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ON THE DYNAMICS OF THE IMPULSIVE PREDATOR-PREY SYSTEMS
WITH BEDDINGTON -DEANGELIS TYPE FUNCTIONAL RESPONSE

PO JUHAMIKY IMIIYJIbCHAX CUCTEM THUITY XWKAK-3TOBAY
13 ®YHKLIOHAJBHOIO BIAMOBIIIO TUY BEJIHI TOHA - JIEAHTEJICA

In this study, the two-dimensional predator-prey system with Beddington — DeAngelis type functional response with impulses
is considered in a periodic environment. For this special case, necessary and sufficient conditions are found for the
considered system when it has at least one w-periodic solution. This result is mainly based on the continuation theorem in
the coincidence degree theory and to get the globally attractive w-periodic solution of the given system, an inequality is
given as the necessary and sufficient condition by using the analytic structure of the system.

BuB4aeThCs IBOBUMIpHA CHCTEMA THUITy XMDKaK—3100MY i3 (yHKIIOHANBHOIO Bimosimmo tuy bexminrrona—/leAnremica
Ta IMIYJIbCAMH Y NEPIOANIHOMY cepenoBuili. I IbOTo CreniadbHOTO BHIAAKY 3HAMIEHO HEOOXiHI Ta JOCTaTHI yMOBH
Ui Toro, o6 cucTeMa Maja NpPHHAMMHI OJMH w-NepioquyHuil po3B’s3ok. Lleil pe3ynsrar 6a3yeThbesi TOJIOBHUM YHHOM
Ha TeopeMi MPOIOBKEHHS 3 Teopii CTemeHiB 30iry, a I TOro, m00 3HAWTH II00ANBbHO MPHUTATYIOUHHA w-TIEPiOJMYHHN
PO3B’S30K PO3DIIsYBAaHO! CHCTEMH, 32 JONMOMOTOI0 aHAJITUYHOI CTPYKTYPH CHCTEMH OTPUMAHO HEpiBHICTb, siKa Biirpae
POJIb HEOOXIAHOT Ta IOCTAaTHBOI YMOBH.

1. Introduction. Population dynamics is an important branch of the mathematical ecology and
biomathematics. Predator-prey systems is one of the research field of this subject and many studies
have been done on the these type of dynamical systems. Studying on these systems is important
because it helps us to understand the future of the considered species.

In this paper, we have investigate the impulsive predator-prey dynamic systems, since giving
impulse to a system has many important examples in the real life. For instance, if you have used a
pesticide against to a insect species, then there is an immediate decrease in the population or if there
is an immigration from one territory to another for the same species, then there is also an immediate
increase in the population. All of these can be expressed mathematically by using impulses and
these type of equations are said to be impulsive differential equations. There are many studies on
this type of differential and difference equations and especially, its theory has been investigated in
[1,17-19, 21, 25].

The other significant notion that is important for this study, is being in a periodic environment
or not, since many things in real life has a periodic structure. Therefore, to consider the dynamical
systems in a periodic environment becomes important. Global existence and the existence of the
positive periodic solutions are significant aspects of the periodic predator-prey systems and the studies
[7-11, 14, 15, 20, 24] investigated these problems on the nonautonomous predator-prey systems by
using coincidence degree theory and the continuation theorem.

Another important notion for this work is functional responses. In this study, we have used
the Beddington — DeAngelis type functional response because of some advantages of this one to the
other functional responses like Holling type, ratio dependent, semi ratio dependent, mono type and
etc. Beddington and DeAngelis uses Beddington — DeAngelis type functional response, according to
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their observation on the populations on the fishes in Adriatic. Also the advantages of this type of
functional response can be found in their work [2, 6].

Especially, the singularity problem in Holling type and similar functional responses when predator
or prey goes to extinction is solved by using Beddington — DeAngelis functional response. Because
of that singularity problem, in [22], they can not use results of coincidence degree theory in their
system directly. They have divided their system, applied continuation theorem to some part of it
and obtained their goal with Brouwer’s fixed point theorem. In addition to these, they need to use
constant impulses in the variable that symbolize predator to obtain the globally stable w-periodic
solution. In our system, with the advantage of Beddington— DeAngelis type functional response, we
have used different impulses for both prey and predator which is more meaningful in the real life.
We apply continuation theorem directly to our system to get the w-periodic solution and to show the
global stability of that solution, we find a connection between the extiction of prey and predator and
its consequences. Nevertheless, there exist some difficulties in the application of the continuation
theorem to the whole system and these are solved by some analytic technics.

2. Preliminaries. The following informations are obtained from [3]. Let L.: DomL C X — Y
be a linear mapping, C': X — Y be a continuous mapping where X, Y be normed vector spaces.
If dim Ker L = codimIm I < 400 and Im L is closed in Y, then the mapping L will be called a
Fredholm mapping of index zero. There exist continuous projections U: X — X and V:Y — Y
when L is a Fredholm mapping of index zero such that InU = Ker L, ImL = KerV =Im(I -V),
then it follows that L|pom onker: (I — U)X — ImL is invertible. The inverse of that map
is denoted as K. The mapping C' will be called L-compact on Q if VC(2) is bounded and
Ky(I—-V)C:Q — X is compact, where (2 is an open bounded subset of X. Since ImV is
isomorphic to Ker L, the isomorphism J: ImV — Ker L is exist and the above informations are
important for the continuation theorem that we give below.

Definition 1 [5]. The codimension (or quotient or factor dimension) of a subspace L of a vector
space V is the dimension of the quotient space V/L; it is denoted by codimy L or simply by
codim L and is equal to the dimension of the orthogonal complement of L in V, and one has
dim L 4 codim L = dim V.

Theorem 1 [12] (continuation theorem). Suppose that L is a Fredholm mapping of index zero
and C is L-compact on ). Assume that:

(a) For any y that satisfies Ly = AC'y is not on 92, for each \ € (0,1);

(b) VCy # 0 and the Brouwer degree deg{JV C,0QNKer L,0} # 0 for each y € 02N Ker L.

Then Ly = Cy has at least one solution lying in Dom L N 0f).

Definition 2 [26]. A4 w-periodic semiflow F(t): X — X (X is the initial value space) in the
sense that F(t)x is continuous in (t,z) € [0,+00) x X, F(0) = I and F(t + w) = F(t)F(w) for
all t > 0 is generated by the solutions of a w-periodic system.

Definition 3 [26]. If there exists 1 > O such that, for any x € X,

liminf d(F(t)x,0Xo) > n,
t—o0
then the periodic semiflow F(t) is said to be uniformly persistent with respect to (Xo,0Xy).

Definition 4 [13]. Suppose that F: R™ — R™. If there exists a bounded set B such that, for
each = € R", there is an integer ng = no(x, B) such that F™(x) € B for each n > ny, then the
map F' is called point dissipative.
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Lemma 1 [26]. Assume that S: X — X is continuous such that S(Xy) C Xo. Suppose that
S is uniformly persistent with respect to (Xo,0Xo), compact and point dissipative. Then, for S in
Xy relative to strongly bounded sets in Xy, there exists a global attractor Ag and S has coexistence
state xg € Ag.

Definition 5 [11]. The system (3) is called permanent if there exist positive constants r1, 2,
Ry, and Ry such that solution (:%(t), g(t)) of system (3) satisfies

r1 < lim inf Z(¢) < lim sup Z(t) < Ry,
t—o0

t—o00

ro < lim inf §(t) < limy—oo sup g(t) < Ro.

t—o00

Lemma 2 [22]. Consider the system

7' (t) = a(t)2(t) — b(H)Z*(t), t# ty,
2(t)) = (1 + ge)2(tr) (1)
Then system (1) admits a unique, positive, w-periodic solution if and only if
/a(t)dt—i—lnf[(ljtgi) >0, o)
which, moreover, is globally asymptotically stable.
3. Main result. The equation that we investigate is
F'(t) = a(t)z(t) — b(t)T*(t) — ()T E(L, (1), 2(t), 5(1), ¢ # t,
() = —d)j(t) + FOFOEE D), 2(1), §(1), ¢ # tr, 5
2(t)) = (1 + go)2(tr),
g(ty) = (re)y(ts),
u(t
) AT 0% e =
2'(t) = a(t) — b(t) exp(x(t)) — c(t) E(t,exp(y(t)), exp(z(t)), exp(y(t))), ¢ # t,
Y (t) = —d(t) + f(t) E(t, exp(a(t)), exp(a(t)), exp(y(t))), t# tk, W

where t 4 = tp +w, a(t +w) = a(t), b(t + w) = b(t), c(t + w) = c(t), d(t + w) = d(t),
ft+w) = f(t), alt + w) = at), Bt + w) = B(t), m(t + w) = m(t), k, g, and ry are the
constants with 1 > g, > —1 and 7, > 0. Here, z(ty4q) = z(tg) + w, Z(thq) = T(t) + w,
Y(thrq) = y(tr) +w, J(thtq) = U(tx) +w. In equations (3) and (4) each coefficient function is from
continuous functions class and all the coefficient fuctions are positive.
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Definition 6. [n system (4), we say that x(t) (y(t)) (prey (predator)) goes to extinction if and
only if exp(x(t)) (exp(y(t))) tends to 0 as t tends to infinity, for all solutions of x(t) (y(t)).
Equivalently, we also say that prey (predator) goes to extinction if and only if T(t) (y(t)) tends to
zero as t tends to infinity, for all solutions of system (3).

Lemma 3. Assume that

“ q
/ d(t)dt —In ] ri >0 (5)
0 i=1
is satisfied. If y(t) does not go to extinction, then neither x(t) does.
Proof. The statement of the above lemma is the same with the statement: assume that (5) is
satisfied. Then if x(t) goes to extinction, then y(¢) also goes to extinction. By using the second
equation in system (4) and taking the integral of that equation from 0 to ¢, we obtain

exp(y(t)) = exp(y(0) [ (ri) exp /—d(S) + f(s)E(t, exp(z(s)), exp(x(s)), exp(y(s)))ds
ti<t 0

(6)

If z(t) goes to extinction, then exp(x(t)) tends to 0 as ¢ tends to infinity. Since all the coefficient
functions are positive, f(t)E(t, exp(z(t)), exp(z(t)), exp(y(t))) also tends to 0 as ¢ tends to infinity.
For sufficiently large ¢ the integral

/—d(s) + lan + f(s)E(t, exp(z(s)),exp(x(s)), exp(y(s)))ds
0

=1

becomes negative and the right-hand side of the equation (6) tends to 0 as ¢ tends to infinity which
means exp(y(t)) tends to 0 as ¢ tends to infinity. Thus, y(t) goes to extinction. Hence, we are done.

3.1. Permanence and extinction of the solutions.

Lemma 4. [f inequalities (2) and (5) are satisfied, then for the given system (3)
liminf;_,o &(t) > 71 for some 71 > 0.

Proof. Assume that prey goes to extiction, then by Lemma 3 predator also goes to extinction.
Then for sufficiently large 7" > 0 there exists ¢y > 0 such that, for each ¢ > T

g(t) < €9-

If

k=1

/a(t)dt + lnﬁ(l +9k) >0
0

for sufficiently small ¢y, we have

/a(t) - m —b(t)z(t)dt + In kl:[l(l + gr) > 0. (7)
0 =
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Additionally, for sufficiently small ¢, the following inequality becomes also true:

#(t) > #(t) (a(t) - a(t)efiz)m(t) - b(t);z(t)).
Then consider the system
T'(t) = z(t) (a(t) — Om - b(t)a:(t)), ®

Z(ty) = (1 + gr)Z(ty).

For system (8), since inequality (7) is true, we can apply Lemma 2. Then system (8) has glo-
bally attractive, w-periodic solution Z*(t). By the comparison theorem for impulsive differential
equations Z(t) > Z*(t). Therefore prey does not go to extiction which is a contradiction. Hence,
liminf;_,o Z(t) > 71, for some 7; > 0 is true.

Lemma 5. Asume that inequality (2) is satisfied. Predator in system (3) goes to extinction if
and only if

f ()" (t) -
/—d(t) + o) +ﬂ<t)x*(t)dt+ln<n(rk)> <0 )

k=1

holds, where x*(t) is the unique, positive, globally attractive, w-periodic solution of the system (1).

Proof. By taking the contrapositive of the necessary part of the lemma, we have if (9) does not
holds then predator does not go to extiction. From now on, it is a proof by contradiction. Therefore,
assume that (9) does not holds and predator goes to extiction. If we can find a contradiction, then
we are able to get the desired result for the first side of the lemma. Here suppose that system (3)
satisfies the equation

[ f(t)* (1) :
O/ d(t) + OENOTS0 dt+1 (;E ) (10)
Then there exists € > 0 such that
[ O (1) - A,
O/ d(t) + DT B 2 +m(t)€dt+1 <kl;[1( k)) > 0. (11)
Consider the system
<) — & B 27yc(t) B B
(1) = #0)(a) ~ o1 g~ POFD) .

() = (14 g) (2(t))-

27y¢(t)

a(t) + 2ym(t)
Thus, system (12) has a globally attractive, unique, w-periodic solution from Lemma 2 for sufficiently

small . Assume that x., be the globally attractive solution of the system (12). Thus, . (t) — x*(¢)

where +y is a positive constant. It is obvious that for sufficiently small v, a(t) —
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as 7 — 0. Then there exists 4 such that x5(t) > x*(t) — €/2 and 24 < €. Since predator goes to
extinction, then

lim sup g(t) < 4.

t—o00

So, there exists 1" such that, for any ¢ > T,
y(t) < 29 < €.

270()
a(t) +2ym(1)

for impulsive differential equations Z(t) > z*(t) — €. Therefore we get the system

fO(* () =€) )
aft) + B(E)(x*(t) — € +m(t)e )’

Since y(t) < 24, then #'(t) > &(t)(a(t) — — b(t)Z(t)). By the comparison theorem

Here,

ds +In H (re) | |- (13)

0<trp<t

)2 500 e [ —ats F(s)(a*(s) — &)
J )+ B (5) =) + m(o)e

Since inequality (11) is satisfied, the right-hand side of inequality (13) is always positive for suffi-
ciently large ¢ and does not go to zero as ¢ tends to infinity. Therefore (¢) becomes always positive
and does not go to zero. In other words, predator does not go to extinction. Hence, we have proved
that if predator goes to extinction then inequality (9) holds.

For converse, to prove the result, we use contradiction again. Assume that inequality (9) holds
and predator does not go to extinction. Then liminf; ,. y(t) > 72. Since (2) is true, then by
Lemma 6, limsup,_,. Z(¢) < R;. Thus, we have

C(t)fg
a(t) + B(t) Ry + m(t)re

() = (14 ge) (2(tr)).

By the comparison theorem for impulsive differential equations Z(t) < z*(t), therefore, the following
inequality is true:

7 (t) < z(t) <a(t) - - b(t)i(t)>,

70 < 30 (—d(t) "
(14)

g(t) = (ri)(G(tr))-
Since in this system each coefficient functions are positive, then

JHz* () L forw
a(t) + Bar (D) + m(DF2 — a(t) + A" (D)
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for some v > 0. Then

t
N f(B)z* (1)
< — - .

g(t) < y(0)exp 0/ d(t) + old) + Bz () pdt + In Ogl;lgt(rk) (15)
Since inequality (9) holds, for sufficiently large ¢, the inside of the exponential function in inequa-
lity (15) is negative. Thus, as t tends to infinity, §(¢) tends to zero, which means predator goes to
extinction which is a contradiction.

Lemma 5 is proved.

Lemma 6. If inequalities (2) and (5) are satisfied, then there exist positive constants R and

Ro such that
lim sup z(t) < Ry, lim supy(t) < Rs. (16)
t—o0 t—o00

Proof. First consider the system (3), then the following inequality is true:

7 () < a()T(t) = bHF*(), t# b,
2(t)) = (1 + gr)7(tr) o
Suppose that (2) holds and consider the equations
@' (t) = a(t)u(t) — b(t)a(t), t#ty,
(18)

a(ty) = (1 + gr)ilty).

By Lemma 2, system (18) has unique, positive, globally attractive (or globally asypmtotically stable),
w-periodic solution %(t). By using comparison theorem for impulsive differential equations from [1],
we obtain that

(1) < ult).

The attractivity of u(¢) implies that there exists 7" > 0 such that
u(t) <u(t)+1 for t>T.

Therefore, it is clear that Z(¢) is bounded above with a positive constant R;. Secondly, consider the
system (3). The coefficient functions in system (3) is bounded, positive and w-periodic, then the
following inequality is true:

~ M
JOI0) TR giaw), ¢4,

m(t) m (19)
J(t5) = (re)a(tr)-
Then, we get
t t t
J(t) < (0 d(s)d d(o)d fMRld
g(t) <§0) ] reexp| [ —d(s)ds | + [ ] reexp| [ —d(o)do T ds-
O<tp<t 0 0 s<tp<t s
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We can rewrite the last inequality as

g(t) < y(0) exp / ~d(s)ds+In| [T ||+
0

0<tp<t
MRy /
+ 7 /exp /—d(o)do +1In < H rk> ds. (20)
4 p s<tp<t
For sufficently large ¢, inside of the exponential function for the first term and the second term
of inequality (20) is negative. So if we take fjifl = M, then

t
Q(t) < g(o)elJerfct + M61+Dw/ec(st)ds <
0

14+Dw
< gj(O) (61+Dw—ct + Me (1 _ e—ct)) <
Cc
Mel+Pw
< (0 1+Dw )
<o) (w4 M)

Here, D = max {|d(t)|: t € [0,w]} and

¢ = min /d(s)ds —In (HZ:1 rk) /w, 1/w
0

Thus, we have a positive constant Ry such that ¢(¢) is bounded above with a positive con-
stant Rs.

Lemma 7. If (2) and (10) for x*(t) is the unique, positive, globally attractive, w-periodic
solution of the system (1) is satisfied, then lim;_,o §(t) > 7o for some positive 7.

Proof. This result is the immediate consequence of Lemma 5.

Lemma 8. Assume that inequalities (2) and (5) are satisfied. Then system (3) is permanent
if and only if inequality (10) is satisfied. Therefore, from Theorem 2, this system has at least one
w-periodic solution.

Proof. This is the immediate consequence of the Lemmas 3, 6, and 5.

Lemma 9. In system (3), assume that (2) is satisfied. If at least one solution of §(t), does not
tend to 0 as t tends to infinity, then for all solutions of §(t), does not tend to 0 as t tends to infinity.

Proof.  This is a proof by contradiction. Let us assume that there exist two solutions for
system (3), (Z(t),5(t)) and ((t),§(t)) such that g(t), does not tend to 0 as ¢ tends to infinity and
g(t) tends to 0 as ¢ tends to infinity. Since §(t) tends to 0 as ¢ tends to infinity, then Z(¢) tends
to 2 as ¢ tends to infinity. According to Definition 6 predator does not go to extinction, and as a
consequence of Lemma 5,

r F(B)a* (1) ‘
/—d(t) * 3T +B(t)$*(t)dt+ln<n(rk)> >0

k=1
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is satisfied. Then, by using Lemma 7, we have g(t) > #, for some positive 7 which is a contradiction.
Hence, proof is completed.

3.2. w-Periodicity of the solutions.

Theorem 2. Assume that all the coefficient functions in system (4) are bounded, positive, w-
periodic, from C(R,R?) and inequalities (2) and (5) are satisfied. Then there exists at least one
w-periodic solution if and only if y(t) does not go to extinction.

Proof. X :={(p,2)T € PC(R,R?): p(t + w) = p(t), 2(t + w) = 2(t)} with the norm

I(p, 2)TIl = sup (Ip(8)];]=(£)])

te[0,w]

and
Y = {[(p, )7 (1 )T (dg, £)T] € PORR?) x (R, plt+w) = p(t), (¢ +w) = (1) |
with the norm

[ 27 a7 o o] = s (W27 s £l £

te[0,w]

Let us define the mappings L and C' by L: Dom L C X — Y such that

L((p,2)T) = (@', )7, (Ap(t1), Az(t1))T, - .., (Ap(ty), Az(ty))T)
and C': X — Y such that

C((p7 Z)T> -
:<r@w4wmnmw»—c@Euﬂu»mwxu»] In(1 + g1) 1M1+%)>
—d(t) + f(OE(t,p(t), p(t), (1)) "L In(p) n(py) |/
Then Ker L = {(p, 2)7 such that (p, 2)T = (c1,¢2)T}, ¢1 and ¢y are constants,
4 - w q - \
[pids+ >,
Im L = [(p’z)T’(d17f1)T7-'-a(dqafq)T] % Zzl = (0,0)T
[+
LO =1 J

ImL is closed in Y and dimKer L = codimIm L = 2. We can show this as follows. It is

obvious that summation of any element from Im L and Ker L is in Y. Without loss of generality,
w+kK

take p € Y and / p(t)dt + Z?_l d; = I # 0. Let us define a new function

K

1
g=p——.
w
I w+K
Then — is constant because, for all &, p(t)dt is always same by the definition of periodic

w K
time scales and the impulses are constant and there are same number of impulses in the interval

[k, w + k] for all k. If we take the integral of g from x to w + k, we get
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. . I . I .
Then p € Y can be written as the summation of ¢ € Im L and — € Ker L, since — is constant.

Similar steps are used for z. (p,2)T € Y can be written as the sur;vlvmation of an elem?elilt from Im L
and an element from Ker L. Also, it is easy to show that any element in Y is uniquely expressed as
the summation of an element Ker L and an element from Im L. So codim Im L is also 2, we get the
desired result. Therefore, L is a Fredholm mapping of index zero.

There exist continuous projectors U : X — X and V' : Y — Y such that

/ p(s)ds
U(po)) =~ |°
/ 2(s)ds
V.
and
/ p(s)ds + Zq:di
R AN A R L PO 1] P

[ #tis + >

L0 =

The generalized inverse Ky = Im L — Dom L N Ker U is given,

Ky ((p,2)7, (dy, f1)T, ..., (dg, o)) =

[t w ¢ q q
/p(s)ds + Z di — — / /p(s)dsdt - Z d; +— Z d;t;
0 t>t; 00 =1 =1
| ) w i q q ’
z2(s)ds+» fi—— z(s)dsdt — Y fi+—>» fit;
[ [
VO((p,2)T) =

/a(S) —b(s) exp(p(s)) — c(s)E(s, 2(s), p(s), (s))ds + m [ [ (1 + g0)
0

Z =)

—d(s) + f(s)E(s,p(s),p(s),z(s))ds + In H(n)

gl
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Let
a(t) — b(t) exp(p(t)) — c() E(t, 2(1), p(t), 2()) = C1(t),
—d(t) + f(O)E(t,p(t), p(t), 2(t)) = Ca(t),
i}/a(s) —b(s) exp(p(s)) — c(s)E(s, 2(s),p(s), z(s))ds = Cy,
0
and

Ci(t) = C1| |In(1+g1) In(1 + g,)
KU(I_V)C((p7 Z)T) = Ky ) ) ! =
Ca(t) — Co In(p1) In(pg)
rt 1 w t 7
/ C’lds—I-lnH 1+¢)— //01
w
0 t>t; 00
3 q 1 q
—Chdsdt —In JJ(1+g:) + " > In(1+ git;
/C’() ngs+lnHrl—//C'2
0 t>t; 0

q g°
—Chodsdt — lnHri + — E In(r;)t;
w

i=1 i=1 i

Clearly, VC and Ky(I — V)C are continuous. Since X and Y are Banach spaces, then by using

Arzela— Ascoli theorem we can find Ky7(I — V)C(£2) is compact for any open bounded set 2 C X.

Additionally, VC(Q) is bounded. Thus, C' is L-compact on Q with any open bounded set Q C X.
Now, continuation theorem will be used. To be able to use this theorem, we should investigate

the following system:

@'(t) = Aa(t) — b(t) exp((t)) — c(t) E(t, exp(y(t)), exp(a(t)), exp(y(1))], t # t,
Y (t) = A[=d(t) + f() E(t, exp(x(t)), exp(a(t)), exp(y(1))], ¢ # b,

tr) = AIn(1 + g),

(21)
tk) )\ln(rk)

at)dt + I [J(1 + g:) = /b(t) exp(z(t)) + c(t) E(t, exp(y(t)), exp(z(t)), exp(y(t))) dt,
=1 0
(22)

St~

w

/d(t)dt—lnH(ri) :/f(t)E(t, exp(a:(t)),exp(a:(t)),exp(y(t)))dt.
i=1 A

By using (21) and (22), we obtain
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w

JEOE

0

<A { / a(t)|dt + / b(t) exp(x(t)) + c<t>E(t,exp(y(t»,exp(a:(t»,exp(y(t»)dt] <
0 0

< M| | |a(t)|dt + a(t)dt+lnH(1+gi)]<M1, (23)
Joon ]

=1

w
where My := 2/ a(t)dt + In Hq (14 g;), and
0 i=1

/ t)|dt < )\|:/d |dt+/f E(t,exp(z(t )),exp(x(t)),exp(y(t)))dt] <

w w q
<) O/d(t)]dt+0/d(t)dt—lngn < My, (24)

where My := 2/ d(t)dt — In H(,I_l Ti

0
Since (z,y)T € X and there are ¢ impulses which are constant, then we can say that there exist
ni, &, @ = 1,2, such that

= mi f x(t f t),... f t
v(e) =min{ int (1), inf (1), nt )}
(25)
x(nl):max{ sup xz(t), sup x(t),..., sup x(t }
te[0,t1] te(ty,t2] te(tq,w]
= mi inf y(t), inf t),... f
y(&2) mm{tel[gmm b nt (@), oy 0},
(26)
y(n) = max{ sup y(t), sup y(t),.... sup y(t)}.
t€[0,t1] te(t1,ta] te(tq,w]

By the first equation of (22) and (23), we get z(&1) < [1, where

/ dt-l—lnH 1+ g)
0

/0 b(t)dt

Since x(&1) is the infimum of x(¢) for ¢t € [0,w], then there exists t; € [0,w] such that
x(&1) < z(t1) < l1. By using the first inequality in Lemma 1, we have

lli =In

w

x(t) < z(ty) +/x’(t)]dt <a(ty) + (2/a(t)dt+1nH(1 ~|—gi)) <H :=lL+M. (27
0

0 i=1
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From the second equation of (22), we get x(71) > I, where

/0 " d(®)dt — n szl r
/O (F(5)/a(t))dt

Since z(71) is the supremum of x(¢) for ¢ € [0, w], then there exists to € [0, w] such that z(n;) >
> x(t2) > ly. By using second inequality in Lemma 1, we obtain

lgl =

z(t) > z(ty) —/|:c’(t)|dt > x(ty) — 2/a(t)dt+lnH(1+gi) >
0 0

=1
> Hy : =1y — M. (28)

By (27) and (28) maxyc(g ) [2(t)| < B1 := max{|H1|, |[H2|}. By using

F)E(t, exp(z(t)), exp(z(t)), exp(y(t))) =
= f(t)E(t,exp(y(t)), exp(x(t)), exp(y(t))) exp(a(t) — y(t)),

we get

w

/d t)dt — lan < / ))exp(z(t) — y(t))]dt <
0

0
< [exp(z(m) — y(&2))
O/

We have the following inequality, since (27) is true, for each ¢ € [0, w]:

/ dtydt —m[T" n
0 =

y(§2) < Hi —1In o = 3.

/0 (f(t)/mt))dt

Since y(&2) is the infimum of y(¢) for ¢t € [0, w], then there exists t3 € [0, w] such that y(&) <
< y(t3) < l3. By using first equation of Lemma 1, we obtain

y(t) < y(t3)+/y’(t)dt < y(ts) + 2/d(t)dt—1an
0 =1

0
< H3 =13+ M. (29)

Here, all the coefficient functions in f(¢)E (¢, exp(y(t)), exp(z(t)), exp(y(t))) are positive and y(t)
does not go to extinction and by Lemma 9, since systems (3) and (4) are equivalent, for all solutions
of y(t) as ¢ tends to infinity exp(y(¢)) does not tend to 0, then we obtain

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 4



536 N. N. PELEN

7{1((?) > f(OE(t exp(y(t), exp(x(t)), exp(y(t))) > 0.

Then there exists k¥ € N such that

F)E(t, exp(y(t)), exp(z(t)), exp(y(t))) > zir];((?) >0
[t =] ri = [ FO( expu(e). explatt)),explu(t)) [exp(a®) - y(e))]de >
0 i=1 0

> [exp(z(&1) — y(n2))] /f(t)E(t, exp(y(t)), exp(x(t)), exp(y(t)))dt >
0

Then, we get

By (28), we have

/ d(t)dt — In Hf’_l r

y(n2)) > Hy —In| 22 = ly.
2 2 " 110 4

m(t)

Since y(n2) is the supremum of y(t) for ¢ € [0, w], then there exists ¢4 € [0, w] such that y(n2) >
> y(t4) > ly. If we use second inequality of Lemma 1, we get

w

y(t) > yts) — / o (1)]dt >

0

“ q
> y(ts) — (Q/d(t)dt - lnHTi) > Hy =1y — M. (30)
0

i=1

By (29) and (30) we obtain max;c(g ) [y(t)] < Ba: = max {|Hs|,|Hy|}. Obviously, B; and
By are both independent of . Let M = Bj 4+ By + 1. Then max;eoy ||(2,9)T|| < M. Let
Q = {H(az,y)TH e X: H(x,y)TH < M} and ) verifies the requirement (a) in Theorem 1. If
|(@,y)7|| € Ker LN 99, ||(z,y)T| is a constant with ||(z,y)T|| = M, then

VC((‘Tv y)T) =
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w q
[ al) = bs) expla) — e(5)Es,(5).0(5).y()ds + I [ [ 1+
5 i=1 . [O] y

/ —d(s) + £(5)E (s, 2(s), 2(5),y(s))ds + mn [ [ (r4)
0 =1

# ((07 O>T7 ttt (07 O)T) Y

=1

/G(S) — b(s) exp(x(s)) — c(s)E(s, y(s), 2(s), y(s))ds + In [ [(1 + g:)
JVC((x,y)T) = |0

/—d(s)+f(8) (s, x(s), (s) d5+1nH (7i)
0

where J: ImV — Ker L such that J((z,y)T,(0,0)T,...,(0,0)T) = (z,y)T.
Define the homotopy H, = v(JVC) + (1 — v)G, where

a(s) — b(s) exp(x)ds + In H(l +gi)
i=1

G((l’,y)T) = g
d(s) — f(s)E(s,z,z,y)ds + In H(m)

i=1

TT—e o — ¢

Since H, is a homotopy, then for each v € [0, 1] the Brouwer degree of deg(JVC,Q N Ker L,0),
deg(G, 2N Ker L,0) and deg(v(JVC) + (1 —v)G, 2N Ker L,0) are equal. Then, it is enough to

find the Brouwer degree of one of them.
Take D.Jg as the determinant of the Jacobian of G. Since (z,y)T € Ker L, then Jacobian of G

1S

—f(s)E(s,€e",e",e¥)ds+

s)e* + m(s)ev)?

]” T
f(s)B(s) ds 0

s)e* + m(s)eY)?

+

7

0

/w
L 0
All the functions in Jacobian of G is positive, then sign DJg is always positive. Hence
deg(JVC, Q2N Ker L,0) = deg(G, 2N Ker L,0) =

- Z sign DJ¢ ((z,y)T) # 0.

(z,y)TEG1((0,0)T)
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Thus, all the conditions of Theorem 1 are satisfied. Therefore, system (4) has at least one positive
w-periodic solution.

If the given system (4) has at least one periodic solution, then for at least one solution of y(t),
exp(y(t)) does not go to zero as t goes to infinity which means y(¢) does not go to extinction.
Then by using Lemma 9, since systems (3) and (4) are equivalent, we get for all solutions of y(¢),
exp(y(t)) does not go to zero as ¢ tends to infinity. Hence we are done.

Since systems (4) and (3) are equivalent, to if one of them has at least one w-periodic solution,
then the other one also has.

3.3. Some simple results obtained from Subsections 3.1 and 3.2.

Remark 1. Assume that (5) and

r c(t)
/a —m(tdt—irlnl_[l 14g) >0 (31)
0 1
are satisfied. Consider the system
7 (0) = (alt) - S50 - b0,

(32)
o(t) = (14 gr)0(ty)-

By using system (32) and Lemma 2, we get

w q w
/a(t) _ ) dt +In [J(1+g:) = /b exp(v(t))dt.
mit)
0 0
Here, 0(t) = exp(v(t)). Therefore,

/Ow a(t)dt + In Hj:l(l + gz)

Ly == < 9(&1),

/ b(t)dt
0
where ©(¢;) is the supremum of .
If we use system (32) and in this system take ©(t) = exp(v(t)), then

w w

7!0'@)\%3 /a(t)dt+/b(t) exp(u(t)) | <
0

0 0
< /a(t)dt+/a dt—HnH (14 gi)
0 0 =1

By Lemma 2, supremum of ©(t), therefore supremum of v(#) exists. Since (&) is the supremum
of 0, by the definition of v(t), v(&;) is the supremum of v(t) for ¢ € [0,w], then there exists
t1 € [0, w] such that v(&;) > v(¢1) > ;. By using Lemma 2.4 in [4], we have
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£(t) > v(t) > o(ty) - / ()t >
0

/ dt+lnH (1+g) w q
> 1o | 20 - 2/a(t)dt—|—lnH(1—|—gi)
0

N /0 b(t)dt i=1

The following corollary is obtained from Lemma 5.
Corollary 1. In addition to (31) and (5), if the following inequality is also satisfied:

w c(t)
/0 a(t) — m(t)dt+lnH (1+g:)

w

b(t
0

X exp | — /a( dt—HnH 14 9) X

0 i=1

/f(t)dt—ﬁ“ /d(t)dt—lnH(ri) -
0 =1

0

—a /d(t)dt —1In ﬁ(m) > 0,
=1

0

then system (3) has at least one w-periodic solution.
This result is same with Theorem 2 in [16] for continuous case.
3.4. Some examples.

Example 1:
2'(t) = (2sin(27t) + 3) — (0.2sin(27t) + 0.4) exp(x)—

B (5 + 2cos(27t)) exp(y
(sin(27t) + 1.2) + (1 + 0.5sin(27t)) exp(z) + exp(y)’

(0.8 cos(27t) + 4.45) exp(x)

y(t) = ~(0:5sin(2nt) + 1.5) + (sin(27t) + 1.2) + (1 + 0.5sin(27t)) exp(z) + exp(y)’

Az(ty) = In(1 + gx),
Ay(tz) = In(rg).

539

(33)

Impulse points: ¢, = 2k + 1/4, to = 2k +3/4 for k = 1,2,3,... and ¢ = 2. g; = e — 1,

0.4 4 — 04

gg—e — 1, ry=¢€e""% 1o
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e/ e m

3 y(m) 3 x(m)
2 2
1 1
0 0
Fig. 1
3 e 15 e
2 10}
1 e ; W
% 5 10 15 20 % 5 10 15 20
S y(m) ; x(m)

0 ] 2t .
-5 % | W
1% 5 10 15 20 0o 5 10 15 20
Fig. 2

First consider the system
2'(t) = (2sin(27t) + 3) — (0.2sin(27t) + 0.4) exp(x),
Ax(tf) = In(1 + gp),
glzelfl, ggzelfl.

Then, by using the program Mathlab, =* > 6.5 can be found. Then, by doing some simple calcula-
tions, it is easy to find that system (33) satisfies inequality (10) and by Lemma 8 system (33) has at
least one 1-periodic solution and Fig. 1 (z(0) = 0.1, y(0) = 0.5) also supports this result.

In Example 1, system (33) if we take g; = %3 — 1, go = €93 — 1, 7y = e 17, rg = 717, then
the inequality (9) is satisfied and by Lemma 5 we obtain the Fig. 2 (x(0) = 0.3, y(0) = 0.7).

This result shows us the importance of the impulses. When we take impulses as g; = %3 — 1,
go = %3 — 1, r; = e 17, 1y = e71'7; although the system without impulses is same, since
system (33) does not satisfies the inequality (10), predator goes to extinction.

The following example is for Corollary 1.

Example2:

7' = (0.2sin(27t) + 0.3) — (0.2 sin(27t) + 0.2) exp(z)—

B (0.1 + 0.1 cos(27t)) exp(y) £t
(0.5sin(27t) + 0.7) 4+ (1 + 0.5 cos(2t)) exp(x) + exp(y)’ b
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ey exm

8 115
6 1.1
4
) 105}
0 1
0 10 20 30 40 0 10 20 30 40
m x(m
3 y(m) 02 (m)
) | 0.15!
0.1
! 1 005}
0 0
0 10 20 30 40 0 10 20 30 40
Fig. 3

Y (t) = —(0.3sin(2rt) + 1)+

N (4 cos(27t) + 6.5) exp(x)
(0.5sin(27t) + 0.7) + (1 + 0.5 cos(27t)) exp(z) + exp(y)’

t # tr,

Ax(ty) = In(1 + g),
Ay(ty) = In(rg).

Impulse points: t; = 2k +1/4, to =2k +3/4,and ¢ = 2, g1 = e 001 — 1, go = 7001 — 1,
pr ="l py = e

Example 2 satisfies the condition of Corollary 1, therefore it has at least one w-periodic solution
and Fig. 3 (z(0) = 0.1, y(0) = 0.3) supports this result.

3.5. Global attractivity of the solutions.

Theorem 3. If inequalities (2), (5) and (10) are satisfied, then the w-periodic solution of the
system (3) is globally attractive (globally asymptotically stable).

Proof. Proof is very similar to the proof of Theorem 4.4 in [22]. To get the result, we apply
Lemma 1. Let us consider the following ordinary differential equation:

Z(t) = F(t,2(t)),
2(t) = 2(tk) = Tu(2(t)), (34)
2(0) = ¢.

Here, F € C([0,00) x R2 R?), ¢ € R?, F(t +w,u) = F(t,u), I; € C(R? R?) and there exists
an integer g such that I, , = Iy, ¢34 = t; + w. Then, the operator that solves system (34) can be
written as

¢
T(t)z = ze ™ + /6_’\(75_5) [F(s, T(s)z) + )\T(s)z] ds + Z e M) [ (T (1) 2),
0 O<trp<t
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where ) is a positive constant. It is obvious that 7°(0) = I. Also, we can verify that

T(s)z, 0<s<w,
T(s—w)T(w)z, w<s<t+w,

is the solution of system (34) with the initial value u(0) = z, where s € [0,¢ + w|. By uniqueness
theorem, system (34) has a unique solution, therefore T'(t + w)z = u(t + w) = T'(¢t)T'(w)z. This is
true when ¢ # t;. For t = ty,

Tt +w)z = T(ty + w)z + (T (ty + w)z) =
= D) T(w)z + L(T ()T (w)2) = T(6)T(w)-.

To apply Lemma 1, let S = T'(w), S? = SoS = T(w)oT(w) = T(2w). Here, the considered
system (34) is a periodic system, therefore we can apply Arzela— Ascoli theorem for impulsive
differential equations and the result from [1]. Hence, we obtain that 7'(¢) is a compact operator.

If we take X;” = {2;: 2 € R, z; > 0} for i = 1,2 and Xi'g = {zi: 2z € R, z; > 0} for
i =1,2,then X = X{" x X5, X = X{' x XJ and 6Xo = X/Xo. When system (3) satisfies
inequality (2), (5), (10), the system becomes permanent. Therefore, S satisfies the conditions of
Lemma 1. Hence, S admits a global attractor which means the system has globally asymptotically
stable or globally attractive w-periodic solution.

Corollary2. Assume that all the coefficient functions in system (3) are bounded, positive, w-
periodic, from PC(R,R?). Then there exists globally attractive w-periodic solution for system (3) if
and only if inequalities (2), (5), and (10) are satisfied.

Proof is immediate from Theorems 2 and 3.

Example 1 satisfies all the inequalities (2), (5) and (10), therefore it has a w-periodic, globally
asymptotically stable solution.
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