe
that every homomorphism and anti-homomorphism is a Jordan homomorphism but the converse is
not true in general. Following example justify our observation.

Example1.1. Suppose that x is an involution on ring R and S = R R is a ring such that
riarg = 0 for all 1,79 € R, where a € Z(R). Define a function ¢ on S such that ((r1,72) =
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= (ary,r3) for all 71,72 € R. This example shows that ¢ is a Jordan homomorphism but not a
homomorphism.

Herstein [13], in 1956 proved that every Jordan homomorphism from a ring R onto a prime ring
R’ with char(R) # 2,3 is either a homomorphism or anti-homomorphism. Further, Smiley [20], in
1957 improve the above result by removing the restriction of characteristic is not equal to 3 in the
hypothesis of the Herstein’s [13].

The context of derivation, which acts as a homomorphism or as an anti-homomorphism, was first
studied by Bell and Kappe [8]. More precisely, they proved that there is no nonzero derivation on
prime ring which acts as a homomorphism or as an anti-homomorphism on right ideal of R. Later
on many mathematician have studied the additive mapping which acts as a homomorphism, anti-
homomorphism, Jordan homomorphism, Lie homomorphism on some subsets of a particular ring.
For more details, we refer to reader [1-6, 21 -25].

Recently, in this line of investigation De Filippis and Dhara [4], in 2019 studied the structure
of prime ring R, when generalized skew derivation acts as a Jordan homomorphism on multilinear
polynomial over C.

Motivated by above cited results, we would like to study the following.

Theorem 1.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient
ring of R and C be the extended centroid of R. Let G and H be two generalized derivations

on R and f(x1,...,xy,) be a multilinear polynomial over C which is noncentral valued on R. If
G(H(u?)) = (H(u))? for all u = f(r1,...,m), T1,...,mn € R, then one of the following holds:
1) H=0;

2) there exists \ € C such that G(x) = H(z) = \x for all © € R;

3) there exist A € C and a € U such that H(x) = Az, G(x) = [a,z] + Az for all x € R and
f(z1,...,2,)? is central valued on R.

The following corollaries are an immediate application of Theorem 1.1. In particular, for G = I,
identity mapping in Theorem 1.1, we have the following.

Corollary1.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient
ring of R and C' be the extended centroid of R. Let H be a nonzero generalized derivation on
R and f(x1,...,z,) be a multilinear polynomial over C which is noncentral valued on R. If
H(u?) = (H(u))? forall w= f(r1,...,7mn), T1,-..,7n € R, then H(x) = x for all x € R.

In particular, for H = I, the identity mapping on R in Theorem 1.1, we have the following.

Corollary1.2. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient
ring of R and C be the extended centroid of R. Let H be a nonzero generalized derivation on R and
f(x1,...,2,) be a multilinear polynomial over C which is noncentral valued on R. If H(u?) = u?
Jorall w= f(ri,...,r), r1,...,7 € R, then one of the following holds:

1) H(x) =z forall v € R,
2) there exists a € U such that H(x) = [a,x] + z for all x € R and f(z1,...,2,)? is central
valued on R.

Corollary1.3. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient
ring of R and C' be the extended centroid of R. Let q ¢ Z(R), H be a generalized derivation on R
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GENERALIZED DERIVATIONS ACTING ON MULTILINEAR POLYNOMIALS ... 993

and f(x1,...,x,) be a multilinear polynomial over C' which is noncentral valued on R such that
[q, Hu?)] = (H(u))? forall u= f(r1,...,7mn), r1,.-.,7n € R. Then H = 0.

2. Notations and known results. Let d and § be two derivations on R. We denote by
f(x1,...,z,) the polynomials obtained from f(x1,...,x,) replacing each coefficients o, with
d(ay). Then we have

d(f(z1,...,x0)) = fHx1,. .. @) +Zf(x1,...,d(xi),...,xn)

and

do(f(ri,...,m)) = fd‘s(rl,...,rn)+Zfd(r1,...,5(n),...,rn) +
+ > F(r, (), ) +Zf(r1,...,d5(ri),...,rn) +
+ D flray e d(r), . 6(rg), ).

The following facts are frequently used to prove our results.

Fact 2.1. Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the
same generalized polynomial identities with coefficients in U [10].

Fact 2.2. Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the
same differential identities [17].

Fact 2.3. Let R be a prime ring. Then every derivation d of R can be uniquely extended to a
derivation of U (see Proposition 2.5.1 [7]).

Fact 2.4 ([15], Theorem 2). Let R be a prime ring, d a nonzero derivation on R and I a
nonzero ideal of R. If I satisfies the differential identity

flr, ... rn,d(r1),...,d(ry)) =0

forany ri,...,ry € I, then either
(i) I satisfies the generalized polynomial identity

fori,.coirp, 1,y xn) =0

or
(ii) d is U-inner, i.e., for some q € U, d(x) = [q,x] and I satisfies the generalized polynomial
identity
f(rlu cey T, [qﬂnl]a R [(Lrn]) = O

Fact 2.5 ([6], Lemma 2.9). Let R be a prime ring of characteristic with char(R) # 2, a, b, c,
d €U and p(x1,...,xy,) be any polynomial over C which is not identity for R. If ap(r) + p(r)b+
+ ep(r)cd =0 for all r € R", then one of the following conditions holds:

1) b,d € C and a+ b+ cd = 0;

2) a,ce Cand a+b+ ccd =0

3) a+b+cd =0and p(xy,...,2,)° is central valued on R.
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3. G and H are generalized inner derivations. In this section, we study the case when G
and H are generalized inner derivations. Suppose that G(z) = ax + zb and H (x) = pzx + xq for all
r € R and for some a,b, p,q € U. From the given identity G(H(f(r)?)) = H(f(r))? we get the
expression a’ f(r)2-+af (r)2q-+pf (r)2b+ (1) = pf (rpf(r)+pf(r)2q+ () F(r)+ £(r)af(r)a
where @’ = ap, b’ = gb and p’ = gp. To prove main result we prove the following propositions.

Proposition 3.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient
ring of R and C' be the extended centroid of R. Let G and H be two generalized inner derivations
on R and f(x1,...,xy,) be a multilinear polynomial over C which is noncentral valued on R. If
G(H(u?)) = (H(w)? for all w= f(r1,...,m), T1,...,mn € R, then one of the following holds:

1) H=0;

2) there exists \ € C such that G(x) = H(x) = A\x for all x € R;

3) there exist A € C and a € U such that H(z) = Az, G(x) = [a,2] + Az and f(x1,...,7,)?
is central valued on R.

To prove the above proposition we need the following results.

Proposition 3.2. Let R = M,,(K) be the ring of all m x m matrices over the field K with
characteristic not equal to 2 and m > 2 and f(x1,...,x,) be a noncentral multilinear polynomial
over K. Leta, a', b, V', p, p', q € U such that a' f (r)*+af(r)2q+pf(r)2b+f(r)2V = pf(r)pf(r)+
+pf(r)2q+f(r)p f(r)+f(r)qf(r)q forall r = (r1,...,rp) € R*. Then p € K-I,,, and q € K -Iy,.

Proof. Since f(x1,...,z,) be a noncentral on R. By [18] (Lemma 2, Proof of Lemma 3), there

exists a sequence of matrices r = (r1,...,7,) in R such that f(ry,...,r,) = ve;; with 0 # vy € K
and ¢ # j. Since the set f(R) = {f(x1,...,2y) | z; € R} is invariant under the action of all inner
automorphisms of R for all i # j there exists a sequence of matrices r = (r1,...,7,) in R such

that f(r1,...,7,) = ve;;. Thus our hypothesis
dfire, ... ) +af(re, ... or)2q+pfOr, .. )2+ fre, ... ) =
= pf(ri, )P (r1s o) +pf (P, mn) g +
+ flre, e )P fre, o) + fOre, ) g f (1, o mR)g. €))
Gives that
peipeij + eijp'ei; + eijqeijq = 0.

Left multiplying above relation by e;;, we obtain e;;pe;;jpe;; = 0. It implies that p?j = 0 and hence
pij = 0 with ¢ # j. It implies that p is a diagonal matrix.

Right multiplication by e;; in above expression we get ¢;; = 0 with ¢ # j. This implies that g is
a diagonal matrix.

For any K -automorphism 6 of R, p? enjoy the same property as p does, p’ must be diagonal.
Write p = Z:l piieii; then, for s # t, we have

m
(14 ews)p(l —ers) = Zpiiez’z’ + (pss — ptt)ets
i=1

diagonal. Hence, pss = pi and so p is a scalar matrix, that is, p € K - I,;,. Similarly, we can show
that ¢ is diagonal and hence central.
Proposition 3.2 is proved.
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Lemma 3.1. Let R be a prime ring of characteristic not equal to 2. Let U be the Utumi ring
of quotients and C' be the extended centroid of ring R. Suppose that f(x1,...,x,) be a multilinear
polynomial over C which is not central valued on R such that o' f(r)? 4+ af(r)2q + pf(r)*b +

+ f()2V = pf(r)pf(r) + pf(r)2a+ f(r)p'f(r) + f(r)af(r)q for all v € R and for some a, a,
b, V', p, p', q €U. Then p and q are central.
Proof. On contrary suppose that both p and ¢ are not central. By hypothesis, we have

h(zy,...,x0) =d flx1,...,20)2 +af (1, ... x0)2q+ pfzy, ... 20)%0 +
+ f(x1y e m)? —pf(zy, . xn)pf (21, 20) —
—pf(x1, . mn)?q— flzr, . mn)p f(21, . 20) —

— f(@1, e wn)af (T, an)g

for all z1,...,z, € R, that is,
h(zy,...,x,) = a’f(:vl,...,xn)z + {af(:):l,...,xn)Q —pf(ml,...,xn)z —
_ f(a;l,...,xn)qf(xl,...,xn)}q—i-pf(a:l,.,,,mn)?b +

+ f(x1,.. .,xn)Qb' —pf(x1, .., xn)pf(z1, .. 2n) —
—f(@1, )P f(n, . ) ()

for all z1,...,x, € R.
Since R and U satisfy same generalized polynomial identity (GPI) (see [10]), U satisfies
h(zq,...,x,) = Op. Suppose that h(z1,...,z,) is a trivial GPI for U. Let T = UxcC{z1, ..., Ty},

the free product of U and C{z1,...,z,}, the free C-algebra in non commuting indeterminates
Zi,...,Tn. Then h(xy,...,z,) is zero element in T = U *x¢ C{z1,...,x,}. It implies that
{b,V/,q,1} is linearly C-dependent. Then there exist ay, 2,3 and oy € C such that aib +
+ anbl + azq+ agl = 0. If a; = 0 = ao, then a3 # 0 and so ¢ = —a§1a4 € C, gives a

contradiction. Therefore either o; # 0 or as # 0. Without loss of generality, we assume that
a1 # 0. Then b = ab’ + Bq + v, where o = —aj 'ag, 8 = —a;'az and v = —a; 'ay. Then U
satisfies

((I/ +p'7)f($1> e 7xn)2 + {af(xla e 71'71,)2 _pf($1> e 7xn)2 -
— flxy, . cyzn)qf (21, o xn) + pBSf (21, . .. ,a:n)z}q +

+ {pa+ l}f(:vl,...,a:n)2b/ —pf(x1,...,xn)pf(z1, ... 20) —

— f@,. o zn)p f(21, - @) 3)

This implies that {b',¢,1} is linearly C' dependent. Then there exist (1, 32,03 € C such that
10 + P2q + B3l = 0. Again using similar argument as we have used above, since ¢ ¢ C, we get
B1 # 0 and, hence, b = o/q + ', where o/ = —f3; 'y and B’ = —p;'f3. Thus equation (3)
reduces to
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2

(' +py+paf +8)f(x1, ... x0)° +

+{(a_p+pﬁ+paa/+a/)f(m17"'7xn)2_f(xlv"'7$H)Qf($17"'7xn)}q_

—pf(x1,...,zn)pf(21,. .., Tp) — f(ml,...,xn)p’f(xl,...,a:n).

Since {g¢, 1} is linearly C'-independent, hence, U satisfies

{(a —p+pB + pad/ —i—o/)f(nvl,...,:cn)2 — f(a:l,...,xn)qf(xl,...,xn)}q =0,

that is, U satisfies

{(a —p+pB+pad +)f(x1,...,2n) — flx1,. .. ,mn)q}f(ml, ey Zn)q = 0.
Since {g¢, 1} is linearly C'-independent, hence, U satisfies

f@y,. o mn)qf (e, .. en)g = 0.

This gives that ¢ € C, a contradiction.

Next, suppose that h(zq,...,x,) is a non trivial GPI for U. In case C is infinite, we have
h(xy,...,2,) = 0 for all z1,...,2, € U ®c C, where C is the algebraic closure of C. Since
both U and U ®¢ C are prime and centrally closed [11] (Theorems 2.5 and 3.5), we may replace
R by U or U ®¢ C according to C finite or infinite. Then R is centrally closed over C' and
h(z1,...,2,) =0 for all zy,...,z, € R. By Martindale’s theorem [19], R is then a primitive ring
with nonzero socle soc(R) and with C' as its associated division ring. Then, by Jacobson’s theorem
[14, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V' over C.

Assume first that V' is finite dimensional over C, that is, dimgc V' = m. By density of R, we
have R = M,,(C). Since f(r1,...,rs) is not central valued on R, R must be non commutative
and so m > 2. In this case, by Proposition 3.2, we get that p € C, a contradiction.

Next we suppose that V' is infinite dimensional over C. By Martindale’s theorem [19] (Theorem
3), for any e? = e € soc(R) we have eRe = M;(C) with t = dim¢c Ve. Since p and ¢ are not
central, there exist i1, ho € Soc(R) such that [p, hi] # 0 and [g, ha] # 0. By Litoff’s theorem [12],
there exists an idempotent e € soc(R) such that phy, hip, gha, haq, hi, he € eRe. Since R satisfies
generalized identity

e{d f(exre, ... exne)> + af(exie, ... exne)’q+ pf(exre, ... exne)b +
+ flexre, ... exne)?t — pf(exie, ... exne)pflexie, ..., exne) —
— pf(exye, ... exne)’q— f(exie, ... exne)p flexte, ..., expe) —
— f(exye, ..., exne)qf(exye, ... exne)qle,

the subring eRe satisfies
ed'ef(xy,...,xn)? +eaef(x1,...,2n)%eqe + epef(x, ..., x,)%ebe +
+ f(x1,... zn)%eb e —epef(zy, ..., xp)epef(z1,. .., 2,) —
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— epef(xl,...,:nn)Qeqe — f(z1, ..., xn)epef(z1,. .., xpn) —
— f(x1,...,zp)eqef (1, ..., xy)eqe. @)

Then by the above finite dimensional case, epe and eqe are central elements of eRe. Thus, ph; =
= (epe)h1 = hiepe = h1p and ghs = (eqe)ha = ha(eqe) = hag, a contradiction.

Lemma 3.1 is proved.

Now we prove Proposition 3.1.

Proof of Proposition 3.1. By the hypothesis, we have

a(Pf(T1,~--,Tn)2+f(7'1,~--,7°n)QQ> + (pf(ﬁ,---,Tn)2+f(7“1,~--,7”n)QQ)b:

= (pf(rl,...,rn)+f(r1,-..,rn)q)2,

that is,

apf(ri,...,rn)* +af(ry, o) g+ pf (P, )b+ f(r1, . )b =
:pf(rla--'7rn)pf(r17"'7rn) +f(r17'-->rn)Qf(rl7'"arn)q_‘_
+pf(re, ) g+ flre, o ra)apf (ras ).

By Lemma 3.1 we have that p € C' and g € C. Then H(z) = (p+q)z = Az, where A = p+q € C.
From the given hypothesis we get A{(a — A)f(r)? + f(r)?b} = 0. If A = 0, then H(z) = Az = 0
for all x € R, which is the conclusion 1. Let A # 0. Then we obtain (a — \)f(r)% + f(r)?b = 0.
From Fact 2.5 we have one of the following:

be C and a — A+ b =0, which gives a € C. Therefore, G(x) = (a + b)x = Az = H(x) for
all x € R, which is the conclusion 2.

a—X¢€ Cand a— A+ b= 0 which gives b € C, a € C. Therefore, G(z) = (a + b)z =
= Az = H(z) for all x € R, which is the conclusion 2.

a+b=\and f(z1,...,7,)? is central valued on R which gives b = \ — a.
In this case, we get G(r) = ax+xb = ax+ Az —xa = [a, ]+ \x forall z € R and f(z1,...,2,)>
is central valued on R, which is the conclusion 3.

4. Proof of Theorem 1.1. If H = 0, then we are done. Suppose that H # 0. In view of [16]

(Theorem 3), we may assume that, for some a, p € U, there exist derivations d and § on U such that
G(z) = ax + d(z) and H(x) = px + 6(x) for all z € R. Then by the hypothesis, we have

a(pf(:vl,...,xn)z +o(f (... ,xn)2)) + d(pf(:cl,...,xn)z n

Fo(f (e wa)?) = (pf@n ) + 6T 2))
By simplifying above relation, we obtain
apf(x1,. .., x0)2 + ad(f(z1,...,20)2) +dp)f(z1,. .., 20) +
+ pd(f(z1,. . x0)) f(@1, . 2n) + pf (21, @0)d(f (21, 20)) +
+d(6(f(z1,. .. x0)?) = pf(@1, .. w)pf (@1, ) +
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+0(f(21, .. w))pf (@1, ) +
+pf(z1, .., x0)0(f (1, zn)) + (6(F(z1,. .. z0)))%, (5)
that is,
apf(x1,. .. x0)2+ad(flx1, ..., 20)2) +d®)f(21,. .. 20)* +
+pd(f(z1,. . zn)) f(@1, . 2n) + pf (21, 20)d(f (21,000, 20)) +
+(dS(f(x1s -y xn))f (@1, @) + 6(f (@, 20))d(f (21, . 20)) +
+d(f(x1, . 2n))0(f (@1, xn)) + F(2r, 2 ) (dO(f (21, 20))) =
= pf (@1, n)pf (1, @) + (@1 20) )P (1, ) +
+pf(ar, . an)0(f(xr, . an) + (0(f(z1, ... zn)))> (6)

If d and § both are inner derivations then the result follows from Proposition 3.1. So assume that
both d and ¢ are not an inner derivations. Now we have the following cases.

Casel. Let d be inner derivation and J be an outer derivation. Then, for some ¢ € U, d(z) =
= [q, ] for all x € R. From equation (5), we get

apf(x1,...,x0)2 4+ ad(f(z1,. .., 20)) f(T1,. . 20) +
+af(zy,. .., x0)0(f(x1, ... z0) + (@, 0] f (@1, ..., 20)% +
+pla, f(z1, .. z0)| f(21, .. zn) + pf (21, 2n) [g, f(@1, .. 20)] +
+ 4,00 @n sz F @1, mn)] + [0 F@1s e 2)0(f(@n, . )] =
=pf(xr,...,xn)pf(T1,. .. 20) +f (21, .. 20)d(f(21, ..., 20)) +
+ 8(f(x1, .y z))Df (@1, xn) + (O (21, ..., 20))2 (7)
In (7) replace 0(f(z1,...,x,)) with fo(zy,..., +Z flw1,.

ey 0(xg)y e )

apf(z1, ..., x,)> +af5(x1,...,:Un)f(:cl,...,xn) +

+aZf(acl,...,5($i),...,xn)f(x1,...,xn)Jraf(xl,...,xn)f6(x1,...,:cn) +
+afxla"'7 Zf$1>"'7 7"'7xn)+[Q7p]f($17"'7xn)2+
+p[Q7f($17'"7$n)]f(x17"'7xn)+pf($la"'7xn)|:qaf(x17"'7$n)] +

+ q,fé(.’L'l,...,[E) 5131, +fo1,..

S 0(x), ) f, o xn) |+

+ g, flar, . xn) o2, ) + (1, 2 Zfa;l,..., ,...7a;n)]:

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 7



GENERALIZED DERIVATIONS ACTING ON MULTILINEAR POLYNOMIALS ... 999

:pf(iﬂl,---,xn)pf(l‘l,---,fﬂn)+pf(l‘1,--~,$n)f5($1,---,$n) +

+pf(x1,..., 2y fol,..., ),...,xn)+f6(x1,...,:z:n)pf(x1,...,xn)+

+ Zf(xl,...,5(@),...,xn)pf(:cl,...,xn) +

2
+ (f‘s(xl,,..,l’n)—|—Zf($1,...,(S(JBZ'),...,JI”)) .

Since 0 is outer, by Kharchenko’s theorem (see Fact 2.4), we replace d(z;) by y; in above
expression, we get

apf(xla"' 7$n)2 +(1f5(.1‘1,...,$n)f($1,...,l’n) +

—l—aZf(a:l,...,yi,...,xn)f(xl,...,xn)+af(:v1,...,a:n)f‘s(m,...,xn) +
—|—CLf Tly.--,T Zf xla"'vyiw"?xn)+[Qap]f($17"'a$n)2+

+p[Q7f(xl,'"7xn)]f(mla---axn)+pf($la---a'xn)[qaf('xla---vl‘n)] +

+ q,f‘s(:):l,...,:cn)f(xl,...,xn)+Zf(xl,...,yi,...,xn)f(xl,...,xn)] +
+ q,f(xl,...,a:n)f‘s(:cl,..., n) + f(z1,...,x Zf TlyeeesYiyenos @ )] =
:pf(ﬂ:l,...,.’ﬁn)pf(l']_,...,CCn)"‘pf(I]_,...,S[Tn)fa(.xl,...,ﬂfn)+
+pf Tl1y.-o, T foh "ayiw"’xn)+f6(x17"'7'rn)pf($17'"71'”)+
+Zf(xlw"ina"wmn)pf(xl?"wxn)+
2
+ (fﬁ(asl,..., +fo1,...,y@,..., >) ®)
for all x;,3; € U. In particular, for z; = 0 in relation (8), we obtain f(y1,22,...,2,)> = 0, a
contradiction.

Casell. Let d be an outer derivation on R and  be an inner derivation on R. For some g € U
such that d(z) = [¢, | for all x € R. Then (5) implies that

apf(xl,..,,a:n)z +a[Q’f(xla-'-vmn)2] +d(p)f(x17---,33n)2 +
+pd(f(x1,...,z0))f(z1, . yxn) +pf (X1, xn)d(f (21, .0 20)) +
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+ [d(q),f(xl,...,acn)Q] + [q,d(f($1,...,mn)2)] =
=pf(x1,...,xn)pf(z1, ..., 20) + [q,f($1,...,:vn)]pf(x1,...,J:n) +
—i—pf(xl,...,xn)[q,f(:rl,...,xn)} + ([q,f(xl,...,a:n)])Z. ©)

This can be rewritten as
apf(x1, ... w0)? +alg, (@1, ... 20)?] +d(p) f(1,. .. 20)? +
+pd(f(x1,. .., 20)) f(@1, ..y 2n) F0f (21, 20)d(f(21, .., 20)) +
+ [d(q), f(z1, .. zn)?] + @, d(f(zr, . zn)) Flon, . zn)] +
+ g, f(@1, . m)d(flan, ... ox0))] =
=pf (@1, 2)pf (@1, xn) + (@, F@1, . xn) [ pf (a1, . ) +
+pf(@1, ) (@ f@1, . 2)] + <[q,f(a:1, o ,xn)])Q. (10)

Since d is an outer derivation on R, in (10) replace d(f(z1,...,x,)) with f(21,...,2,) +
+Z. flx1, . yiy. .., xn), where d(x;) = y;, we obtain
1

apf(xla s 7-:Un)2 +G[q,f(.%'1, s 7$n)2] + d(p)f(.’ll'l, s 7$n)2 +

+pfd(x1)"'a )fmlu"'u "‘pi$17-~7%,~~, )f(xlavxn)+

+pf($la"'7xn)fd($1a"'7 )+pfwla"'7 wala"wylv"'v )+

q,fd(l’l,...,.%'n)f(.%'l,...,J?n) +

_|_

Q>f(xla"'7xn)fd(x1a"'v )+fl'1, Y fola"'>yia"'7xn)]:

:pf(xlv"'vxn)pf($17"'7$n) + [qvf(xlv"wxn)}pf(xl?'"7xn) +
+pf(@1, .. xn)[g, (o, .. x)] + ([q,f(xl,.,.wn)])Q.

Hence, U satisfies the blended component

pi(:Cla”'7yi7"'7$n)f(x17”'7 )+pf$1,..., fo17"‘7yi7”'7xn)+
i
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Q3Zf$17"'7yla"" )f('xla"'al‘n) +

+

Qa :Ela'-' folv s Yiye oo, T )]:O

In particular, for y; = 21 and y2 = ... = y, = 0, we obtain 2pf(x1,...,2,)? + 2[q,f(ac1,...
., @p)?] = 0. Since char(R) # 2, it implies that pf(z1,...,2n)? + [¢, f(21,...,2,)*] = 0. This
gives that

P+ @) f (@1, 20)* = fla1,...,20)%q = 0.

By Fact 2.5, we have one of the following:

q € C' and p = 0, which implies that H = 0, a contradiction.

p+¢q € C and p = 0, which gives that ¢ € C'. In this case H = 0, a contradiction.

p=0and f(z1,...,2,)? is a central valued on R. By using the fact that if z € Z(R), then
d(z) € Z(R), where d is a derivation on R, the equation (9) implies that [gq, f(z1,...,z,)]* = 0.
By [9] (Theorem 1.1), we get ¢ € C' which implies that H = 0, a contradiction.

Caselll. Let none of d and ¢ be inner derivations on R. We have the following two subcases.
Subcasel. Suppose that d and § are C'-dependent modulo inner derivation of U, that is, ad +

+ B0 = ady, where o, € C, ¢ € U and ady(x) = [g,z] for all z € U. If a = 0, then 0 is
inner derivation on R, a contradiction. If 5 = 0, then d is inner derivation on R, a contradiction.
Hence, o and (3 both can not be zero. This gives that d(x) = $10(x) + [¢, z] for all x € R, where
1 =—a" 15 and ¢’ = a~'q. Thus, from (5), we have

apf(x1, ..., xn)2 +ad(f(zy,...,x0))flx1, ... 2n) +

af (o, w0 wn) 4 dp)f (e mn)? + (B s w) +
[0 S wa)] ) F @ @) 4 pf@r o m) (B (s wa)) +
+ [q/,f(xl,...,xn)D B2 (s ) (s Tn) +
+ Bif(x1, . 20) 82 (F (@1, s xn)) + 2610 (f (21, -y 2n))? +
[0 80 @ ) T n) + S (1 ) (s 20)] =

=pf(x1,. ., xn)pf(x1,. .. 2n) +0(f(z1,. .., z0))pf (X1, ... 20) +
+pf(@r, ., zn)0(f(z1, . zn)) + (B(f(z1, ..., 20)))> (1)

First, we can replace o(f(x1,...,2,)) with f‘s(:vl,...,xn) + Z'f(z:l,...,yi,...,xn) and
82(f(w1,...,zy)) with

fls (:1:17"'7 +2Zf $17~--711i,---,$n)+
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+Zf(l'b'"?wiv"'vxn)+Zf(m1>"'7y’i7"'ayj7'"73371)7
( i#]

where 6(x;) = y; and 52(xi) = wj; in (11) and then U satisfies the blended component

51 Zf(:vl,...,wi,...,xn) fleg... zn) +

+ Bf(@reeean) [ S F(@ree o wiy e za) | =0 (12)

for all z1,...,z, € R and w; € R. In particular, for w; = z; and wy = ... = w,, = 0, we obtain
2B81f(x1,...,2,)? = 0. Since char(R) # 2, it implies that 3; = 0. Then d is an inner derivation, a
contradiction.

Subcasell. Suppose that d and 6 are C-independent modulo inner derivation of U. By using
Kharchenko’s theorem (see Fact 2.4), we can replace d(f(x1,...,z,)) with fé(xq,...,z,) +

—}—Zif(xl,...,yi,...,xn), (f(z1,...,x,)) with f5(x1,...,xn)—l—zif(:):l,...,zi,...,:rn) and
do(f(xz1,...,zy,)) with fd‘s(xl,...,:rn)—l—zi fd(xl,...,zi,...,:vn)—i—zi @1, Uiy )+

+ Zif(xl,...,wi,...,xn) + Z#j f@i, .o Yis ooy 2jy .o, @), Where d(x;) = yi, 6(z;) = 2
and dd(x;) = w; in equation (6) and then U satisfies the blended component

Zf(xl,...,wi,...,$n) flzy,...,xn) +

+ f(z1,...,2n) Zf(xl,...,wi,...,xn =0. (13)

Equation (13) is similar to equation (12), we get a contradiction.
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