DOI: 10.37863/umzh.v74i7.6108

UDC 512.5

- S. K. Tiwari (Indian Institute of Technology Patna, Bihar, India),
- B. Prajapati (School of Liberal Studies, Ambedkar University Delhi, India)

GENERALIZED DERIVATIONS ACTING ON MULTILINEAR POLYNOMIALS AS A JORDAN HOMOMORPHISMS

УЗАГАЛЬНЕНІ ПОХІДНІ, ЩО ДІЮТЬ НА МУЛЬТИЛІНІЙНИХ ПОЛІНОМАХ ЯК ЖОРДАНОВІ ГОМОМОРФІЗМИ

Let R be a prime ring whose characteristic is not equal to 2, let U be the Utumi quotient ring of R, and let C be the extended centroid of R. Also let G and H be two generalized derivations on R and let $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over C. If $G(H(u^2)) = (H(u))^2$ for all $u = f(r_1, \ldots, r_n), r_1, \ldots, r_n \in R$, then one of the following holds:

- 1) H = 0;
- 2) there exists $\lambda \in C$ such that $G(x) = H(x) = \lambda x$ for all $x \in R$;
- 3) there exist $\lambda \in C$ and $a \in U$ such that $H(x) = \lambda x$ and $G(x) = [a, x] + \lambda x$ for all $x \in R$ and $f(x_1, \dots, x_n)^2$ is central-valued on R.

Нехай R — просте кільце з характеристикою, що не дорівнює 2, U — фактор-кільце Утумі для R, а C — продовжений центроїд для R. Крім того, припустимо, що G та H — дві узагальнені похідні на R, а $f(x_1,\ldots,x_n)$ — нецентральний мультилінійний поліном над C. Якщо $G(H(u^2))=(H(u))^2$ для всіх $u=f(r_1,\ldots,r_n),\ r_1,\ldots,r_n\in R$, то справджується одне з таких тверджень:

- 1) H = 0;
- 2) існує таке $\lambda \in C$, що $G(x) = H(x) = \lambda x$ для всіх $x \in R$;
- 3) існують такі $\lambda \in C$ та $a \in U$, що $H(x) = \lambda x$, $G(x) = [a, x] + \lambda x$ для всіх $x \in R$ і $f(x_1, \dots, x_n)^2$ є центральнозначним на R.
- **1. Introduction.** Throughout the article R denotes a prime ring of characteristic different from 2 with center Z(R) and U denotes the Utumi quotient ring of R. The center of U denoted by C is called the extended centroid of R. An additive mapping d on a ring R is said to be a derivation if d(xy) = d(x)y + xd(y) for all $x, y \in R$. For a fixed $a \in R$, the mapping $d_a \colon R \to R$, defined by $d_a(x) = [a, x]$, for all $x \in R$ is a derivation, usually called inner derivation induced by an element $a \in R$. A derivation is called outer if it is not an inner derivation. An additive mapping H on a ring R is said to be a generalized derivation associated with a derivation d if H(xy) = H(x)y + xd(y) for all $x, y \in R$. For fixed $a, a' \in R$, the mapping $F_{(a,a')} \colon R \to R$ defined by $F_{(a,a')}(x) = ax + xa'$ is a generalized derivation on R. The mapping $F_{(a,a')}$ is usually called generalized inner derivation on R.

An additive mapping on a ring R is a homomorphism if H(xy) = H(x)H(y) for all $x, y \in R$ and H is said to an anti-homomorphism if H(xy) = H(y)H(x) for all $x, y \in R$. An additive mapping H is said to be a Jordan homomorphism if $H(x^2) = (H(x))^2$ for all $x \in R$. We observe that every homomorphism and anti-homomorphism is a Jordan homomorphism but the converse is not true in general. Following example justify our observation.

Example 1.1. Suppose that * is an involution on ring R and $S = R \bigoplus R$ is a ring such that $r_1ar_2 = 0$ for all $r_1, r_2 \in R$, where $a \in Z(R)$. Define a function ζ on S such that $\zeta(r_1, r_2) = R$

 $=(ar_1,r_2^*)$ for all $r_1,r_2 \in R$. This example shows that ζ is a Jordan homomorphism but not a homomorphism.

Herstein [13], in 1956 proved that every Jordan homomorphism from a ring R onto a prime ring R' with $char(R) \neq 2,3$ is either a homomorphism or anti-homomorphism. Further, Smiley [20], in 1957 improve the above result by removing the restriction of characteristic is not equal to 3 in the hypothesis of the Herstein's [13].

The context of derivation, which acts as a homomorphism or as an anti-homomorphism, was first studied by Bell and Kappe [8]. More precisely, they proved that there is no nonzero derivation on prime ring which acts as a homomorphism or as an anti-homomorphism on right ideal of R. Later on many mathematician have studied the additive mapping which acts as a homomorphism, anti-homomorphism, Jordan homomorphism, Lie homomorphism on some subsets of a particular ring. For more details, we refer to reader [1-6, 21-25].

Recently, in this line of investigation De Filippis and Dhara [4], in 2019 studied the structure of prime ring R, when generalized skew derivation acts as a Jordan homomorphism on multilinear polynomial over C.

Motivated by above cited results, we would like to study the following.

Theorem 1.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient ring of R and C be the extended centroid of R. Let G and H be two generalized derivations on R and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is noncentral valued on R. If $G(H(u^2)) = (H(u))^2$ for all $u = f(r_1, \ldots, r_n)$, $r_1, \ldots, r_n \in R$, then one of the following holds:

- 1) H = 0;
- 2) there exists $\lambda \in C$ such that $G(x) = H(x) = \lambda x$ for all $x \in R$;
- 3) there exist $\lambda \in C$ and $a \in U$ such that $H(x) = \lambda x$, $G(x) = [a, x] + \lambda x$ for all $x \in R$ and $f(x_1, \ldots, x_n)^2$ is central valued on R.

The following corollaries are an immediate application of Theorem 1.1. In particular, for G = I, identity mapping in Theorem 1.1, we have the following.

Corollary 1.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient ring of R and C be the extended centroid of R. Let H be a nonzero generalized derivation on R and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is noncentral valued on R. If $H(u^2) = (H(u))^2$ for all $u = f(r_1, \ldots, r_n)$, $r_1, \ldots, r_n \in R$, then H(x) = x for all $x \in R$.

In particular, for H = I, the identity mapping on R in Theorem 1.1, we have the following.

Corollary 1.2. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient ring of R and C be the extended centroid of R. Let H be a nonzero generalized derivation on R and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is noncentral valued on R. If $H(u^2) = u^2$ for all $u = f(r_1, \ldots, r_n)$, $r_1, \ldots, r_n \in R$, then one of the following holds:

- 1) H(x) = x for all $x \in R$;
- 2) there exists $a \in U$ such that H(x) = [a, x] + x for all $x \in R$ and $f(x_1, \dots, x_n)^2$ is central valued on R.

Corollary 1.3. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient ring of R and C be the extended centroid of R. Let $q \notin Z(R)$, H be a generalized derivation on R

and $f(x_1,...,x_n)$ be a multilinear polynomial over C which is noncentral valued on R such that $[q,H(u^2)]=(H(u))^2$ for all $u=f(r_1,...,r_n), r_1,...,r_n \in R$. Then H=0.

2. Notations and known results. Let d and δ be two derivations on R. We denote by $f^d(x_1,\ldots,x_n)$ the polynomials obtained from $f(x_1,\ldots,x_n)$ replacing each coefficients α_σ with $d(\alpha_\sigma)$. Then we have

$$d(f(x_1,...,x_n)) = f^d(x_1,...,x_n) + \sum_i f(x_1,...,d(x_i),...,x_n)$$

and

$$d\delta(f(r_1,\ldots,r_n)) = f^{d\delta}(r_1,\ldots,r_n) + \sum_i f^d(r_1,\ldots,\delta(r_i),\ldots,r_n) +$$

$$+ \sum_i f^\delta(r_1,\ldots,d(r_i),\ldots,r_n) + \sum_i f(r_1,\ldots,d\delta(r_i),\ldots,r_n) +$$

$$+ \sum_{i\neq j} f(r_1,\ldots,d(r_i),\ldots,\delta(r_j),\ldots,r_n).$$

The following facts are frequently used to prove our results.

- **Fact 2.1.** Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the same generalized polynomial identities with coefficients in U [10].
- **Fact 2.2.** Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the same differential identities [17].
- **Fact 2.3.** Let R be a prime ring. Then every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 [7]).
- Fact 2.4 ([15], Theorem 2). Let R be a prime ring, d a nonzero derivation on R and I a nonzero ideal of R. If I satisfies the differential identity

$$f(r_1, \ldots, r_n, d(r_1), \ldots, d(r_n)) = 0$$

for any $r_1, \ldots, r_n \in I$, then either

(i) I satisfies the generalized polynomial identity

$$f(r_1,\ldots,r_n,x_1,\ldots,x_n)=0$$

or

(ii) d is U-inner, i.e., for some $q \in U$, d(x) = [q, x] and I satisfies the generalized polynomial identity

$$f(r_1, \ldots, r_n, [q, r_1], \ldots, [q, r_n]) = 0.$$

- **Fact 2.5** ([6], Lemma 2.9). Let R be a prime ring of characteristic with $char(R) \neq 2$, a, b, c, $c' \in U$ and $p(x_1, \ldots, x_n)$ be any polynomial over C which is not identity for R. If ap(r) + p(r)b + cp(r)c' = 0 for all $r \in R^n$, then one of the following conditions holds:
 - 1) $b, c' \in C$ and a + b + cc' = 0;
 - 2) $a, c \in C$ and a + b + cc' = 0;
 - 3) a+b+cc'=0 and $p(x_1,\ldots,x_n)^2$ is central valued on R.

3. G and H are generalized inner derivations. In this section, we study the case when G and H are generalized inner derivations. Suppose that G(x) = ax + xb and H(x) = px + xq for all $x \in R$ and for some $a, b, p, q \in U$. From the given identity $G(H(f(r)^2)) = H(f(r))^2$ we get the expression $a'f(r)^2 + af(r)^2q + pf(r)^2b + f(r)^2b' = pf(r)pf(r) + pf(r)^2q + f(r)p'f(r) + f(r)qf(r)q$ where a' = ap, b' = qb and p' = qp. To prove main result we prove the following propositions.

Proposition 3.1. Let R be a prime ring of characteristic not equal to 2, U be the Utumi quotient ring of R and C be the extended centroid of R. Let G and H be two generalized inner derivations on R and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is noncentral valued on R. If $G(H(u^2)) = (H(u))^2$ for all $u = f(r_1, \ldots, r_n)$, $r_1, \ldots, r_n \in R$, then one of the following holds:

- 1) H = 0;
- 2) there exists $\lambda \in C$ such that $G(x) = H(x) = \lambda x$ for all $x \in R$;
- 3) there exist $\lambda \in C$ and $a \in U$ such that $H(x) = \lambda x$, $G(x) = [a, x] + \lambda x$ and $f(x_1, \dots, x_n)^2$ is central valued on R.

To prove the above proposition we need the following results.

Proposition 3.2. Let $R = M_m(K)$ be the ring of all $m \times m$ matrices over the field K with characteristic not equal to 2 and $m \ge 2$ and $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over K. Let $a, a', b, b', p, p', q \in U$ such that $a'f(r)^2 + af(r)^2q + pf(r)^2b + f(r)^2b' = pf(r)pf(r) + pf(r)^2q + f(r)p'f(r) + f(r)qf(r)q$ for all $r = (r_1, \ldots, r_n) \in R^n$. Then $p \in K \cdot I_m$ and $q \in K \cdot I_m$.

Proof. Since $f(x_1,\ldots,x_n)$ be a noncentral on R. By [18] (Lemma 2, Proof of Lemma 3), there exists a sequence of matrices $r=(r_1,\ldots,r_n)$ in R such that $f(r_1,\ldots,r_n)=\gamma e_{ij}$ with $0\neq\gamma\in K$ and $i\neq j$. Since the set $f(R)=\{f(x_1,\ldots,x_n)\mid x_i\in R\}$ is invariant under the action of all inner automorphisms of R for all $i\neq j$ there exists a sequence of matrices $r=(r_1,\ldots,r_n)$ in R such that $f(r_1,\ldots,r_n)=\gamma e_{ij}$. Thus our hypothesis

$$a'f(r_1, \dots, r_n)^2 + af(r_1, \dots, r_n)^2 q + pf(r_1, \dots, r_n)^2 b + f(r_1, \dots, r_n)^2 b' =$$

$$= pf(r_1, \dots, r_n)pf(r_1, \dots, r_n) + pf(r_1, \dots, r_n)^2 q +$$

$$+ f(r_1, \dots, r_n)p'f(r_1, \dots, r_n) + f(r_1, \dots, r_n)qf(r_1, \dots, r_n)q.$$
(1)

Gives that

$$pe_{ij}pe_{ij} + e_{ij}p'e_{ij} + e_{ij}qe_{ij}q = 0.$$

Left multiplying above relation by e_{ij} , we obtain $e_{ij}pe_{ij}pe_{ij}=0$. It implies that $p_{ij}^2=0$ and hence $p_{ij}=0$ with $i\neq j$. It implies that p is a diagonal matrix.

Right multiplication by e_{ij} in above expression we get $q_{ij} = 0$ with $i \neq j$. This implies that q is a diagonal matrix.

For any K-automorphism θ of R, p^{θ} enjoy the same property as p does, p^{θ} must be diagonal. Write $p = \sum_{i=1}^{m} p_{ii}e_{ii}$; then, for $s \neq t$, we have

$$(1 + e_{ts})p(1 - e_{ts}) = \sum_{i=1}^{m} p_{ii}e_{ii} + (p_{ss} - p_{tt})e_{ts}$$

diagonal. Hence, $p_{ss} = p_{tt}$ and so p is a scalar matrix, that is, $p \in K \cdot I_m$. Similarly, we can show that q is diagonal and hence central.

Proposition 3.2 is proved.

Lemma 3.1. Let R be a prime ring of characteristic not equal to R. Let R be the Utumi ring of quotients and R be the extended centroid of ring R. Suppose that $f(x_1, \ldots, x_n)$ be a multilinear polynomial over R which is not central valued on R such that $a'f(r)^2 + af(r)^2q + pf(r)^2b + f(r)^2b' = pf(r)pf(r) + pf(r)^2q + f(r)p'f(r) + f(r)qf(r)q$ for all $r \in R^n$ and for some $a, a', b, b', p, p', q \in U$. Then p and q are central.

Proof. On contrary suppose that both p and q are not central. By hypothesis, we have

$$h(x_1, \dots, x_n) = a' f(x_1, \dots, x_n)^2 + a f(x_1, \dots, x_n)^2 q + p f(x_1, \dots, x_n)^2 b +$$

$$+ f(x_1, \dots, x_n)^2 b' - p f(x_1, \dots, x_n) p f(x_1, \dots, x_n) -$$

$$- p f(x_1, \dots, x_n)^2 q - f(x_1, \dots, x_n) p' f(x_1, \dots, x_n) -$$

$$- f(x_1, \dots, x_n) q f(x_1, \dots, x_n) q$$

for all $x_1, \ldots, x_n \in R$, that is,

$$h(x_1, \dots, x_n) = a' f(x_1, \dots, x_n)^2 + \left\{ a f(x_1, \dots, x_n)^2 - p f(x_1, \dots, x_n)^2 - f(x_1, \dots, x_n) q f(x_1, \dots, x_n) \right\} q + p f(x_1, \dots, x_n)^2 b + f(x_1, \dots, x_n)^2 b' - p f(x_1, \dots, x_n) p f(x_1, \dots, x_n) - f(x_1, \dots, x_n) p' f(x_1, \dots, x_n)$$

$$(2)$$

for all $x_1, \ldots, x_n \in R$.

Since R and U satisfy same generalized polynomial identity (GPI) (see [10]), U satisfies $h(x_1,\ldots,x_n)=0_T$. Suppose that $h(x_1,\ldots,x_n)$ is a trivial GPI for U. Let $T=U*_CC\{x_1,\ldots,x_n\}$, the free product of U and $C\{x_1,\ldots,x_n\}$, the free C-algebra in non commuting indeterminates x_1,\ldots,x_n . Then $h(x_1,\ldots,x_n)$ is zero element in $T=U*_CC\{x_1,\ldots,x_n\}$. It implies that $\{b,b',q,1\}$ is linearly C-dependent. Then there exist $\alpha_1,\alpha_2,\alpha_3$ and $\alpha_4\in C$ such that $\alpha_1b+\alpha_2b'+\alpha_3q+\alpha_41=0$. If $\alpha_1=0=\alpha_2$, then $\alpha_3\neq 0$ and so $q=-\alpha_3^{-1}\alpha_4\in C$, gives a contradiction. Therefore either $\alpha_1\neq 0$ or $\alpha_2\neq 0$. Without loss of generality, we assume that $\alpha_1\neq 0$. Then $b=\alpha b'+\beta q+\gamma$, where $\alpha=-\alpha_1^{-1}\alpha_2$, $\beta=-\alpha_1^{-1}\alpha_3$ and $\gamma=-\alpha_1^{-1}\alpha_4$. Then U satisfies

$$(a' + p\gamma)f(x_1, \dots, x_n)^2 + \left\{ af(x_1, \dots, x_n)^2 - pf(x_1, \dots, x_n)^2 - f(x_1, \dots, x_n)qf(x_1, \dots, x_n) + p\beta f(x_1, \dots, x_n)^2 \right\} q + \left\{ p\alpha + 1 \right\} f(x_1, \dots, x_n)^2 b' - pf(x_1, \dots, x_n)pf(x_1, \dots, x_n) - f(x_1, \dots, x_n)p'f(x_1, \dots, x_n).$$

$$(3)$$

This implies that $\{b',q,1\}$ is linearly C dependent. Then there exist $\beta_1,\beta_2,\beta_3\in C$ such that $\beta_1b'+\beta_2q+\beta_31=0$. Again using similar argument as we have used above, since $q\notin C$, we get $\beta_1\neq 0$ and, hence, $b'=\alpha'q+\beta'$, where $\alpha'=-\beta_1^{-1}\beta_2$ and $\beta'=-\beta_1^{-1}\beta_3$. Thus equation (3) reduces to

$$(a' + p\gamma + p\alpha\beta' + \beta')f(x_1, \dots, x_n)^2 +$$

$$+ \{(a - p + p\beta + p\alpha\alpha' + \alpha')f(x_1, \dots, x_n)^2 - f(x_1, \dots, x_n)qf(x_1, \dots, x_n)\}q -$$

$$- pf(x_1, \dots, x_n)pf(x_1, \dots, x_n) - f(x_1, \dots, x_n)p'f(x_1, \dots, x_n).$$

Since $\{q, 1\}$ is linearly C-independent, hence, U satisfies

$$\left\{ (a-p+p\beta+p\alpha\alpha'+\alpha')f(x_1,\ldots,x_n)^2 - f(x_1,\ldots,x_n)qf(x_1,\ldots,x_n) \right\} q = 0,$$

that is, U satisfies

$$\left\{(a-p+p\beta+p\alpha\alpha'+\alpha')f(x_1,\ldots,x_n)-f(x_1,\ldots,x_n)q\right\}f(x_1,\ldots,x_n)q=0.$$

Since $\{q,1\}$ is linearly C-independent, hence, U satisfies

$$f(x_1,\ldots,x_n)qf(x_1,\ldots,x_n)q=0.$$

This gives that $q \in C$, a contradiction.

Next, suppose that $h(x_1,\ldots,x_n)$ is a non trivial GPI for U. In case C is infinite, we have $h(x_1,\ldots,x_n)=0$ for all $x_1,\ldots,x_n\in U\otimes_C\overline{C}$, where \overline{C} is the algebraic closure of C. Since both U and $U\otimes_C\overline{C}$ are prime and centrally closed [11] (Theorems 2.5 and 3.5), we may replace R by U or $U\otimes_C\overline{C}$ according to C finite or infinite. Then R is centrally closed over C and $h(x_1,\ldots,x_n)=0$ for all $x_1,\ldots,x_n\in R$. By Martindale's theorem [19], R is then a primitive ring with nonzero socle $\mathrm{soc}(R)$ and with C as its associated division ring. Then, by Jacobson's theorem [14, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

Assume first that V is finite dimensional over C, that is, $\dim_C V = m$. By density of R, we have $R \cong M_m(C)$. Since $f(r_1, \ldots, r_n)$ is not central valued on R, R must be non commutative and so $m \geq 2$. In this case, by Proposition 3.2, we get that $p \in C$, a contradiction.

Next we suppose that V is infinite dimensional over C. By Martindale's theorem [19] (Theorem 3), for any $e^2 = e \in \operatorname{soc}(R)$ we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. Since p and q are not central, there exist $h_1, h_2 \in \operatorname{Soc}(R)$ such that $[p, h_1] \neq 0$ and $[q, h_2] \neq 0$. By Litoff's theorem [12], there exists an idempotent $e \in \operatorname{soc}(R)$ such that $ph_1, h_1p, qh_2, h_2q, h_1, h_2 \in eRe$. Since R satisfies generalized identity

$$e\{a'f(ex_{1}e, \dots, ex_{n}e)^{2} + af(ex_{1}e, \dots, ex_{n}e)^{2}q + pf(ex_{1}e, \dots, ex_{n}e)^{2}b + f(ex_{1}e, \dots, ex_{n}e)^{2}b' - pf(ex_{1}e, \dots, ex_{n}e)pf(ex_{1}e, \dots, ex_{n}e) - - pf(ex_{1}e, \dots, ex_{n}e)^{2}q - f(ex_{1}e, \dots, ex_{n}e)p'f(ex_{1}e, \dots, ex_{n}e) - - f(ex_{1}e, \dots, ex_{n}e)qf(ex_{1}e, \dots, ex_{n}e)q\}e,$$

the subring eRe satisfies

$$ea'ef(x_1,...,x_n)^2 + eaef(x_1,...,x_n)^2 eqe + epef(x_1,...,x_n)^2 ebe +$$

 $+ f(x_1,...,x_n)^2 eb'e - epef(x_1,...,x_n) epef(x_1,...,x_n) -$

$$-epef(x_1, \dots, x_n)^2 eqe - f(x_1, \dots, x_n)ep'ef(x_1, \dots, x_n) -$$

$$-f(x_1, \dots, x_n)eqef(x_1, \dots, x_n)eqe.$$

$$(4)$$

Then by the above finite dimensional case, epe and eqe are central elements of eRe. Thus, $ph_1 = (epe)h_1 = h_1epe = h_1p$ and $qh_2 = (eqe)h_2 = h_2(eqe) = h_2q$, a contradiction.

Lemma 3.1 is proved.

Now we prove Proposition 3.1.

Proof of Proposition 3.1. By the hypothesis, we have

$$a\Big(pf(r_1,\ldots,r_n)^2 + f(r_1,\ldots,r_n)^2q\Big) + \Big(pf(r_1,\ldots,r_n)^2 + f(r_1,\ldots,r_n)^2q\Big)b =$$

$$= \Big(pf(r_1,\ldots,r_n) + f(r_1,\ldots,r_n)q\Big)^2,$$

that is,

$$apf(r_1, \dots, r_n)^2 + af(r_1, \dots, r_n)^2 q + pf(r_1, \dots, r_n)^2 b + f(r_1, \dots, r_n)^2 q b =$$

$$= pf(r_1, \dots, r_n)pf(r_1, \dots, r_n) + f(r_1, \dots, r_n)qf(r_1, \dots, r_n)q +$$

$$+ pf(r_1, \dots, r_n)^2 q + f(r_1, \dots, r_n)qpf(r_1, \dots, r_n).$$

By Lemma 3.1 we have that $p \in C$ and $q \in C$. Then $H(x) = (p+q)x = \lambda x$, where $\lambda = p+q \in C$. From the given hypothesis we get $\lambda\{(a-\lambda)f(r)^2 + f(r)^2b\} = 0$. If $\lambda = 0$, then $H(x) = \lambda x = 0$ for all $x \in R$, which is the conclusion 1. Let $\lambda \neq 0$. Then we obtain $(a-\lambda)f(r)^2 + f(r)^2b = 0$. From Fact 2.5 we have one of the following:

 $b \in C$ and $a - \lambda + b = 0$, which gives $a \in C$. Therefore, $G(x) = (a + b)x = \lambda x = H(x)$ for all $x \in R$, which is the conclusion 2.

 $a-\lambda\in C$ and $a-\lambda+b=0$ which gives $b\in C,\ a\in C$. Therefore, G(x)=(a+b)x= $=\lambda x=H(x)$ for all $x\in R$, which is the conclusion 2.

 $a+b=\lambda$ and $f(x_1,\ldots,x_n)^2$ is central valued on R which gives $b=\lambda-a$. In this case, we get $G(x)=ax+xb=ax+\lambda x-xa=[a,x]+\lambda x$ for all $x\in R$ and $f(x_1,\ldots,x_n)^2$ is central valued on R, which is the conclusion 3.

4. Proof of Theorem 1.1. If H=0, then we are done. Suppose that $H\neq 0$. In view of [16] (Theorem 3), we may assume that, for some $a,p\in U$, there exist derivations d and δ on U such that G(x)=ax+d(x) and $H(x)=px+\delta(x)$ for all $x\in R$. Then by the hypothesis, we have

$$a(pf(x_1,...,x_n)^2 + \delta(f(x_1,...,x_n)^2)) + d(pf(x_1,...,x_n)^2 + \delta(f(x_1,...,x_n)^2)) = (pf(x_1,...,x_n) + \delta(f(x_1,...,x_n)))^2.$$

By simplifying above relation, we obtain

$$apf(x_1, ..., x_n)^2 + a\delta(f(x_1, ..., x_n)^2) + d(p)f(x_1, ..., x_n)^2 +$$

$$+ pd(f(x_1, ..., x_n))f(x_1, ..., x_n) + pf(x_1, ..., x_n)d(f(x_1, ..., x_n)) +$$

$$+ d(\delta(f(x_1, ..., x_n)^2)) = pf(x_1, ..., x_n)pf(x_1, ..., x_n) +$$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 7

$$+ \delta(f(x_1, ..., x_n)) p f(x_1, ..., x_n) +$$

$$+ p f(x_1, ..., x_n) \delta(f(x_1, ..., x_n)) + (\delta(f(x_1, ..., x_n)))^2,$$
(5)

that is,

$$apf(x_{1},...,x_{n})^{2} + a\delta(f(x_{1},...,x_{n})^{2}) + d(p)f(x_{1},...,x_{n})^{2} +$$

$$+ pd(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})d(f(x_{1},...,x_{n})) +$$

$$+ (d\delta(f(x_{1},...,x_{n})))f(x_{1},...,x_{n}) + \delta(f(x_{1},...,x_{n}))d(f(x_{1},...,x_{n})) +$$

$$+ d(f(x_{1},...,x_{n}))\delta(f(x_{1},...,x_{n})) + f(x_{1},...,x_{n})(d\delta(f(x_{1},...,x_{n}))) =$$

$$= pf(x_{1},...,x_{n})pf(x_{1},...,x_{n}) + \delta(f(x_{1},...,x_{n}))pf(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n})) + (\delta(f(x_{1},...,x_{n})))^{2}.$$
(6)

If d and δ both are inner derivations then the result follows from Proposition 3.1. So assume that both d and δ are not an inner derivations. Now we have the following cases.

Case I. Let d be inner derivation and δ be an outer derivation. Then, for some $q \in U$, d(x) = [q, x] for all $x \in R$. From equation (5), we get

$$apf(x_{1},...,x_{n})^{2} + a\delta(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) +$$

$$+ af(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n})) + [q,p]f(x_{1},...,x_{n})^{2} +$$

$$+ p[q,f(x_{1},...,x_{n})]f(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})[q,f(x_{1},...,x_{n})] +$$

$$+ [q,\delta(f(x_{1},...,x_{n}))f(x_{1},...,x_{n})] + [q,f(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n}))] =$$

$$= pf(x_{1},...,x_{n})pf(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n})) +$$

$$+ \delta(f(x_{1},...,x_{n}))pf(x_{1},...,x_{n}) + (\delta f(x_{1},...,x_{n}))^{2}.$$
In (7) replace $\delta(f(x_{1},...,x_{n}))$ with $f^{\delta}(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,\delta(x_{i}),...,x_{n})$:

$$apf(x_1, \dots, x_n) + \sum_i f(x_1, \dots, x_n) + \sum_i f(x_1$$

$$= pf(x_1, ..., x_n) pf(x_1, ..., x_n) + pf(x_1, ..., x_n) f^{\delta}(x_1, ..., x_n) +$$

$$+ pf(x_1, ..., x_n) \sum_{i} f(x_1, ..., \delta(x_i), ..., x_n) + f^{\delta}(x_1, ..., x_n) pf(x_1, ..., x_n) +$$

$$+ \sum_{i} f(x_1, ..., \delta(x_i), ..., x_n) pf(x_1, ..., x_n) +$$

$$+ \left(f^{\delta}(x_1, ..., x_n) + \sum_{i} f(x_1, ..., \delta(x_i), ..., x_n) \right)^{2}.$$

Since δ is outer, by Kharchenko's theorem (see Fact 2.4), we replace $\delta(x_i)$ by y_i in above expression, we get

$$apf(x_{1},...,x_{n})^{2} + af^{\delta}(x_{1},...,x_{n})f(x_{1},...,x_{n}) +$$

$$+ a\sum_{i} f(x_{1},...,y_{i},...,x_{n})f(x_{1},...,x_{n}) + af(x_{1},...,x_{n})f^{\delta}(x_{1},...,x_{n}) +$$

$$+ af(x_{1},...,x_{n}) \sum_{i} f(x_{1},...,y_{i},...,x_{n}) + [q,p]f(x_{1},...,x_{n})^{2} +$$

$$+ p[q,f(x_{1},...,x_{n})]f(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})[q,f(x_{1},...,x_{n})] +$$

$$+ \left[q,f^{\delta}(x_{1},...,x_{n})f(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,y_{i},...,x_{n})f(x_{1},...,x_{n})\right] +$$

$$+ \left[q,f(x_{1},...,x_{n})f^{\delta}(x_{1},...,x_{n}) + f(x_{1},...,x_{n})\sum_{i} f(x_{1},...,y_{i},...,x_{n})\right] =$$

$$= pf(x_{1},...,x_{n})f^{\delta}(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})f^{\delta}(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})\sum_{i} f(x_{1},...,y_{i},...,x_{n}) + f^{\delta}(x_{1},...,x_{n})pf(x_{1},...,x_{n}) +$$

$$+ \sum_{i} f(x_{1},...,y_{i},...,x_{n})pf(x_{1},...,x_{n}) +$$

$$+ \left(f^{\delta}(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,y_{i},...,x_{n})\right)^{2}$$

$$(8)$$

for all $x_i, y_i \in U$. In particular, for $x_1 = 0$ in relation (8), we obtain $f(y_1, x_2, \dots, x_n)^2 = 0$, a contradiction.

Case II. Let d be an outer derivation on R and δ be an inner derivation on R. For some $q \in U$ such that $\delta(x) = [q, x]$ for all $x \in R$. Then (5) implies that

$$apf(x_1, ..., x_n)^2 + a[q, f(x_1, ..., x_n)^2] + d(p)f(x_1, ..., x_n)^2 +$$

+ $pd(f(x_1, ..., x_n))f(x_1, ..., x_n) + pf(x_1, ..., x_n)d(f(x_1, ..., x_n)) +$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 7

$$+ [d(q), f(x_1, \dots, x_n)^2] + [q, d(f(x_1, \dots, x_n)^2)] =$$

$$= pf(x_1, \dots, x_n)pf(x_1, \dots, x_n) + [q, f(x_1, \dots, x_n)]pf(x_1, \dots, x_n) +$$

$$+ pf(x_1, \dots, x_n)[q, f(x_1, \dots, x_n)] + ([q, f(x_1, \dots, x_n)])^2.$$
(9)

This can be rewritten as

$$apf(x_{1},...,x_{n})^{2} + a[q, f(x_{1},...,x_{n})^{2}] + d(p)f(x_{1},...,x_{n})^{2} +$$

$$+ pd(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})d(f(x_{1},...,x_{n})) +$$

$$+ [d(q), f(x_{1},...,x_{n})^{2}] + [q, d(f(x_{1},...,x_{n}))f(x_{1},...,x_{n})] +$$

$$+ [q, f(x_{1},...,x_{n})d(f(x_{1},...,x_{n}))] =$$

$$= pf(x_{1},...,x_{n})pf(x_{1},...,x_{n}) + [q, f(x_{1},...,x_{n})]pf(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})[q, f(x_{1},...,x_{n})] + ([q, f(x_{1},...,x_{n})])^{2}.$$

$$(10)$$

Since d is an outer derivation on R, in (10) replace $d(f(x_1, \ldots, x_n))$ with $f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, y_i, \ldots, x_n)$, where $d(x_i) = y_i$, we obtain

$$apf(x_{1},...,x_{n})^{2} + a[q, f(x_{1},...,x_{n})^{2}] + d(p)f(x_{1},...,x_{n})^{2} +$$

$$+ pf^{d}(x_{1},...,x_{n})f(x_{1},...,x_{n}) + p\sum_{i} f(x_{1},...,y_{i},...,x_{n})f(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})f^{d}(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})\sum_{i} f(x_{1},...,y_{i},...,x_{n}) +$$

$$+ \left[d(q), f(x_{1},...,x_{n})^{2}\right] + \left[q, f^{d}(x_{1},...,x_{n})f(x_{1},...,x_{n}) +$$

$$+ \sum_{i} f(x_{1},...,y_{i},...,x_{n})f(x_{1},...,x_{n})\right] +$$

$$+ \left[q, f(x_{1},...,x_{n})f^{d}(x_{1},...,x_{n}) + f(x_{1},...,x_{n})\sum_{i} f(x_{1},...,y_{i},...,x_{n})\right] =$$

$$= pf(x_{1},...,x_{n})pf(x_{1},...,x_{n}) + \left[q, f(x_{1},...,x_{n})\right]pf(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})\left[q, f(x_{1},...,x_{n})\right] + \left(\left[q, f(x_{1},...,x_{n})\right]^{2}.$$

Hence, U satisfies the blended component

$$p \sum_{i} f(x_1, \dots, y_i, \dots, x_n) f(x_1, \dots, x_n) + p f(x_1, \dots, x_n) \sum_{i} f(x_1, \dots, y_i, \dots, x_n) + p f(x_1, \dots, x_n) f(x_1, \dots, x$$

$$+ \left[q, \sum_{i} f(x_1, \dots, y_i, \dots, x_n) f(x_1, \dots, x_n) \right] +$$

$$+ \left[q, f(x_1, \dots, x_n) \sum_{i} f(x_1, \dots, y_i, \dots, x_n) \right] = 0.$$

In particular, for $y_1=x_1$ and $y_2=\ldots=y_n=0$, we obtain $2pf(x_1,\ldots,x_n)^2+2\big[q,f(x_1,\ldots,x_n)^2\big]=0$. Since $char(R)\neq 2$, it implies that $pf(x_1,\ldots,x_n)^2+\big[q,f(x_1,\ldots,x_n)^2\big]=0$. This gives that

$$(p+q)f(x_1,\ldots,x_n)^2 - f(x_1,\ldots,x_n)^2 q = 0.$$

By Fact 2.5, we have one of the following:

 $q \in C$ and p = 0, which implies that H = 0, a contradiction.

 $p+q\in C$ and p=0, which gives that $q\in C$. In this case H=0, a contradiction.

p=0 and $f(x_1,\ldots,x_n)^2$ is a central valued on R. By using the fact that if $z\in Z(R)$, then $d(z)\in Z(R)$, where d is a derivation on R, the equation (9) implies that $[q,f(x_1,\ldots,x_n)]^2=0$. By [9] (Theorem 1.1), we get $q\in C$ which implies that H=0, a contradiction.

Case III. Let none of d and δ be inner derivations on R. We have the following two subcases.

Subcase I. Suppose that d and δ are C-dependent modulo inner derivation of U, that is, $\alpha d + \beta \delta = ad_q$, where $\alpha, \beta \in C$, $q \in U$ and $ad_q(x) = [q, x]$ for all $x \in U$. If $\alpha = 0$, then δ is inner derivation on R, a contradiction. If $\beta = 0$, then d is inner derivation on R, a contradiction. Hence, α and β both can not be zero. This gives that $d(x) = \beta_1 \delta(x) + [q', x]$ for all $x \in R$, where $\beta_1 = -\alpha^{-1}\beta$ and $q' = \alpha^{-1}q$. Thus, from (5), we have

$$apf(x_{1},...,x_{n})^{2} + a\delta(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) +$$

$$+ af(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n})) + d(p)f(x_{1},...,x_{n})^{2} + p\Big(\beta_{1}\delta(f(x_{1},...,x_{n})) +$$

$$+ \Big[q',f(x_{1},...,x_{n})\Big]\Big)f(x_{1},...,x_{n}) + pf(x_{1},...,x_{n})\Big(\beta_{1}\delta(f(x_{1},...,x_{n})) +$$

$$+ \Big[q',f(x_{1},...,x_{n})\Big]\Big) + \beta_{1}\delta^{2}(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) +$$

$$+ \beta_{1}f(x_{1},...,x_{n})\delta^{2}(f(x_{1},...,x_{n})) + 2\beta_{1}\delta(f(x_{1},...,x_{n}))^{2} +$$

$$+ \Big[q',\delta(f(x_{1},...,x_{n}))f(x_{1},...,x_{n}) + f(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n}))\Big] =$$

$$= pf(x_{1},...,x_{n})pf(x_{1},...,x_{n}) + \delta(f(x_{1},...,x_{n}))pf(x_{1},...,x_{n}) +$$

$$+ pf(x_{1},...,x_{n})\delta(f(x_{1},...,x_{n})) + (\delta(f(x_{1},...,x_{n})))^{2}. \tag{11}$$

First, we can replace $\delta(f(x_1,\ldots,x_n))$ with $f^{\delta}(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,y_i,\ldots,x_n)$ and $\delta^2(f(x_1,\ldots,x_n))$ with

$$f^{\delta^2}(x_1,...,x_n) + 2\sum_i f^{\delta}(x_1,...,y_i,...,x_n) +$$

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 7

$$+\sum_{i} f(x_1,\ldots,w_i,\ldots,x_n) + \sum_{i\neq j} f(x_1,\ldots,y_i,\ldots,y_j,\ldots,x_n),$$

where $\delta(x_i) = y_i$ and $\delta^2(x_i) = w_i$ in (11) and then U satisfies the blended component

$$\beta_1 \left(\sum_i f(x_1, \dots, w_i, \dots, x_n) \right) f(x_1, \dots, x_n) +$$

$$+ \beta_1 f(x_1, \dots, x_n) \left(\sum_i f(x_1, \dots, w_i, \dots, x_n) \right) = 0$$
(12)

for all $x_1, \ldots, x_n \in R$ and $w_i \in R$. In particular, for $w_1 = x_1$ and $w_2 = \ldots = w_n = 0$, we obtain $2\beta_1 f(x_1, \ldots, x_n)^2 = 0$. Since $\operatorname{char}(R) \neq 2$, it implies that $\beta_1 = 0$. Then d is an inner derivation, a contradiction.

Subcase II. Suppose that d and δ are C-independent modulo inner derivation of U. By using Kharchenko's theorem (see Fact 2.4), we can replace $d(f(x_1,\ldots,x_n))$ with $f^d(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,y_i,\ldots,x_n)$, $\delta(f(x_1,\ldots,x_n))$ with $f^\delta(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,x_i,\ldots,x_n)$ and $d\delta(f(x_1,\ldots,x_n))$ with $f^{d\delta}(x_1,\ldots,x_n)+\sum_i f^d(x_1,\ldots,x_n)+\sum_i f^\delta(x_1,\ldots,y_i,\ldots,x_n)+\sum_i f^\delta(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,x_n)+\sum_i f(x_1$

$$\left(\sum_{i} f(x_1, \dots, w_i, \dots, x_n)\right) f(x_1, \dots, x_n) +$$

$$+ f(x_1, \dots, x_n) \left(\sum_{i} f(x_1, \dots, w_i, \dots, x_n)\right) = 0.$$
(13)

Equation (13) is similar to equation (12), we get a contradiction.

References

- 1. V. De Filippis, Generalized derivations as Jordan homomorphisms on lie ideals and right ideals, Acta Math. Sin. (Engl. Ser.), 25, № 12, 1965–1974 (2009).
- 2. V. De Filippis, Generalized skew derivations as Jordan homomorphisms on multilinear polynomials, J. Korean Math. Soc., 52, № 1, 191 207 (2009).
- 3. V. De Filippis, G. Scudo, *Generalized derivations which extend the concept of Jordan homomorphism*, Publ. Math. Debrecen, **86**, № 1-2, 187–212 (2015).
- 4. V. De Filippis, B. Dhara, Generalized skew-derivations and generalization of homomorphism maps in prime rings, Comm. Algebra, 47, № 8, 3154–3169 (2019).
- 5. B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr. Algebra and Geom., 53, 203 209 (2012).
- 6. B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J., 68, № 1, 95 119 (2018).
- 7. K. I. Beidar, W. S. Martindale III, V. Mikhalev, Rings with generalized identities, Marcel Dekker, New York (1996).
- 8. H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53, 339-346 (1989).
- 9. L. Carini, V. De Filippis, G. Scudo, *Identities with product of generalized skew derivations on multilinear polynomials*, Comm. Algebra, 44, № 7, 3122–3138 (2016).

- 10. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103, № 3, 723 728 (1988).
- 11. T. S. Erickson, W. S. Martindale III, J. M. Osborn, *Prime nonassociative algebras*, Pacif. J. Math., 60, 49-63 (1975).
- 12. C. Faith, Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14, 369-371 (1963).
- 13. I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81, 331-341 (1956).
- 14. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37, Amer. Math. Soc., Providence, RI (1964).
- 15. V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic, 17, 155-168 (1978).
- 16. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27, № 8, 4057 4073 (1999).
- 17. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20, № 1, 27-38 (1992).
- 18. U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 202, 97 103 (1975).
- 19. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576-584 (1969).
- 20. M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84, 426-429 (1957).
- 21. E. Albas, N. Argac, Generalized derivations of prime rings, Algebra Colloq., 11, 399-410 (2004).
- 22. A. Ali, N. Rehman, S. Ali, *On lie ideals with derivations as homomorphisms and anti-homomorphisms*, Acta Math. Hungar., **101**, 79–82 (2003).
- 23. S. K. Tiwari, Generalized derivations with multilinear polynomials in prime rings, Comm. Algebra, 46, № 12, 5356-5372 (2018).
- 24. S. K. Tiwari, R. K. Sharma, B. Dhara, *Identities related to generalized derivation on ideal in prime rings*, Beitr. Algebra and Geom., 57, № 4, 809 821 (2016).
- 25. S. K. Tiwari, R. K. Sharma, B. Dhara, *Multiplicative (generalized)-derivation in semiprime rings*, Beitr. Algebra and Geom., 58, № 1, 211–225 (2017).

Received 07.05.20, after revision -05.01.21