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SOME PROPERTIES OF A GENERALIZED MULTIPLIER TRANSFORM
ON ANALYTIC p-VALENT FUNCTIONS

JAESKI BJACTUBOCTI Y3ATAJIBHEHOI'O MYJIBTHUIIVIIKATUBHOI'O
INEPETBOPEHHSA HA AHAJIITUYHUX p-BAJIEHTHUX ®YHKIIAX

For a function
o0
P = 74 Y anep
k=1

where p € N, the authors investigate some properties of a more general multiplier transform on analytic p-valent functions
in an open unit disk. The applications of the obtained results to fractional calculus are pointed out, while several other
corollaries follow as simple consequences.

Jnst dynkrii
(oo}
F(2) =2+ arspz ',
k=1

ge p € N, gocmimkeHO AesKi BTaCTUBOCTI OULTBII 3araldbHOTO MYJIBTHUILTIKATUBHOTO MEPETBOPEHHS HA AHAIITHYHHX -
BAJICHTHUX (PYHKISX y BIIKPUTOMY OJMHUYHOMY KOJi. PO3IISIHYTO 3acTOCYBaHHS OTpUMAaHMX Pe3yJbTaTiB A0 APOOOBOro
YHUCIICHHS, a JeKi 1HII Pe3yIbTaTH OTPUMAaHO SK MPOCTI HACIIIKH.

1. Introduction and preliminaries. Let I" denote the class of analytic functions f(z), having the
series representation

) =2+ az" (1)
k=2

and normalized by f/(0) — 1 =0 = f(0) in the open unit disk U = {z € C: |z] < 1}.
Also let I'), denote the class of analytic p-valent functions f(z) having the form

f(z)=2"+> appa* ™, peN. ®)
k=1

A function U = u(z, y) is said to be harmonic if it is a real-valued function having continuous partial
derivatives of order one and two, and satisfying
0’u  0*u
— +— =0.
ox?  Oy?
However, a continuous complex-valued function f(z) = u(z,y) + iv(x,y) is said to be harmonic
in a complex domain D say, if both the real and imaginary parts u(x,y) and v(x,y), respectively,

are harmonic in D. The geometric function theory is mostly interested in the survey of properties of
analytic functions (see [2, 5]). Given any simply connected region R C D, we can say that
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f(2) = h(z) + g(=),

where h and g are analytic in the connected region R. Conventionally, we refer to h and g as the
analytic and co-analytic parts, respectively. Thus a necessary and sufficient condition for function f
to be locally univalent and orientation preserving is that

|1 (2)] > g ()| € R,

see [1, 4] among others. Let H denote the family of p-valent harmonic function in U. Then h and g
can be expressed as

o o0
k k
2) =2+ Y app?, g(z) = Y by
k=1 k=0

for p € N and, in particular, 0 < [b,| < 1.
Therefore, we write that

o0 oo
f(z) =2P + Z Apyp?" TP+ Z b p2htP. (3)
k=1 k=0
As a special case, if the co-analytic part of f is identically zero (i.e., g = 0), then the family
of orientation preserving, normalized harmonic univalent functions reduces to the usual class of
normalized analytic functions. For function f(z) of the form (1), Swamy [10], in 2012 introduced
and studied a multiplier differential operator 1" B f(2) given by

Inﬁf —Z+Z(a+k6> kzka

see also [8].
Furthermore, we define for function f(z) of the form (2), a linear differential operator LZ% - f(2)
such that

o 0f(2) B2 () + v2(ef(2)
Fapaf(e) = a+ Bp + yp? ’
L2 F(2) = L 1) (LD, 1 (2)),
L3, F(2) = L ) (120, £(2))),

b F(2) = L% F(2) (L £(2)), @)
where p € N, n,a, 5 > 0 and « is real such that o + 8 4+ v > 0. It follows from (4) that
np a+B(k+p) +yk+p)*\"
L f(z) = zp+z< o« By Il (5)
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Remark. Suppose that the function f(z) has the form (2), it is easily verified from (5) that

Lg’,%,o (2) = f(2) €T, and Ly a00f(2) = f(2) €Ty

It is obvious that the operator L7 By f(z) generalizes many existing operators of this kind which
were introduced and studied by different authors. For instance,

i LY B“/f( z) = Igﬁvf( z) studied by Makinde et al. [8];

(i) Ly 2 of (2) = 11} 3f(2) studied by Swamy [10];

(iii) La 1 Vf(z) =1I1"f(2), a > —1 studied by Cho and Srivastava [3];

(iv) L?7g70f(z) = Nj f(z) studied by Swamy [10].

With reference to (5), we can write that

Lok F(2) = Hyb f(2) + GRh £ (2). ©6)

Now using (6), we give the following definition.
Definition 1. Let f(z) be of the form (3), then f(z) € H,* (v, B,7) if it satisfies the condition
that

R Z(HZ:EW))’_W

HG f(2) + GG f(2)

> (7

forpeN 0<u<p, n, B,v>0and « is real such that o« + 3+ v > 0.
In addition, suppose that

VP (e, By, 1) = Vi NH P (e, B,7), ()

where VZ’p is the harmonic functions with varying arguments consists of functions f of the form (3)
in H,;’* for which there exists a real number o such that

Ytp + ko = m(mod 27), Tpyp + ko =0(mod 27), k> 1, 9)
where

Yitp = arg(ag4p) and 74y, = arg(bpip).

At this juncture, we shall obtain a sufficient coefficient condition for function f of the form (3) to be
in the aforementioned class H,,”” (v, 8, 7). It is noted that this coefficient condition is also necessary
for functions belonging to the class V;;”(cv, 8,7).

2. Necessary and sufficient coefficient for the class ’Hﬁ’p(a, Bs7)-

Theorem 2.1. Let f(z ) be oftheform (3). Then, forp e N, 0 < pu <p, a>0, 5,y >0,

a+B+v>0, and|b|<p+ ,fG%u’p(aﬁ’y)lf

o0
k4+p—p k+p+p }
— |ag + ——  |bg X
Z[ Pl gy + T

k=1 p
k k 2\"

X(a+6( +p)+’v(2+p)> <1- p+u’b ] (10)
a+ Bp+p D— i
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Proof. We begin the prove by showing that the condition (7) is satisfied if the inequality (10)
holds true for the coefficient of f defined in (3). Using (6) and (7), we have

(3,000) = =(ean, ) | wie

<) = p(H f2)+ O f0) [ NE) (a

where
M) =2 (12, 1)) = 2 (6, 1)
and
N(z) = H'_ f(2) + GoT,_f(2).
Here, we recall that R(w) > % if and only if
p—p+pw| = [p+p—pwl.
Then, from (11), it suffices to show that
[M(2) + (p — p)N(2)| = [M(2) — (p+ )N (2)|
and
[M(2) + (p = )N (2)| = [M(2) = (p+ )N(2)| = 0. (12)

Having substituted for the values of M (z) and N(z) in (12), we obtain

(M (2) + (p— p)N(2)| — [M(2) — (p+ p)N(2)| >

> a+ Bk +p)+v(k+p)2\" bt
> 2(p — p)|z|P — 2k‘+p< a z|*TP—
(p— )| 521 ( ) A —— |ak+pl |2]

00 2\ N
—Z2<k+p>(“+/3("’“’)”(’”m ) byl 25474

2
P o+ fBp+p
oo n
a+ Bk +p) +y(k+p)?
N @kl |27
pt P+ D

(a+B(k+p) +vk+p)*\"
co Y (AP oo,
k=0

a+ Bp + yp?
that is,
|M(2) + (p— )N (2)] — [M(2) — (p+ p)N(2)| >
>2(p — p)|zP — Z 2(k + p— p)Y " app! 2" — Z 2(k +p+ )Y " by 212 >
k=1 k=0
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o0 o0
k+p—n k+p+p
> 20— )l 1= S0 TP gy | - S R Ry
= PTH = P

o
pt+p k+p—n k+p+u
> 2(p — p)|z|PL 1 — by| — [ak - — =y }Y" >0
( )!I{ p—u‘p‘ ; P |ak-+p] —p [

a+ Bk +p)+y(k+p)?*

by virtue of inequality (10) where Y =
y quality (10) ot Byt 02

This shows that f € H,,"(c, 3,7).

Theorem 2.1 is proved.

Corollary2.1. Let f(z) € Hﬁ’l(a,ﬂ,’y). Then, for0 < pu<1,a>0,8,v>0and a+B+7y >
>0,

k k+ a+ Bk + vk2\" 1+
Z[“mr ”rbk@ (5 i ) <1- (13)
=l 1—p a+ B+ 1-—

Corollary2.2. Let f(z) € Hg’l(a,ﬁ,'y). Then, for a« >0, B,v>0and a+ B+~ > 0,

> o+ Bk +yk*\"
Zk’ak’+k|bk‘ <M> <1—1by
— a+B+y

Corollary2.3. Let f(z) € Hg’l(a,ﬂ,'y). Then, for a >0, B,v>0and a+ 8+ v > 0,
> [Flag] + klbil] < 1= [ba]. (14)
k=2

Next we obtain both the necessary and sufficient condition for function f of the form (3) given
the condition (8).
Theorem 2.2. [ € V);" (o, 8,7, 1) if and only if

ptp
|0y
p— M

<1-

(k+p—pu k+p—2u a+Bk+p)+y(k+p)*\"
Z ———— laptpl + ——— [ty

—| p- a+ fp+yp?

(15)

forpeN, 0<u<p, a>0,8,v>0and a+ g+~ > 0.
Proof. Since V)" (v, 3,7, 1) C H;"(ar, B,77). Then the necessary condition part of the theorem
shall be established. Suppose that f € V;L[p (v, 8,7, i), then appealing to (6) and (7), we have that

A(H5, 1) - =(605,7)

HTL

R _
apnd () + G5 f(2)

Equivalently, we can write that

pzP + Z (k +p)Y " agypz" P — Zzozo(k + p)Y " by p2htP
2P + Zk:l Y™, ,2" P+ ZZO:O Y by p2htr

>
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> [(p — 1) — (p+ 1) [by]] 3

p o0

00 R

U L) + 3 Ylapl 124+ 2| S0 ¥ bl [#7]
k=1

¥4

N

_2211(]‘34‘29 - #)Yn‘akerHZk‘

— p _ -
(T [bpl) + 3 V7apsyl| 25| + \ S Y bkl

z|P 00 —

2UNT et p o )Y bl |

z =1

_ >0

1+ b =< oyn 2 S v mm [
10l + D, YW argpl |25+ 2] D Y w25

and Y is as earlier defined.
The above condition must hold for all the values of z such that |z| = r < 1. With o as in (9),
we obtain

(0= 1) = (p+ wlbpl] = D [k +p = mlarsy] = (b +p+ )by

0 k k PRNED
(1+|bp|)+Zk:1[ak+p|+|bk+p]<a+5;i§;:;2+p) ) rk
<a+ﬁ<k+p>+v<k+p>2>"rk

a+ Bp + yp? . 6
0‘+/8(k+]))+’y(k+p)2>"rk =
a+ Bp +p?

X

(U Il) + 3l + o)

Suppose that (15) does not hold, then the numerator in (16) is negative for r sufficiently close to
1. Thus there exists point zg = rg, 0 < rg < 1 for which the quotient in (16) is negative and this
negates our assumption that f € V,/*(a, 8,7, ). Therefore, we can conclude that it is necessary
as well as sufficient that (15) holds true whenever f € Vﬁ’p (a, 8,7, 1) and this ends the proof of
Theorem 2.2.

Next we obtain both the growth and distortion results.

Theorem 2.3. Let f € H, ¥ («, 3,7). Then

p—H p+u o+ Bp + yp? )" 1
> (1 — |b,|)rP — — b P

or

p—p ptp a+ fBp +p? )n +1
< (14 [bp))r? + = b r
F)l < (L lbpr [1+p—,u 1—|—p—u|p|](a+ﬁ(1+p)+7(1+p)2 "

Proof. From (3), we have

o0 [e.9]
k
flz) =2+ E Appz TP+ E b p2FHP.
k=1 k=0
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Now

- + Bp + p? "
£ < Qo+ 22 (eI )

l+p—p (I+p)+7(1+p
[k +p—p k+p—p
X [Iap+k! + }bp-i-k’] yrrtl <
—~l p—n —H
p—p P+ a+ Bp +yp° " e
< (1 + |bp|)r? + - b ™
< (1+ b)) L"‘p_“ 1+p_,u|p’]<a+ﬁ(1+p)+7(1+17)2

where Y is as defined earlier.
Theorem 2.3 is proved.
Theorem 2.4. Let f € H, P («, 8,7). Then

£ 2 000 = gt - |G 2A2 =) CEREE Ry, |

( a+ Bp +p? )"p
X T
a+B(1+p) +~(1+p)?

or

, o (I+p)lp—p) QA+p)p+n)

£ < o+ gt |20 CEREEy, |,
( a+ Bp +p? )nrp
a+B(l+p) +y1+p)3?)

Proof is much similar to that of Theorem 2.2.
3. Application of fractional calculus. Given function f(z) of the form (1). The fractional
integral of order ¢, 0 < € < 1, is defined such that

z

DIf(z) = r(le) 0/ - f (f))l_e dt, (17)

where f(z) is analytic function in a simply connected region of z-plane containing the origin and
the multiplicity of (z — ¢)¢~! is removed by requiring log(z — ¢) to be real when z — ¢ > 0.

Similarly, the fractional derivative of order ¢, 0 < € < 1, is given by

D f(z) = ml_ e)jzof (foti)g dt, (18)

where f(z) is as defined above and the multiplicity of (z — ¢)~¢ is removed by requiring log(z — t)
to be real when z — ¢ > 0. Interestingly both (17) and (18) have the series representations

o0

B 1 T(k+1)
D€ — e+1 k+e
A e s +kzz2r(k+1+e)akz
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and

Df(2) = =5 —

respectively (see [6, 7, 9, 11]).
Theorem 3.1. Let f(z) be of the form (3). If f € H,(a, B,7), then

pte
pzesol < ST e 2 (s - el ) <1}

F(p+1+e) p+1l+e\l+p—pn p+1l+e
and
) P<p+1>\z\”“{ p+1 (p—u p+p ) }
D€ > — 1 (1= 1by|) — — byl | X"
where

X:( a+ fBp +p? )
a+B(1+p)+7(1+p)?

Proof. Following the representation of D €f(z), we have

z

/ (2 = )"0 [f (1) + g(2))dt =

0

D f(z) = F(l)

z

1 . 00 z i )
= / (z—t)"C ><tp+2ak+ptkﬂ”> dt + / (z—t)—C )<Zak+ptk+p>dt =

5 k=1 0 k=0

Lp+1) oy o~ Plh+p+1) bipre . N~ L(k+p+1) "
=2 Qfip? + bjgpz TPTE,
C(p+1+e) ;F(k+p+1+e) ktp kzz()F(k+p+1+e) ktp
Then
Fp+1+e . _
————2 D “f(2) =

T(p+1+el(k+p+1) bip TP+ 14+€el(k+p+1) ’
=+ Qpapz’ P4 b2 TP,
Z Tlp+D)l(k+p+14e ©P kZZ()F(p+1)F(k+p+1+e) ktp

Simple computation of the above yields

Flp+14+e
o) s
p+1 pP—H p+u

< el ol R (R - L2y xaf

o+ Bp + yp?

where X = (a + B0 +p) +1(1+p)?

) . Therefore,
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D¢ f(2)] < w{(lﬂbp\)Jr ptl (p_“ __pxe \bp\>X"}z\}

— I'(p+1+e) p+1+e\l+p—pn 14+p—0p
and
_ . T+ D= e p+1 p—p Pty
€ e il - . B n
D72 T T r g {(1 15,)) p+1+6<1+p_M 1+p_u|bp|>X \z;}.

Theorem 3.1 is proved.
Corollary3.1. Let f(2) be of the form (3). If f(z) € Hﬁ’l(a,ﬂ,fy), then

2| 2 f1—pu 1
[Df(2)| < F‘@L ){<1+}bll)+2+6<2_j +“|b |)X"\ \}
and
1+4+€ B
Dz f(2)] = F‘(2{+ ){(1—\bl|)—216<;_z 1+”Ib !)X" }
where

_ ( a+B+y )
C\a+28+4y)°
Corollary3.2. Let f(z) be of the form (3). If f(z) € 7—[8’1(04,5,7), then

5 1+e€ 1
!D “f( )‘ I"(Z‘—i— ){(1+|b1‘)+2+€(1—|b1|)X”‘Z‘}

and

1+€
D7) 2 pi g { (= ) — 5 ]

where
Y < a+p+y )
o+ 26+ 4y
Corollary3.3. Let f(z) be of the form (3). If f(z) € Hg’l(a,ﬁ,’y), then

2

fo gl (D + - Dl

D) =

and

1+€
‘D “f( )‘ F’(2‘+ ){(1—‘[)1‘)—214_6(1—]61])‘?,“‘}.
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Theorem 3.2. Let f(z) be of the form (3). If f € H,P(a, B,7), then

rD;f<z><W{<1+rbpr>+ Pl ( el N i bp)X”\z|}

=~ T(p+1—e) p+l—e\l4+p—p 1+p—p
and
; L(p+1)|z["" p+l ([ p—u p+p n
P = g 0 e (T T el X7l
where

_< o+ Bp+p? >
- \a+B8(1+p)+1(1+p)?)

Proof is similar to that of Theorem 3.1.
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