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MEROMORPHIC BERGMAN SPACES
MEPOMOP®HI ITPOCTOPU BEPI'MAHA

We introduce new spaces of holomorphic functions on the pointed unit disc in C that generalize classical Bergman spaces.
We prove some fundamental properties of these spaces and their dual spaces. Finally, we extend the Hardy — Littlewood
and Fejér—Riesz inequalities to these spaces with application of the Toeplitz operators.

Beeneno HOBI npoctopu roaoMopdHEX GYHKIIH Ha 3arocTpeHOMY oguHHYHOMY IHCcKy B C, sKi y3arajbHIOIOTh KJIQCHYHI
npoctopu beprmana. /loBeneHo mesiki (yHAaMEHTalbHI BIACTUBOCTI IMX MPOCTOPIB Ta MyalbHHX A0 HuUX. HacamkiHens
nowmupeno HepiBHocti ['apai—JlitmieByna Ta ®eepa—Picca Ha 1i npoctopu 3a gornomororo oneparopis Terurina.

1. Introduction and preliminary results. Since the seventeenth of the last century the notion of
Bergman spaces has known an increasing use in mathematics and essentially in complex analysis and
geometry. The fundamental concept of this notion is the Bergman kernel. This kernel was computed
firstly for the unit disc D in C and then it was determined for any simply connected domain by the
famous Riemann’s theorem. However the determination of the Bergman kernels of domains in C"
is more delicate and it is determined for some type of domains and still unknown up to our day in
general. In this paper we generalize most properties of Bergman spaces of the unit disk by introducing
new spaces of holomorphic functions on the pointed unit disc D* that are square integrable with
respect to a probability measure dy, g for some «, 3 > —1. In fact the classical Bergman space is
reduced to the case 8 = 0 (see [3] for more details). We call these new spaces meromorphic Bergman
spaces; indeed any element of such a space is a meromorphic function which has 0 as a pole of order
controlled by the parameter 5. The originality of our idea is that the Bergman kernels of these spaces
may have zeros in the unit disk essentially when S is not an integer. This problem will be discussed
in a separate paper as a continuity of the present paper. For this reason we will concentrate here on
the topological properties of these spaces and prove some well-known inequalities.

Throughout this paper, D(a,r) will be the disc of C with center a and radius » > 0. In case
a =0, we use D(r) (resp., D) in stead of D(0, ) (resp., D(0,1)). We set S(r) := 9D(r) the circle
and D* := D\ {0}. For every —1 < a, 3 < 400, we consider the positive measure j, 3 on D
defined by

1
a+1,6+1)
where 2 is the beta-function defined by

dhap(2) = o7 [2*7(1 = |o)dA(2),

1
B(s,t) = /xs_l(l —2)de = ?((z)i(f)) Vs, t >0
0

and
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MEROMORPHIC BERGMAN SPACES 1061

1 1 ,
dA(z) = =dzdy = —rdrdf, 2=z +iy =re?,
™ ™

the normalized area measure on D.
The general aim of this paper is to study the properties of the Bergman type space A" 6(ID)*)
defined for 0 < p < 400 as the set of holomorphic functions on D* that belongs to the space

LP(D,dpq g) = {f: D — C; measurable function such that || f|

app < +00},

where

1B, = / 1F(2) P s (2).
D

When 1 < p < 400, the space (LP(D, dpqg), ||-|la,3,) is a Banach space; however for 0 < p < 1,
the space LP(DD,dq ) is a complete metric space where the metric is given by d(f,g) = ||f —
- 9“27 5 The following proposition will be useful in the hole of the paper.

Proposition 1. For every 0 < r < 1 and 0 < € < 1 there exists c.(r) = ¢z a,5(r) > 0 such

that, for any 0 < p < 400 and f € AZ’B(]D)*), we have

Bla+1,6+1)
ce(r)

One can choose c:(r) = r2a.(r)b(r) with r. = emin(r,1 — r),

[1—(r+ra)2]a if a>0,

[f(2)]" < 1f65, V2 €S(r).

a,B,p

a:(r) == N
[1—(7"—7"8)2] if —1<a<0,

and
(r—r)? if B >0,
(7“—1—1"5)25 if —1<p<o.

Proof: Let 0 <r <1,0<e<1land0 < p < +oo be fixed reals. Let f € A7 5(D*)
and z € S(r). We set 7. = emin(r,1 — r). It is easy to see that D(z,7.) C D*; so thanks to the
subharmonicity of |f|P, we obtain

P < [ 1w <

be(r) :=

D(z,re)
Bla+1,8+1) / |f(w)[P
< dyte, 5(w). 1.1
- r2 wP? (1= fw2)™ #) (D
Z,Te)

If we D(z,7¢) then » — r. < |w| <7+ 1. Thus, we obtain

(r—ro)® if B8>0,
[w[?* > bo(r) = :
(r+r)% if —1<p<0,

and
«

[1—(r+r)?]" if a>0,

1—|wl®)* > a.(r) =
( | |) = ac(r) [1_(T_ra)2]“ if —1<a<O.
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1062 N. GHILOUFI, M. ZAWAY

It follows that inequality (1.1) gives

p_ Bla+1,+1) p
)" < r2a.(r)be(r) D(/) | f(w)["dpa,p(w) <
%(a+1,,8+1)|’f’p
r2a.(r)b(r) a.Bp

Proposition 1 is proved.

Using the previous proof, one can improve the previous proposition as follows.

Remark1. For any n € N and 0 < r < 1, there exists ¢ = ¢(n,r, «, 3) > 0 such that, for every
fe Aiﬁ(]D)*), we have

FM P < ellf I, Ve ESE).

As a first consequence of Proposition 1, we have the following corollary.

Corollary 1. For every —1 < a, 8 < +00 and 0 < p < 400, the space AZ,B(D*) is closed in
LP(D, pog) and, for any z € D*, the linear form 9, : ‘AZ,B(D*) — C defined by 6,(f) = f(z) is
bounded on Af; 5(D").

Proof.  As LP(D,dpa,p) is complete, it suffices to consider a sequence (fy)n C A7, 5(D*)
that converges to f € LP(DD,dpuq, ) and to prove that f € AZ;, (D). Thanks to Proposition 1, the
sequence (f,), converges uniformly to f on every compact subset of D*. Hence, the function f is
holomorphic on D* and we conclude that f € A7 ,(D*).

For the second statement, one can see that ¢, is a linear functional well defined on A{; 5(D*).
For the continuity of J,, thanks to Proposition 1, for every z € D*, there exists ¢ > 0 such that,
for every f € AZ’E(ID)*), we have [0.(f)| = |f(2)| < ¢||f|la,3,- Thus the linear functional d is
continuous on .AZ 5(D*).

The corollary is proved.

In the following we give some immediate properties:

If fe Ag s (D*) then 0 can’t be an essential singularity for f, hence either 0 is removable for f
(so f is holomorphic on D) or 0 is a pole for f with order vy = v¢(0) that satisfies

F(BH)J e 26+ ¢ N

Vfgmpgz P P (1-2)
’ 28+1) 4 4 26+
p p ’

where |.] is the integer part.
If we set f(z) = 2"/ f(z) then f is a holomorphic function on D and f € A” 5(D") if and only

if f€A b, (D7) and
’ 2

1
Fllasy = (ZOFLE=F DN 5
aB.p Bla+1,5+1) a,f==5"p’

Using the two previous properties, if we replace f by z"'»8 f in the proof of Proposition 1, we can
obtain a more sharp estimate in Proposition 1.
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MEROMORPHIC BERGMAN SPACES 1063

If -1 < <p and —1 < a<a then A, ;,(D*) C A7, ;,(D*) and the canonical injection is
continuous. This is a consequence of the fact that we have

B0+ 1,8 + 1) flarp < Bla+ 1,8+ D flasps

for every f € A}, 5(D).

Claim that if we set D¢ := D\ {¢} for any ¢ € D, then all results on A?, (%) can be extended
to the space AZ’ s (ID¢) of holomorphic functions on D¢ that are p-integrable with respect to the
positive measure [z —¢|*?(1—|2[?)“dA(2). Indeed h € A? ,(D;) if and only if hope € AL 4(D*),
C—=z
1—Cz

2. Meromorphic Bergman kernels. In the case p = 2 we have .A?L 5(D*) is a Hilbert space
and A2 5(D*) = A2, (D*) for every 3 €]m — 1,m] with m € N. If we set

() = \/@%(a+1,6+1) - o

where ¢¢(2) =

(a+1L,n+B+1)

for every n > —m, then the sequence (e,)n>—_n, is a Hilbert basis of Ai’ B(D*)‘ Furthermore, if
f,g€ Ai,ﬁ(D*) with

+oo +oo
= Z anz", g9(z) = Z b, 2",

n=—m n=—m

then

Bla+1l,n+8+1)
f) aﬂ—zann O[—Fl,ﬁ—{—]_) )

n=—m

where (.,.)q. g is the inner product in Aayﬁ(ID)*) inherited from L%(D, dpq g)-
Lemma 1. Let —1 < a < 400 and m € N. Then the reproducing (Bergman) kernel K, ,, of
A2, (D*) is given by
(a+1)B(a+1,m+1)
(wz)™(1 — wz)?te

Proof. The sequence (e,)n>—m given by (2.1) is a Hilbert basis of A2 5(D*), hence the
reproducing kernel of .A? 5(D*) is given by

Kam(w, z) =

“+00

Ko p(w, 2) = Z en(w

n=—m

Z O‘+1ﬁ+1) wnzn_
 Bla+1,n+p+1) N

wzm %’a—l—ln—%ﬁ m—l—l)

_ (w?)".

The computation of this kernel in the general case is more complicated. However, in our case for
8 = m, we obtain

Bla+1,m+1)
K = zZ)" =
am (1, wzm %a—f—l n+1 )(wz)
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1064 N. GHILOUFI, M. ZAWAY

(a+1)B(a+1,m+1)
(wz)™(1 — wz)?te

Lemma 1 is proved.

Here we give some fundamental properties of the Bergman kernel as consequences of Lemma 1.

Corollary2. Let —1 < o < +o0 and m € N. Let P, ,, be the orthogonal projection from
L2(D, dpia,m) onto A2 ,,,(D*). Then, for every f € L*(D, dpia,m), we have

f(w)

(zw)™(1 — zw)2te At m(w).

Pomf(z) =(a+1)B(a+1,m+ 1)/
D

Proof. This is a simple consequence of Lemma 1 and the fact that for every f € L?(DD, dfto,m)
we have Py, f(2) = (f, Kam(-5 2))am.-

Using the density of A%, (D*) in AL, (D*), one can prove the following corollary.

Corollary3. Let —1 < o < +00 and m € N. Then, for every f € AL, (D*), we have

(2) = (a+ 1)Bla+1,m+1) / (zw)mé (Z_U)Zw)m jtoem (1),

D

The following result is well-known in general, its proof is based essentially on the fact that
Ka,5(2, 2) # 0 for every z € D*.

Proposition 2. Let —1 < o, 8 < +oo and K, g be the reproducing (Bergman) kernel of
Ai”@(]])*). Then, for every z € D*, we have K, 5(z, z) > 0 and satisfies

2 *
Kays(z2) = sup{ | 1) f € A2 5(D%), | fllays2 < 1} =
1
—sup{ i € A7) 5(5) = 1. 22)
[f1le,8.2 ’
In particular, the norm of the Dirac form §, on Ai’ 3 (D*) is given by

10211 = Kea (-, 2)]

a2 = \/Ka,p(z,2).

One can find the proof of the first equality in Krantz book [5], however the second one is due to
Kim [4]. For the completeness of our paper we give the proof.

Proof. Thanks to the proof of Lemma 1, we have K, g(z,2) > 0 for every z € D*. To prove
the first equality in (2.2), we fix z € D* and we consider

2(2) = sup{|f(2)]*; f € A% 5 (D), [ fllap2 < 1}

Let f € Ai} 5(D*) such that || f||a,52 < 1. Then, thanks to the Cauchy —Schwarz inequality,

2 2
) = (. Kas (o Das]* < 1 fllap2lKapls DI 5p < Kaslz2).
It follows that 2(z) < K, (2, z). Conversely, we set

Ka (¢ 2)

9(§) = Kool s)

&eD.
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MEROMORPHIC BERGMAN SPACES 1065

Hence we have g € Aiﬁ(]D)*), l9lla.s2 = 1 and |g(2)|* = Ka,5(z,2) and the converse inequality
2(z) > Kq (2, 2) is proved.
Now to prove the second equality in (2.2), we let

M (2) = inf{|| fllap2; | €ALDY), f(z) =1}

If we set
K z
h = ——————
&) K .

then h(z) =1 and h € Az’ﬂ(]D)*). Indeed,

) KOC )
112,52 = / 1 (©) Pdpa6) = / e (€)=

1 1
Kop(e o 0 =R ()
It follows that .
M(2) < ——M—.
(2) Ka,g(z, 2)

Conversely, for every f € Ai 5(D*) such that f(z) =1, we have

£ = [(£ Kas (- Odas|” < IFII2 52Kas (€, C).

Thus we obtain

1f(I? .
——— <|IflZ V(¢ € D*.
Rap(,0) < Mllas
In particular, for ( = z,
[T
Ka,ﬁ(zaz) = Hf”oc,ﬁ,Q
We conclude that .
— < (2.
Kag(z,2) ~ (2)

Proposition 2 is proved.
3. Duality of meromorphic Bergman spaces. The aim of this part is to prove that the dual of
1 1 . .
AP (D*) is related to A? ,(D*) with = + = = 1. This will be a consequence of the main result
a,f o, P

(Theorem 1). But to prove the main result we need the following lemma.
Lemma 2. For every —1 < g, v < +00, we set

_,w2crw2
Iw(z):/(l el 1ol g o).

‘1 — Z@‘Q-i-a-i—w

Then 1, is continuous on D and

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 8



1066 N. GHILOUFI, M. ZAWAY

1 if w<0,
1 :
Iw(z) ~ 10g1_7‘2|2 lf w = 0,
i w>0,
(1 —[2*)~

when |z| — 17 where ¢ ~ 1 means that there exist 0 < c¢; < cg such that we have c1p(z) <
< ¥(2) < eap(2),

Proof. The proof is similar to [3] (Theorem 1.7).

Theorem 1. Forevery —1 < «, a,b < +00 and m € N, we consider the two integral operators
T and S defined by

w _ w? a—a,,m
Tf(z) = ;n/f( M1~ [wl) dpta,p(w),

lw[2b(1 — zw)2ta

‘1 _ Z@|2+a

D
w o U)2 a—awm—%
i) =y [ 1O
D

Then, for every 1 < p < 400, the following assertions are equivalent:

(1) T is bounded on LP(ID, dfi, ),

(2) S is bounded on LP(D,dqy),
m—2<2b<m if p=1,
mp—2<2b<mp—2+2p if p>1.
Proof. (2) = (1) is obvious.
(1) = (2) can be deduced using the transformation

(1 _ Zw)2+a’w‘m
2. f(w) = 11— 2w o™

3) pla+1)>a+1and

f(w).

(2) = (3). Now assume that .S is bounded on LP(ID, djiq ). If we apply S to fn(z) = (1 —
— [2|?)" for N large enough, we get

p
a+N m
P — _ 2\a| . |2b—mp (1—”11}|2) + ”U)‘
A R el e R X
D

D

is finite. Thanks to Lemma 2, we obtain b > mp_ 1.

To prove the other inequalities, we need S* the adjoint operator of S with respect to the inner
product (.,.)p. It is given by

* _ _ 2\ya—a m—2b g(Z) o
5°glu) = (1= )2 [ I () =
D
b vaay e [ 9= 22
= (1= puyrepopn [ 2 A,
D

We distinguish two cases:

ISSN 1027-3190. Vkp. mam. oscypn., 2022, m. 74, Ne 8
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1. Case p = 1: S is bounded on L'(D,dpu,p) gives S* is bounded on L>®(D,dp,p). By
applying S* on the constant function g = 1, we have

(1~ )= %/’Z’zb MO 4 < +
su — |w w z Q0.
wE]II)))* |1 - Zw’2+a

Thanks to Lemma 2, we get m — 2b > 0 and o — a > 0. The desired inequalities are proved.

1 1

2. Case p > 1: Let ¢ > 1 such that — + — = 1. Again by applying S* on the function fy for
p q

N large enough, we obtain

|2b—m(1 - |Z’2)G+N 7

* 1 2\a+q(a—a)|,, 12b4+(m—2b)q /|Z A A
IS Fnllpq = [ (1= fwP)oelul T e dAG)| A
D D

is finite and hence all inequalities

mp
S ol<b<——1
5 < < 2 +p

and p(a+ 1) > a + 1 hold.

(3) = (2). We start by the case p = 1. We assume that m — 2 < 2b < m and a > a. Using
Lemma 2, one can prove easily the boundedness of S on L' (D, dpqp).

Now for p > 1, to prove the boundedness of S on LP(ID, dp, ) we will use the Schur test. We
set

1 (1 _ ’w|2)afa|w‘m72b
h _ d =
D= M )= T
Thanks to Lemma 2, if
2 1
Mot , 0<s<F : (3.1)
q q q

then

— |w 2\a—sq w m—tq
[ st = 5 [P i) <
D

|1 — zw|?te
D

c1
= lzm (1= zf?)%

= ¢1]2|""h(2)? < e1h(2)?

for some positive constant ¢; > 0.
Similarly, if
2b—m <26—m+2 a— o a+1

<t , <s< (3.2)
p p p
then
2b—m— tp 2\a—sp

[ Fe P dasz) = (1= ) / i A <
D

< CQM - 62|w|m—2b+tph(w)p < coh(w)P

A= fw)r -
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1068 N. GHILOUFI, M. ZAWAY

with ca > 0. Thanks to the hypothesis given in assertion (3), we have

}m m+2[ﬁ}2b—m’2b—m—|—2{7’é®7

]0’a+1[m]a—a a+1
p p

-
q p p

q q
This proves the existence of ¢ and s satisfying (3.1) and (3.2). Thanks to Schur’s test, S is bounded
on LP(D, dpgp).
Theorem 1 is proved.
Theorem 2. For every 1 < p < 400 and —1 < a, b < 400, the topological dual Of.Agb(IDJ*)
is the space AZ’b(]D)*) under the integral pairing

(.Y = / F(2)9) dpas(z) V€ AP (DY), g AL, (DY),

where q is the conjugate exponent of p.

Proof. Thanks to Holder inequality, every function g € Aib(]D)*) defines a bounded linear form
on .Ag’b(ID)*) via the above integral pairing. Conversely, let G' be a bounded linear form on Aﬁ}b(ID)*).
Then thanks to Hahn—Banach extension theorem, one can extend G to a bounded linear form on
LP(D, dpgp) (still denoted by G) with the same norm. By duality, there exists ¢ € LI(ID, dpqp)
such that

G(f) = (f.)ap Y € AL,(D").

Claim that if m = m,; given in (1.2), then, thanks to Theorem 1, P, ,, maps continuously
LP(D, dpiqp) onto A? , (D*) and Py, f = f for every f € A", (D*). It follows that

G(f) = <faw>a,b = <Pa,mfa >ab = <f7 >ab Vf € -AZ’{,(D*)-

If we set g = P 7 then g € A7, (D*) and G(f) = (f, g) for every f € A} ,(D*).

Theorem 2 is proved.

4. Inequalities on A’;, 5(D*). The aim here is to extend the two famous Hardy - Littlewood and
Fejér—Riesz inequalities to our new spaces, these inequalities were proved firstly on Hardy spaces,
then on Bergman spaces with some applications. In our case we give only one application on Toeplitz
operators. To reach this aim, for a holomorphic function f on D* and 0 < r < 1, we consider the
main value on the circle:

1
P

2
My, 1) = | o [ 15e"Pas )
0

Moo (r, f) == sup ‘f(rew)}.
0€(0,27]

We set
1

QprPMyp,
/(7,) _ /a,ﬁ,p(r) — %(a :_ 1’;+ 1) /tQ,B DMy, B+1( )adt

T

4.1. Hardy- Littlewood inequality. To prove the Hardy - Littlewood inequality on .A? ﬁ(}D)*),
we need to prove firstly the following lemma.

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 8
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Lemma 3. Foreveryp>1and f € .,4275(]1))*), we have

f ) 3.
My (r. ) < Wless
FAGE
In particular,
Fa| fllas,
Mp(ra f) S 24 0P

Tmax(?,z/f) (1 . TQ)O‘Tle

’E\»—A

where k1 = ((a+1)B(a+1,8+1))7.
Proof. Let f € AQB( *)and 0 < r < 1. We set F(z) = 2" f(z) with m = m, 3. As F is
holomorphic on I, then we obtain
1 2w

P — 10 p ay2B+1 —
150 = s | [ e =2 s
0 0

= 2 _p2\a2B+1 g,
_@(a+1,ﬁ+1)0/Mp(tvf)(1 )4t P dt =

1
2
- MP(t, F)(1 — t2)2¢2B—rmtlge >
%’(a—i—Lﬁ—i—l)/ p(6F)1 =) =
0

1

M2 (r, F) / (1 — )Pl gy = M(r, ) 7 (1)

r

and the first inequality is proved. The particular case can be deduced from the following inequality:

2
>
=~ Bla+1,8+1)

rPm

A = BT+

1
) /(1 — )22 g >
r2

7"25(1 — r2)atl
(a+1)AB(a+1,6+1)
rPm(1 — p2)atl
(a+1)PB(a+1,6+1)
pax(26,pm) (1 p2)actl
(a+1)Ba+1,8+1)

if 28 > pm,
>
if 28 <pm

>

Lemma 3 is proved.
Now we can prove the Hardy — Littlewood inequality on meromorphic Bergman spaces.
Theorem 3. For every 1 < p < 1 < 00, there exists a positive constant k such that, for every

f e A} 5(D*), we have

i

Al fllesp
+2

rmax(% )(1 —r2) 1

=

where m = my, g.
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1070 N. GHILOUFI, M. ZAWAY

The Hardy - Littlewood inequality is proved in [6] for classical Bergman spaces (5 = 0).

Proof. The case 7 = p is simply the previous lemma. Let we start by the case 7 = oo. Let
fe AZ,B(D*) and 0 < r < 1. We set F((z) = 2™ f(z). Again as F' is holomorphic on D, then,
thanks to the Cauchy formula, we have

2
imt it
iy _ S [ s"e f(se) 4
F(Te )—%/Me dt,
0

1 1 1
where s = # Applying Holder’s inequality < + - = 1> and Lemma 3, we obtain
p g

Q=

2 ) 27
) 1 . 1 s4
m 6 m it
< | = D Pdt — | —————dt <
el < 27r/s ()] 27r/|se“—re’9|‘1 -
0 0
q
K2
< " My(s, f) ot | S
—7r
<1+r>
o allfllasy K

gmaxm) (1 2)5t (1—p2)t 7 T

Fall flla.p

max(%—mp)(l . T-Q)QTTQ .

r

It follows that
K4l flla.

rmax(w )(1 —r2)r

MOO(Tv f) S

D¢+2

Let now p < 7 < oo. We have

S

27
1
| 5 [1rGenpIsCerar | <
0

IS}

SM (T,f)MpT(T,f)S

-2 )
< Kal| f| a,B,p k1 f] a,8,p _
> Tmax(%,m)(l . 7”2)&T+2 Tmax(%,m)(l . r2)aT+l

Al fllovsp

2 2 1°
max(f,m)(l _ 7“2)%_;

r

Theorem 3 is proved.
4.2. Fejér—- Riesz inequality. The aim here is to prove a generalization of the following lemma

to meromorphic Bergman spaces.
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Lemma 4 (see [2]). Let g be a holomorphic function in the Hardy space HP (D). Then, for any

€ € Cwith |£| =1, we have

1 2

1 1 .
[l < 3ol =5 [ 1ot pas.

-1 0

Theorem 4 (Fejér—Riesz inequality). For every [ € .A’;ﬁ(ID)*) and § € C with €| = 1, we

have 1
J 156 7 (e < w11, 5,
1

Claim that if 5 = 0 then we find the Zhu result [7].

Proof. Let f € A ;(D*) and F(z) = 2 f(z) where m = my, 5. If we set F(2) = F(r

0 <r <1, Then F, € HP(D) and, thanks to Lemma 4, for every £ € C, [¢] =1,

1 2m
1 A
[1morar< 5 [1m @,
-1 0

that is,
1 1 21
/ F(ri)Pdt < o / |F(rei®)Pdp.
-1 0

Thanks to inequality (4.1) and Fubini theorem, we have

1 27

/ | f(re®)[PrEfHi(1 — r2)%drdf =
0

p
Bp %’a—i—l B+1) /
0

1

= %’a—l—lﬁ—i—l/ /|F(rei9)|pd9 p2opmtl (] _ p2yeqr >
0
1 1
F(rt&)Pdt | #287Pm+1(1 — p2)%dr =
T ) | [ Feera |- tear
0 —1
1 r
- %aﬂ B+1) / /'F sOds |27 (L= r%)%dr =
0 —r

1

= F( 2W=rm(p — )iy | ds =
m@(aﬂ,ﬁﬂ)/' GOF| [ rmenatyar
-1 [s|

1

- %(aJrl B+1) /fsE F S|pm/r26 (L) | ds 2

Is|
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-1

Theorem 4 is proved.

As an application of the Fejér— Riesz inequality on the Toeplitz operators, we have the following
result.

Theorem 5. For every £ € D*, if we consider the Toeplitz operator T defined by

1

TH(z) = / F(E)Ka gz, £2)_Fa pa(la])de,

-1

then T is a positive bounded linear operator on A, g(D*).
When = 0, this result is due to Andreev [1] proved in a restricted case.
Proof. Thanks to Fubini theorem, for every f € A, g(D*) one has

(T1.1) / T () F @ dpias(z) =

/ /f 0.5(2,€2)_Fapa(al)de | F2)dpep(z) =
D

- / f(ex) / Ko 5(62, 2) £ (2)dptap(2) Fapz (o)) dz =
D

- / F(&2) f(€x) Fapa(lade < mllf] 6

-1

The last inequality is the Fejér—Riesz one in the particular case p = 2.
This proves that the operator T is positive and thus it is self-adjoint and bounded with norm
| T < 7. Indeed,

TN = sup {[(Tf, fasl |flape=1} <.

Theorem 5 is proved.
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