DOI: 10.37863/umzh.v74i9.6193
UDC 519.688
G. R. P. Teruel' (Dep. Math., IES Carrus, Elche-Alicante, Spain)

NEW FAST METHODS TO COMPUTE THE NUMBER OF PRIMES
LESS THAN A GIVEN VALUE

HOBI IBUJAKI METOAN OBYUCJIEHHA KIVIBKOCTI ITIPOCTUX YUCEJL,
MEHIIHUX 3A JEAKY 3AJAHY BEJIUNYUHY

The paper describes new fast algorithms for evaluating 7(x) inspired by the harmonic and geometric mean integrals that
can be used on any pocket calculator. In particular, the formula h(z) based on the harmonic mean is within ~ 15 of the
actual value for 3 < z < 10000. The approximation verifies the inequality, h(z) < Li(z) and, therefore, is better than
Li(x) for small z. We show that h(z) and their extensions are more accurate than other famous approximations, such as
Locker—Ernst’s or Legendre’s also for large . In addition, we derive another function g(z) based on the geometric mean
integral that employs h(z) as an input, and allows one to significantly improve the quality of this method. We show that
g(z) is within &~ 25 of the actual value for < 50000 (to compare Li(x) lies within ~ 40 for the same range) and

. :'E 1
asymptotlcally g(a?) ~ m exp m ’

Ornrcano HOBI IIBHJIKI aNTOPUTME TSt OGUUCIEHHs () Ha OCHOBI iHTErpaiB TapMOHIYHMX Ta TEOMETPHYHUX CEPEHiX,
SIKi MOYKHa BHKOPHCTOBYBATH Ha OyIb-IKOMY KHIICHBKOBOMY KaJbKyisiTopi. 3okpema, dopmyma h(z), mo oTpuMaHa Ha
OCHOBI CEpeHbOr0 I'apMOHIYHOTO, 3HAXOAUTHCS B MeXax ~ 15 Bix ¢akrudyHoro 3HauyeHHs it 3 < z < 10000. Ie
HabmwKeHHs 3a10BoNbHsE HepiBHicT A(x) < Li(x) i Tomy € kpammm 3a Li(z) mmst manux z. [Tokasano, mo h(x) Ta ixHi
PO3IIMPEHHS € TOYHIMIMMHU 3a iHIII BinoMi HabmmkeHHs, Taki sk Jlokepa— EpHcra a6o Jlexxannapa, i must Benukux x. Kpim
TOTO, OTPHMAHO LIe OfHY QYHKI0 g(x) Ha OCHOBI CEpPeAHBOTeOMETPUIHOTO IHTErpana, sika BUKOPHCTOBYE h(z) K BXimHY
BEJINYKMHY 1 JIO3BOJISIE CYTTEBO MOKPAIMTH Takuii MeTo. [TokasaHo, mo g(x) 3HAXOAUTHCS B Mexax =2 25 Bix (HakTHYHOTO
suadends st © < 50000 (st mopiBHstHEA, Li(x) 3HaxomuThes B Mexax ~ 40 B TOMy K caMOMy [iana3oHi) i Mae Taky

ACHUMITOTHKY: ¢(T) ~ e P o1 )

1. Introduction. As is widely known, the prime counting function 7(x) computes the number of
primes less than or equal to a given number x. Since there are no primes < 1, then 7(1) = 0,
there are two primes < 3, so 7(3) = 2. And so on. In the last two centuries, there have been
different attempts to approximate 7(x) by a smooth and easy computable function. Already in

1808, Legendre [1] noticed that 7(z) ~ %, where he originally proposed B = 1.08366. . ..
nx—

Todt
Some years before, Gauss[2] had already observed that the logarithmic integral, li(z) = / i

0 n
approximates 7(x) quite accurately, but for small x it overestimates the number of primes less or
equal to x. To solve this problem, in 1859 Riemann [3] introduced

> n).. n > Inz)k
R(z) = Z_:l Mgl )h(a:l/ )=1 +;k!k§§(k‘)+1)’

where (n) is the Mobius function [4, 5], and the last form above for R(x) is the Gram series

which is the better way to calculate this function. Riemann’s approximation turns out to be 10 times
better than li(x) for < 109 but has been proven to be worse infinitely often by Littlewood [6, 7].
Other approximations to 7(x) are Lehmer’s formula, Mapes’ method, or Meissel’s formula [8—12].
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Currently, the best known approximation to 7(x) is due to A. V. Kulsha [14]:

1 1 0
m(x) = R(x) — e + = arctan s

In this work, we present and derive several other approximations, the first one is denoted as h(x)
and is based on the harmonic integral (continuous harmonic mean) of the function 1/In z. We show
that it provides an accurate approximation of 7(x), specially for small 2. Asymptotically, it behaves
as z/(Inz — 1) which turns out to be superior than other famous approximations such as Legendre’s
or Locker—Ernst’s formula. In the following, we refer to the first method derived here as “harmonic
approximation”, and it should not be confused with the approximate method due to Locker— Ernst
[16-18]: 7(z) = hi’ where h, = H, —3/2, with H(z) the harmonic number. The other algorithm

that we present in this letter to evaluate 7(x) is a function denoted as g(x), based on the geometric
continuous mean. The function g(x) depends on h(x), it is also a fast an easy computable method
and provides a close approximation to 7(x) improving the results of h(x).

This paper is organized as follows. In Section 2, we begin by rewriting the logarithmic integral
in a form that makes explicit their dependence on the average value from calculus. Then we explore
what happens if we replace in this formula the standard average value by other means, such as
the harmonic mean or the geometric mean, which unlike the standard average, can be analytically
computed. The approximation that arises by the first possibility is studied in detail, including some
natural generalizations. In the last part of the work, the second possibility that arises by replacing the
standard average by the geometric mean integral in the definition of Li(x) is considered. This is the
subject of Section 3.

We should mention that the new methods presented in this letter are not meant to replace the
current approximation methods of 7(z); they merely add to the toolbox of available techniques and
approximations. However, they have the advantage of being smooth and easy computable functions
that may be used on any pocket calculator.

2. The harmonic mean integral approximation. Let us begin by writing the standard definition
of the offset logarithmic integral or Eulerian logarithmic integral

[d
t
Li(z) = | —.
(z) Int
2
As is well-known, the offset logarithmic integral appears in estimates of the number of prime numbers
less than a given value. In particular, the prime number theorem states that m(x) ~ Li(z) for large
x, where m(z) is again the number of primes smaller than or equal to z. For small z, it has been
always found that Li(z) > m(z), namely, Li(xz) overestimates the number of primes less or equal
than x.
For our purposes in this letter, it is more convenient to rewrite Li(x) in the following form:

. [ dt 1\*
Lite) = [ = =27, n
2
where we have defined
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1\" 1 [dt
<lnt>2:x—2/lnt’
2

as the standard average of the function 1/In¢ among 2 and z. Let us assume now that f(¢) # 0 for

all ¢ in [a, b]. The harmonic integral of f(¢) can be defined by
b—a
Holf) = ——
/ BRI
o ft)

Then the continuous harmonic mean of f(¢) = 1/Int among 2 and x is equal to the reciprocal of

the average of the reciprocal of 1/1nt, that is,
~1

A [
H5 <lnt> = g (x —2) /lntdt . )
2

Contrary to the case of the standard average of 1/In¢ which does not admit an elementary primitive,
the harmonic integral admits a completely elementary primitive, which can be found integrating by

parts, and is given by

o 1y T —2
2\Int)  z(lnz—1)—2(In2—-1)

Theorem 2.1.
. (r —2)2
M@ 2 e o ez =1 ®)

x
LN S e (L)),
Int/, Int
This is nothing but the generalization to the continuum of the condition AM > HM of the discrete
case, i.e., the arithmetic mean AM is always at least as large as the harmonic mean H M. This

Proof. We begin by noting that

implies the inequality
x

1 dt xr—2

2/mt2r '

vy /lntdt
2

Reordering the last inequality

T

dt /lntdt > (z—2)%

Int
2 2

The second integral of the left-hand side can be computed analytically
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Fig. 1. Representation of 7(n) (blue) and several of their approximations, Li(n)
(black), L(n) (green), and the harmonic approximation h(n) (red).

- — > — .
/lnt |:thlt ZL/:|2 - (-’17 2)
2

Finally we obtain

/"”dt . (@~ 2)°
Int = z(lnz—1) —2(In2-1)"
2

Define the function of the right-hand side of Eq. (3)

B (x —2)2
o) = iz =1 —2mma=1)

1267

4

Since Li(x) > m(xz) for small x, and given that Li(z) > h(x), then it seems natural to wonder if
h(zx) could be a good approximation of 7(x). In order to test h(x) as a possible approximation of
m(x), we have presented here some plots. In Fig. 1, we have plotted the prime-counting function
m(x) together with Li(x), Legendre’s L(x) and h(z) until z ~ 1200. Fig.2 presents a graph of the

compared behavior of the harmonic integral approximation to Locker — Ernst’s until = ~ 10000.

Before concluding this section, let us mention that there are several possible generalizations of

h(zx) that are quite natural. The first case are the functions of the type

B (x —2)2

hiw) = z(lnz—-1)+ A
with A an arbitrary constant. On the other hand, we have the family of functions
foa) (o= p)?

T 2 r—p
= (z — =(z— Intdt =
o) i= (&= p) My (1) = (o= p)? | [ n (Y e
P
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Fig. 2. Comparison among 7(n) — hi (blue) and 7(n) — h(n) (black), where n/h,, is Locker— Ernst’s approximation

and h(n) the harmonic mean integral approximation. 7(n) — h(n) has more zeros than 7(n) — hﬂ Moreover,

n
h(n) is within ~ 15 of the actual value for 3 < z < 10000, while Locker—Ernst’s is within ~ 25 for the
same range.

where p is any prime that satisfies the condition p < x. All these functions present a discontinuity at
x = p. The harmonic integral approximation h(x) corresponds to the case p = 2, i.e., h(x) = pa(z).
Regarding the case p = 3, we have

T -1

p3(z) == (x — 3) HI(f) = (z — 3)2 /lntdt

3

B (x —3)?
~ Zz(lnz — 1) — 0.29583686601

On the other hand, the limit + — p of p,(x) can be computed with the aid of the L"Hopital -
Bernoulli rule

. (z —p)* _
im = = B
a—=p z(lnz — 1) —p(lnp—1) 2—=p Inz

It can be shown that 7(x) ~ p3(z), i.e., this function is also a good approximation of 7(z), in fact the
relative error is even lower that that provided by h(x) for small . We show now that asymptotically,
pp(z) ~ z/(Inz — 1), which is a better asymptotic behavior than Legendre’s function (it is well-
known that 1 turns out to be a better constant for large « than 1.08366. . .).

Lemma 2.1. For x >> p,

_r
lnz—1°

pp(2)
Proof. When x >> p, the factor p(Inp — 1) can be neglected with respect to z(lnx — 1)
2

(z —p) =
z(lnx —1) —p(lnp—1) Inzx-1

Theorem 2.2.

lim 71(3:)

=1.
T—r00 pp(x)
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P3(x) - 71(x) R(x) - 71(x)
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Fig. 3. Representation of p3(z) — m(x) and R(z) — m(x), where R(z) is the Riemann function.

Proof. First, we use the result of the previous lemma and the factorization

r o (1Y
Inz—1 Inz lnz)

1 \!
Now, we can employ the binomial theorem to expand <1 — ) :

Inx

lim m(2) ~ lim m(z)

z—oo pp(z)  z—00 T i 1 oo [ L]
[Inaz<1+lnaz+(lnx)2+”' [lnx}

Finally, the prime number theorem (PNT) states that

()

lim =1.

T—300 [ T }

Inx
In Fig. 3, we have represented the quantities ps(z) — w(x) and R(x) — m(x), where R(x) is the
Riemann function. Although R(x) — 7(z) has more zeros for 10 < x < 1000, p3(z) is not much
worse, and it is faster and easier to use on any scientific calculator. Notice also that po > p,, for
p > 2, namely, in a representation, the graph of all of these functions would be located below ps. In
the next section, we will see that it is possible to significantly improve the quality of the harmonic

approximation h(z) and their family p,(z).

3. Improving h(x) by the geometric mean integral approximation. In Section 2 we showed

1 x
that, by virtue of Eq. (1), the offset logarithmic integral Li(x) can be rewritten as (z — 2)<1t>
nt/q

this form of expressing Li(x) makes explicit their dependence on the standard average. It is therefore
natural to wonder what happens if one replaces in the latter formula the standard average by other
possible means. Having studied the case of the harmonic mean in the previous section, in this last
part of the work we investigate the replacement of the standard average by the geometric mean in
the definition of Li(z). Indeed, if f(¢) > 0 for all ¢ in [a,b] and f is integrable on [a, ], then the
geometric mean (product integral) of f(t¢) exists, and its definition is given by

/b In f(¢) dt

gg(f):exp abfa . Q)
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Notice that G2(f) satisfies the inequality

()2 > Go(f) = H(f). (6)

This is again the continuous analog of the inequality AM > GM > HM of the discrete case. A
consequence is that

T

i) = [ =e-2(g;). 2 0-26 (). )

1
where G5 <lt> is given by
n

r—2

r 1
/ ln<> dt
g%( 1 > — oxp| 22 Int

Integrating by parts, the integral that appears in the argument of the exponential can be expressed
in terms of a function, a constant, and the logarithmic integral

[ 1 1 [ dt
2 2

1
By virtue of this relation, we have found that G5 (lt> depends on Li(z) as
n

Int xr—2

1 1 :
m( , > xln(lnx) —2ln<ln2) + Li(x)
G| — ) =exp

Then, combining all these results, the inequality of Eq. (7) turns out

®)

Li(z) > (z — 2) exp<2 In(In2) — zIn(ln z) + Li(ﬂf)).

r—2

Notice that, since Li(z) > h(x), where h(x) is the harmonic mean integral approximation given
by Eq. (4), it is also true that

)

Li(z) > (z — 2) exp(an(ln 2) —zIn(lnx) + h(a:))

r—2
Therefore, the functions of the right-hand sides of Egs. (8), (9) are both smooth functions with a

closed and compact form that can be studied as two other possible algorithms for evaluating 7(x).
Define the couple of functions gri(x) and g, (x), respectively, as

(10)

gri(@) = (z — 2) exp<2 In(In2) —zln(lnx) + Li(@)7

T —2
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Fig. 4. Representation of the differences to w(z) for 2 < z < 50000, of four different approximations, where
g(z), h(z) and x/h, represent the geometric mean, the harmonic mean, and Locker— Ernst’s approximations,
respectively.

(11)

gn(z) = (z - 2) eXp(an(ln 2) —zln(lnx) + h(x)) .

T —2
Given that Li(z) > h(z), it automatically follows an inequality among g,,(x), gri(x),

gri(z) > gn(x).

The pair of functions gri(z), gn(x) employ the couple Li(x), h(x) as inputs, but improve their
results for a wide range of values. For instance, in order to test the quality of g (z) as approximation
of 7(z), in Fig.4 we have plotted the differences gj(x) — 7(x), h(x) — m(x), Li(z) — 7(z) and
x/hy —m(x), for 2 < x < 50000. The superiority of g, (x) over the rest of approximations for such
domain turns out to be manifest.

Before concluding, let us investigate the asymptotic behavior of gj(x). For this purpose, it is
convenient to factorize g (x) in the form

() = (x_2)exp<2ln(ln29)c:zln(ln:z)) exp(%(ﬁ)) 02

where we have used Eq. (2). Now we provide a proof that gj,(x) approaches m(z) for x — oo.
Theorem 3.1. Let ww(x), gn(x) be the prime counting function and the function defined by
Eq. (11), respectively. Then

fim )
r—r00 gh(gj)
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Proof. With the aid of the factorization given by Eq. (12), it is easy to see that asymptotically,

—zIn(lnx) 1 xX 1
gh(m) ~ Ie z eglmhz—1 — —— eglnz—1
Inz

1
Then, given that for sufficiently large x, e=—1 ~ 1, we have

i F(x) ~ lim xﬂix)l ~ lim ﬂgvx) .
nx nx

Finally, according to the PNT

lim ﬂ =1.
v

On the other hand, by virtue of Eq. (6) and the results obtained in this section, it is clear that,
Li(z) > gri(z) > gn(x) > h(z).
Let us briefly mention that a natural generalization of gr;i(x) can also be written down using (5)

/ ln<1> dt
» Int

(z —p) $<mlt>=(:c—p)exp p— =

Todt

pln(lnp)—mln(lnx)+/ i

n

= (v —p)exp . ,
x—p

where p is an arbitrary prime subjected to the constraint > p. For p = 2, we naturally recover the
case of the function gr;(z).

x 1, . .
It can be shown that gp,(z) ~ g ¢ is a more accurate approximation than h(z), Le-
nx

gendre’s L(x) and any function that asymptotically converges to f(z) = z/(Inx — 1). The same
also applies to gri(x), which is even better, although to compute gr;(z) we need to know first the
value of Li(x), and then insert it into Eq. (10).

As a quick example, for 2 = 1027 (the current record is z = 10%°) we have g;,(10%") =
= 1.63500982221 x 10%°, L(10%7) = 1.63703262434 x 10%, h(10%") = 1.63479370652 x 10?5,
being the actual value 7(10%7) = 1.6352460426841680446427399 x 10?°. The prediction of g (z)
is not as good as that provided by Li(x), but it gives a surprisingly accurate result for such an
algebraically simple function. In fact, the function g;(z) does have some advantages over Li(x);
unlike Li(x), gp(z) can be expressed in closed form, which renders it fairly easy to evaluate gy, ()
on any scientific calculator. Moreover, since the arithmetic mean is always at least as large as the
geometric mean, we always have that Li(x) > gpn(z); it is well-known that Li(z) overestimates
m(x) for small z, therefore gj(z) can serve as a much more accurate approximation to m(z) for
such values of x.
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4. Summary and conclusions. In this paper, we have added some new fast methods to the
toolbox of available approximations of 7(x), which are very easy to use on any pocket calculator. A
natural question arises: which method is better for approximating 7(x)? It depends on the domain
of values of interest. Our results show that gy, (z), for instance, is a much better formula than Li(x)
until 2 ~ 10%, and is much faster to use. However, if one requires high asymptotic precision, then
Li(x) is a better formula, although gy (z), h(x) are also good, and superior than other fast methods
based on simple functions like Legendre’s or Locker — Ernst’s.

De la Vallée-Poussin proved that Li(x) is better approximation of 7(x) than any rational function
of z and Inx for large x. h(z) is a rational function of z and In x, and therefore it will be inferior
than Li(z) in the long run, but g5 (x) is not rational (contains an exponential). Unfortunately, we
do not know if gy (z) can improve the results of Li(z) for sufficiently large x, because there is no
record of the number of primes beyond = = 10%?, the current available record announced in 2022 by
D. Baugh and K. Walisch.
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