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HOMOLOGICAL IDEALS AS INTEGER SPECIALIZATIONS
OF SOME BRAUER CONFIGURATION ALGEBRAS

T'OMOJIOI'TYHI ITEAJIH, K HIJIOYUCJIOBI CIELIAJIIBALILL
JEAKNX KOH®ITYPAIIMHUX AJITEBP BPAYEPA

The homological ideals associated with some Nakayama algebras are characterized and enumerated via integer specializati-
ons of some suitable Brauer configuration algebras. In addition, it is shown how the number of these homological ideals
can be connected with the process of categorification of Fibonacci numbers defined by Ringel and Fahr.

OxapakTepr30BaHO TOMOJIOTIYHI iZieann, acoliifoBaHi 3 AeskuMu anreOpamu Hakasmu, Ta mepepaxoBaHo iX yepe3 Iiyo-
YHCIIOBI crienianizanii JeskuX BiIIOBITHUX KoHOirypaniinux anre6p bpayepa. KpiM Toro, mokasaHo sk KUIBKICTh TaKHX
TOMOJIOTIYHHX ieaniB Mo)ke OyTH MOB’s3aHa 3 MpolecoM Kateropusamii uncen ®idonaydi, mo Oy BU3Ha4eHHH PiHrenem
i ®apom.

1. Introduction. Homological ideals or strong idempotent ideals are ideals of an algebra introduced
by 2, Platzeck and Todorov in [2]. These ideals arise from the research of heredity ideals and
quasi-hereditary algebras. For these ideals the corresponding quotient map induces a full and faithful
functor between derived categories. Recently, homological ideals have been studied in different
contexts, for instance Gatica, Lanzillota and Platzeck and independently Xu and Xi established some
relationships with the so-called finitistic dimension conjecture and the Igusa— Todorov functions [6].
Furthermore, De la Pena and Xi in [9] and Armenta in [1] studied the impact of these ideals in the
context of Hochschild cohomology and one point extensions.

This work deals with the combinatorial properties of homological ideals associated to some
path algebras and their relationships with the novel Brauer Configuration algebras which have been
introduced recently by Green and Schroll in [7]. In particular, we introduce the notion of the
message of a Brauer configuration, such messages enable to compute the number of homological
ideals associated to some Nakayama algebras. Moreover, such number of ideals allow us to obtain
an alternative version of the partition formula for even-index Fibonacci numbers given by Fahr and
Ringel in [3] attaining in this way a new algebraic interpretation for these numbers. Worth noting
that Fahr and Ringel devoted works [3 — 5] to this kind of interpretations also-called categorifications.

This paper is organized as follows. In Section 2, we recall main notation and definitions regarding
homological ideals and Brauer configuration algebras. In particular, we introduce the notion of integer
specialization of a Brauer configuration and the concept of the message of a Brauer configuration. In
Section 3, we give combinatorial conditions to determine whether an idempotent ideal associated to
some Nakayama algebras is homological or not and it is reminded the notion of categorification in
the sense of Fahr and Ringel. We also give the number of such ideals via the integer specialization
of a suitable Brauer configuration algebra and its corresponding message. Moreover, we use the
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number of homological ideals to establish a partition formula for even-index Fibonacci numbers.
Some interesting sequences in the On-line Encyclopedia of Integer Sequences [11] arising from these
computations are described as well.

2. Preliminaries. In this section, we recall main definitions and notation to be used throughout
the paper [1, 2, 7, 9, 10].

2.1. Homological ideals. For an algebra A we mean a finite dimensional basic and connected
algebra over an algebraically closed field k. We denote the category of finite dimensional right A-
modules as mod(A), and the bounded derived category of mod(A) as D?(A). We will assume that
A is a bounded path algebra of the form £Q/I with @ a finite quiver and I an admissible ideal.

An epimorphism of algebras ¢: A — B is called homological epimorphism if it induces a full
and faithful functor

Db(¢*): D(B) — Db(A).

Let I be a two sided ideal of A. Since the quotient map 7: A — A/I is an epimorphism then
the induced functor 7* : mod(A/I) — mod(A) is full and faithful.

A two sided ideal I of A is homological if the quotient map m: A — A/I is an homological
epimorphism.

The following results characterize homological ideals [2, 9].

Proposition 1. Let I be an ideal of A, then:

1) I is an homological ideal of A if and only if Tor’}(I, A/I) = 0 for all n > 0; in this case, I
is idempotent;

2) if I is idempotent and A-projective, then I is homological,

3) If I is idempotent, then I is homological if and only if Ext’y(I,A/I) =0 for all n > 0.

We denote the trace of an A-module M in an A-module N as

try(N) == > Im(f)C N.

f€Hom 4 (M,N)

Remark 1. We recall that according to Auslander et al. [2], if P is an A-projective module then
trp(A) is an idempotent ideal of A and one obtains all the idempotent ideals of A this way.

Remark 2. Note that, since the homological ideals are idempotent ideals and the idempotent
ideals are traces of projective modules over A, then there is always a finite number of homological
ideals.

Following the assumption that A is a bounded quiver algebra of the form k@ /I and the number
of vertices of @) are finite for every subset {aj,...,an} C Qu, we will assume the following
notation for every idempotent ideal generated by the trace of P(a1) @ ... ® P(a,,) in A:

Tay....am = tT(P(a))®...0P(am)) (A)- (1)

In this paper, we combine tools developed by Auslander et al. in [2], Xi and De la Pena in [9] and
the integer specializations of some Brauer configuration (see Subsection 2.3) to establish an explicit
formula for the number of homological ideals associated to some Nakayama algebras. This number
allows to establish a partition formula for even-index Fibonacci numbers as Fahr and Ringel define
in [3-5].

2.2. Brauer configuration algebras. Brauer configuration algebras were introduced by Green
and Schroll in [7] as a generalization of Brauer graph algebras which are biserial algebras of tame
representation type and whose representation theory is encoded by some combinatorial data based on
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graphs. Actually, underlying every Brauer graph algebra is a finite graph with acyclic orientation of
the edges at every vertex and a multiplicity function [7]. The construction of a Brauer graph algebra
is a special case of the construction of a Brauer configuration algebra in the sense that every Brauer
graph is a Brauer configuration with the restriction that every polygon is a set with two vertices. In
the sequel, we give precise definitions of a Brauer configuration and a Brauer configuration algebra.

A Brauer configuration T is a quadruple of the form T" = (T, 'y, p, O), where:

(B1) I'g is a finite set whose elements are called vertices;

(B2) T'; is a finite collection of multisets called polygons; in this case, if V € I'; then the
elements of V' are vertices possibly with repetitions, occ(a, V') denotes the frequency of the vertex
« in the polygon V' and the valency of o denoted val(«) is defined in such a way that

val(a) = Z oce(a, V); ()

Vel

(B3) u is an integer valued function such that i : I'g — N where N denotes the set of positive
integers, it is called the multiplicity function;

(B4) O denotes an orientation defined on I'; which is a choice, for each vertex o € T'g, of a
cyclic ordering of the polygons in which « occurs as a vertex, including repetitions, we denote S,
such collection of polygons; more specifically, if S, = {Vl(al), VQ(QQ), e Vt(at)} is the collection

of polygons where the vertex « occurs with o; = occ(e, V;) and Vi(ai) meaning that S, has «;
copies of V;, then an orientation O is obtained by endowing a linear order < to S, and adding a
relation V; < V4, if V4 = min S, and V; = max S,;

(B5) every vertex in I’y is a vertex in at least one polygon in I'y;

(B6) every polygon has at least two vertices;

(B7) every polygon in I'; has at least one vertex « such that val(a)u(a) > 1.

The set (Sy, <) is called the successor sequence at the vertex .

A vertex o € Ty is said to be fruncated if val(a)u(a) = 1, that is, « is truncated if it occurs
exactly once in exactly one V' € I'1 and pu(a) = 1. A vertex is non-truncated if it is not truncated.

The quiver of a Brauer configuration algebra. The quiver Qr = ((Qr)o, (Qr)1) of a Brauer
configuration algebra is defined in such a way that the vertex set (Qr)o = {v1,v2,...,vmn} of Qr is
in correspondence with the set of polygons {Vi,Va,...,V,,} in "1, noting that there is one vertex
in (Qr)o for every polygon in I';.

Arrows in (Jr are defined by the successor sequences. That is, there is an arrow v; LI Vi1 €
€ (Qr):1 provided that V; < Vi1 in (S,, <) U {V; < Vi} for some non-truncated vertex « € T'y.
In other words, for each non-truncated vertex o € 'y and each successor V'’ of V at «, there is an
arrow from v to v’ in Qr where v and v’ are the vertices in Qr associated to the polygons V' and
V' in 'y, respectively.

The ideal of relations and definition of a Brauer configuration algebra. Fix a polygon
V € I'1 and suppose that occ(a, V') =t > 1, then there are ¢ indices i1, .. .,7; such that V =V .
Then the special a-cycles at v are the cycles C;,, Ci,, ..., C;,, where v is the vertex in the quiver
of Qr associated to the polygon V. If a occurs only once in V' and p(«) = 1, then there is only
one special a-cycle at v.

Let k£ be a field and I' a Brauer configuration. The Brauer configuration algebra associated to
I is defined to be the bounded path algebra Ar = kQr /I, where Qr is the quiver associated to T’
and It is the ideal in kQr generated by the following set of relations pr of type I, II and III.
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Fig. 1. The quiver Qr,, defined by the Brauer configuration I';,.

1. Relations of type I. For each polygon V' = {a,...,a,} € I'; and each pair of non-truncated

vertices «; and «; in V, the set of relations pr contains all relations of the form Ccrlei) — ¢rmles)
where C'is a special a;-cycle and C” is a special o-cycle.

2. Relations of type II. Relations of type II are all paths of the form C*®q where C is a
special a-cycle and a is the first arrow in C.

3. Relations of type III. These relations are quadratic monomial relations of the form ab in kQr
where ab is not a subpath of any special cycle unless a = b and a is a loop associated to a vertex of
valency 1 and p(a) > 1.

As an example for n > 4 fixed, we consider a Brauer configuration I',, = (I, T'1, i, O) such
that:

) ITo={n—-k—-1eN|2<k<n-1}U{n—2},

DI ={Us={n—-2,n—k—-1} |2<k<n-1},

3) the orientation O is defined in such a way that

(a) vertex n — 2 has associated the successor sequence Uy < Us < ... < Up,_1, in this case,
val(ln —2) =n — 2,

(b) if 2 < k <n-—1, then at vertex n— k — 1, it holds that the corresponding successor sequence
consists only of Uy, and for each k, val(n — k — 1) =1,

4 pn—2)=1,

5 pln—k—1)=n—-2,2<k<n-1.

The ideal I, of the corresponding Brauer configuration algebra Ar,, is generated by the follo-
wing relations (see Fig. 1), for which it is assumed the following notation for the special cycles:
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aiabralmy, i k=2,
CUk _
n=2 n—2 n—2 n—2 .

ap_ja; " ...ap_5, otherwise, 3)

U _ n—k-1

Colro1 = :
1. a?af,, if h # s, for all possible values of 7 and r unless for the loops associated to the vertices

n—k—1.

2. %, — (Y. )" for all possible values of k
. n—2 — nek—1 or a pOSSl € values o .

3. C’g *,a with a being the first arrow of Cg *, for all k.
n—2
4. Cgﬁk—l a’ with o’ being the first arrow of Cgﬁkfl for all k.

Figure 1 shows the quiver QJr, associated to this configuration.

The following results describe the structure of a Brauer configuration algebra [7].

Theorem 1. Let A be a Brauer configuration algebra with Brauer configuration T'.

1. There is a bijective correspondence between the set of projective indecomposable A-modules
and the polygons in T.

2. If P is a projective indecomposable A-module corresponding to a polygon V in T'. Then
rad P is a sum of r indecomposable uniserial modules, where r is the number of (non-truncated)
vertices of V' and where the intersection of any two of the uniserial modules is a simple A-module.

3. A Brauer configuration algebra is a multiserial algebra.

4. The number of summands in the heart of an indecomposable projective A-module P such that
rad? P # 0 equals the number of non-truncated vertices of the polygons in T corresponding to P
counting repetitions.

5. If N is a Brauer configuration algebra obtained from A by removing a truncated vertex of a
polygon in T'y with d > 3 vertices then A is isomorphic to \’.

Proposition 2. Let A be a Brauer configuration algebra associated to the Brauer configuration
A and C = {C,...,C} be a full set of equivalence class representatives of special cycles. Assume
that for i = 1,...,t, C; is a special o;-cycle, where «; is a non-truncated vertex in I'. Then

dimkA = 2‘@0’ + Z ]CZ](nZ\Cz] — 1),
C;eC

where |Qo| denotes the number of vertices of Q, |C;| denotes the number of arrows in the a;-cycle
C; and n; = p(ay).

Proposition 3. Let A be the Brauer configuration algebra associated to a connected Brauer
configuration U. The algebra A has a length grading induced from the path algebra kQ) if and only
if there is an N € Z~ such that for each non-truncated vertex o € Ty val(a)u(a) = N.

Sierra [10] proved the following result regarding the center of a Brauer configuration algebra.

Theorem 2. Let I' be a reduced (i.e., without truncated vertices) and connected Brauer confi-
guration and let Q) be its induced quiver and A be the induced Brauer configuration algebra such
that rad® A # 0. Then the dimension of the center of A denoted dimy, Z(\) is given by the formula

dimy, Z(A) = 14 Y p(a) + |T'1| — |To| + #(Loops Q) — |Cr], )

a€cly

where Cr = {a € I'g | val(a) =1 and p(a) > 1}.
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As an example the following is the numerology associated to the algebra Ar, = kQr,, /I, with
Qr,, as shown in Fig. 1 and special cycles given in (3) (|T(Qpn)\ is the number of indecomposable
projective modules, |C;| = val(i)):

Ir(Qr,)| =n—2,
|Cn72‘ =n—2, |Cn—kz—l| =1,

Z Z occ(a, X) =n —1, the number of special cycles,
aclo X el

dimy Ar, = 2(n —2) 4+ (n —2)(n —3) + (n — 3)(n — 2) = 2(n — 2)?,
dimg Z(Ap,) =14+1+n—2+n—-2)—(n—1)+(n—2) — (n—2) =n? —4n + 5.

Remark 3. Ar, is a Brauer graph algebra and according to Proposition 3, the Brauer configura-
tion algebra Ar, with quiver Qr, shown in Fig. 1 has a length grading induced by the path algebra
kEQr,,, provided that for any « € T it holds that p(a) val(a) = n — 2.

2.3. Message of a Brauer configuration. The concept of the message of a Brauer configuration
is helpful to categorify some integer sequences in the sense of Fahr and Ringel (see Subsection 3.1
of the present document, [3, 4]).

Let I' = {T'0,T'1, 1, O} be a Brauer configuration and let U € I'; be a polygon such that

U= {a{l,a?, .. ,osz”}, where f; = occ(ay, U). The term

wU) = af'af? .. ol (5)
is said to be the word associated to U. The sum

MT)= > w) (6)

Uel

is said to be the message of the Brauer configuration I'.
An integer specialization of a Brauer configuration I' is a Brauer configuration I' = (I'§, I'{,
uf, O°) endowed with a preserving orientation map e: I'g — N such that

o =Imge C N,
I'f=e(ly), if Hely then e(H)={e(a;)| ;€ H} €e(ly), (7
i(e(a) = pla) forany a €Ty,
Besides e¢(U) < e(V) in I'{ provided that U <V in I';.

Let w*(U) = (e(a1))f1(e(a2))/ ... (e(an))/™ denote the specialization under e of a word
w(U). In such a case, M (I'°) = ZUere w(U) is the specialized message of the Brauer configu-
ration I" with the usual integer sum and [;roduct (in general with the sum and product associated to
Imge).

Example 1. For the Brauer configuration I',, whose associated quiver is shown in Fig. 1, we
define the specialization e(a) = 2%, a € T'p, with the concatenation in each word given by the
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difference of the specializations of the vertices belonging to a determined polygon, in such a case for
n fixed, we have

wlUp)=(n-2)(n—k—1) for 2<k<n-1,

wé(Uy) =272 —2n k=1 for 2<k<n-—1, (8)
n—1
MTE) = > w(Uy) =) 22 —2v k1
Uiel'r k=1

3. Homological ideals associated to Nakayama algebras. In this section, we prove some
combinatorial conditions which allow to establish whether an idempotent ideal in some Nakayama
algebras is homological or not. We also give the number of homological ideals associated to these al-
gebras via the integer specialization of the Brauer configuration I',, defined in Example 1. Moreover,
we use the number of homological ideals to establish a partition formula for even-index Fibonacci
numbers.

Let @Q be either a linearly oriented quiver with underlying graph A,, or a cycle 1&; with cyclic
orientation. That is, () is one of the following quivers (see Fig. 2):

P N
4 2
y/ \ 1 2 n—1 n
5 1 Oor e — e e — O
\ /
. n
'\n—l/v

Fig. 2. Quiver A, with cyclic orientation and Dynkin diagram A,, linearly oriented.

A quotient A of k(@) by an admissible ideal [ is called a Nakayama algebra [8].

In this work, for n > 3 fixed, we consider the algebras A Ry = kQ/I, where @ is a Dynkin
diagram of type A, linearly oriented and I is an admissible ideal generated by one relation R, ;1)
of length k starting at a vertex ¢ and ending at a vertex j of the given quiver, 1 < i < j < n. The
following picture shows the general structure of quivers ) which we are focused in this paper:

Ay=1—...w1t—=i+1l—=...=itk=—=7+1—=...=n—-1=n

The following lemmas allow to determine which idempotent ideals of an algebra Ap, , , are also
homological ideals. In this case, Lemmas 1 and 2 regard the case whenever the idempotent ideal is
generated by the trace of just one projective module associated to a vertex of the quiver.

Lemma 1. Every idempotent ideal I, of an algebra AR(i,j,k) (see (1) with j <rorr <iis
homological.

Proof. For r < i, we have the following cases:

1) tl“p(r)(P(t)) =0ift>r,

2) trpgy(P(t)) = P(r) if t <r, where P(r) denotes the kth projective module.

If r > j, we consider the following cases:
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1) trpy(P(t)) = P(r) if i <t <, where P(r) denotes the kth projective module,

2) trp(,,)(P(t)) = 0.

In all cases trp()(Ar, ) = P(r)! for some | € N. The result follows as a consequence of
Proposition 1, item 2. We are done.

Lemma 2. Every idempotent ideal I of an algebra AR(Z-J-’
homological.

Proof.  Consider L; = trpy P(i) = P(i)/S(i) ® ... ® S(t — 1), where S(k) denote the
kth simple module. Also, note that there are not morphisms from P(t) to P(j) if t # j which
means that ExtA Ri sk (Lt, P(j)) is a direct summand of ExtA Re (It, AR, ; 1y /1t), provided that

%) with i1+ 1 <t < j—1 is not

L, is a direct summand of I; and P(j) is a direct summand of AR(i,j,k) /I;. Applying the functor
Hom Ar,, vk)(—, P(j)) to a projective resolution of L; with the form
7

0— P(j) = P(t) » Ly — 0,
it is obtained the exact sequence
0— HomAR(i’j’k)(P(t), P(j) — HomAR(i’j’k)(P(j), P(j)) — 0.

Thus, Ext} Lt, P(n)) 2 k and Ext! IZ, Ag I;) # 0. Then the idempotent ideal I;
Ag Rii; AR R(; j (4,4,k)

is not an homologlcal ideal as a consequence of Proposmon 1, item 3.

Lemma 3. If each idempotent ideal 1, of an algebra AR(i,j,k) is not homological, then every
idempotent ideal of the form 1, .. ., is not homological for 2 <1 <k — 1.

Proof. For | fixed, we start by computing I, . «,,

Ial,...,al = trP(oq)@...@P(Oq)(AR(i,j,k)) = Z trp(aw)(AR(i,j,k))'

w=1

In accordance with the hypothesis a,, € [i + 1,7 — 1] and taking into account that

trP(()cw)(AR(i7‘7'7k)) = LCllw @ P(aw) @ \ 0 ; 9 (9)

i times  uu—i times Tt Quw times

l
trP(al)@ @P(al)(AR(w k) a1 b @ P \Of" (10)
i times w=1 n—i—I[ times
it holds that according to the identity (10), P(j) is a direct summand of A Riin /Ia,..o, and L,
has the following projective resolution:

0— P(j) = P(avy) = Loy, — 0.

Applying the functor HomAR( k)(—, P(j)), we have that ExtA Ro (Loé1 ,P(j)) # 0 and by Propo-
0,5,k

sition 1, item 3, we conclude that the idempotent ideal I, ., 1S not an homological ideal.
Lemma 4. For [ fixed, if each idempotent ideal 1., of an algebra AR( 5 with 1 <w <lis
homological, then every idempotent ideal of the form I, . o, is also homologlcal

Proof. 1t suffices to observe that trp(a,,) (AR ;) = P(ov,)! for some [ € N.
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Lemma 5. Every ideal I;; or 1y j of an algebra AR(i,j,k) is homological.

Proof. 1In accordance with the previous lemma we can conclude that if ; is homological then
the result holds. If it is not the case then we consider the following cases:

1. For I; non homological we can compute I; ; = tI‘P(i)@P(t)(AR(i,j,k)) (see identity (9)), since
r < i, then trp(;) P(r) = P(i). Therefore ideal I;; is projective and idempotent. Thus, for Proposi-
tion 1, item 2, we conclude that ideal I;; is homological.

2. We start by computing I; ; as follows:

Iij = treer()(Aru,.) = Lo ® P(t) ® PU) @ o,
itimes  ¢—i times j—t times 7™ J tImes

AR(i,j,k)/Itvj is given by

) I = PO P2)®..aPH)®.. o Pt)®...0 P(j)®...® P(n)
Ri o) YT Le. oLioPl)®.. o PH)dPG)D.. 0P ®0D...00

1 _ . . . . . .
In order to compute EXtAR(i,j,k) = (I, AR(i,j,k)/ItJ) we consider the projective resolution of L;

0— P(j) = P(t) — Ly — 0.

Applying the functor Hom 4,

(=, P(j)), we obtain
(4,3,k)

0— HomAR(i’ _

Jﬁk)(P(t)a AR(i,j,k) [i5) = HomAR(-

I’j’k)(P(j)aAR(i’j’k)/ItJ‘) 0.

Taking into account that

(

T
—~
N
~
I
[es}

if 1<z <y,

Hom
ARG j k)

&

HomAR(” if (+1<y<t—1,

e liav
N
RS
~ —

I
o

if t+1<v<j—1,

N7 N7 N
i)
=
~
a
—~~
<
~
N—— N
I
S

Hom
ARG j

o)
Yo
o
N’

HomAR@,j,k)(P(t)’ P

—~
<
S~—
~
I
)

if j+1<u<n,

"U
S

"U
I
o

if 1<2z<4,

HomAR(Z .

Ly

if i+l<y<t—lL,

"U"U
—_
S T+
=

E
<
~—
\_/v\/
I
=)

P(j
k)

I
o

HomAR( if t+1<v<y -1,

HomAR(Z o (P

s
—
.
N—

(P(), P

/—\
S
~—
~—
I
o

HomAR( if j+41<u<n.

We conclude that EXtZ‘R(i,]-,k)([t’j’ AR ;1 /It;) = 0 and that the idempotent ideal I; ; is an homo-

logical ideal as a consequence of Proposition 1, item 3.
Remark 4. 1f the non homological ideal I; has the form I, ; the previous Lemma 5 also
holds.
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Lemma 6. For 1 <h<i—1,1<[I<k—1and1 <m <n-—jfixed, every idempotent ideal
of the form L, .z, 11, t1y1,..ym Of an algebra Ag,, where zq € [1,i — 1], t, € [i + 1,5 — 1],
Ye € [7 + 1,n], is not homological.

Proof. For h, | and m fixed, we start by computing 1., . -, 1, . t191,ym>

VRO

Lo ooznt ottt oo = trP(Z1)®...®P(Z;L)®P(t1)®...®P(tl)@P(yl),GB--.EBP(ym)(AR(i,j,k)> =

h l m
- Z rp(z,) (AR(i,j,k)) + Z rp(,) (AR(z',j,k)) + Z tTp(y.) (AR(i,j,k)) : (11)

a=1 b=1 c=1

-~

(1) (2) 3)

The traces (1)—(3) can be written as follows:

h h
St (Arg ) = D Pla) 806 .. @0,
a=1 a=1
l l
Yt (Arg,y) = Ly 9@ PH) e 0 (12)
b=1 i times b=1 n—i—I[ times

ZtrP(yC)(AR(w,k)) = \ O J @ P(yl) @@P(yC) @ \ O v

c=1 7 times j—i times c=1 n—m—j times
Thus, the ideal I, . ., t1,...t1,1,....ym has the following form:

h l

m
P(zq) ® Ly @ P(ty) @ P(y1) © P(y.) ® 0 (13)
aEPl(a) " bG?() (4) CEE(C)
i—h times j—i—l times n—m—j times
(i
In accordance with (13) we have that D ((J)) is a direct summand of the quotient
Y1
AR(i,]',k)/IZI7~~7Zh7t17~-'7tl:y17~~-7ym and Ly, has the following projective resolution:
0— P(j) = P(t1) = Ly, — 0. (14)
. P(j) . .
Applying the functor Hom 4 ra\ TP () to the resolution (14), we obtain the exact sequence
1,7, yl
P(j)

~ Pl
0— HomAR(i,j,k) (P(t)7 > — HomAR(i,j,k)<P(j)7 (]) > — 0.

P(y1) P(y1)

P()
1 [
Then EXtAR(i,j,k) (Lt, P(y1)> = k and

1
EXtAR(i i k)(Im,~~~,2h7t1,~-~7tz,y17~~,ym7 AR(i,j,k)/1217~~-7Zh,t1,~~~,tz7y1,~--7ym) #0

by Proposition 1, item 3, we conclude that the idempotent ideal I., . .. 11 . t.41,..y;m 1S DOt an
homological ideal.
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Lemma 7. For 1 <h<i—1,1<I[<k—1and 1 <m <n—j fixed, the idempotent ideals
Lyooentvvty and Ity 400 o of an algebra AR(i, where z, € [1,i— 1], t, € [i + 1,5 — 1],
Ye € [§ + 1,n], are not homological.

J:k)?

h
Proof. 1t is enough to consider in (11) the trace Z trp(za)(AR(, .k)) = 0 or the trace
m a=1 b
Zczl trp(yc) (AR('La]ak)) = O.

3.1. On the number of homological ideals associated to some Nakayama algebras. The
following results allow us to compute the number of homological and non homological ideals in
a bounded algebra A Rii e by using the integer specialization e of the Brauer configuration I,
introduced in Example 1.

Theorem 3. For n > 4 fixed and 2 < k < n—1, the number |NHH§L[ of non homological ideals
of an algebra Ag, ., is given by the identity INHIF | = we(Uy).

Proof. 'We note that according to Lemmas 2 and 3 there are 2~ — 1 non homological ideals
associated only to the vertices inside the relation Ry; ;), by Lemma 6 there are additional gn—k—l
non homological ideals arising from the combination of vertices which are inside and outside of the
relation. The theorem follows taking into account the product rule and Example 1.

Corollary 1. For n > 4 fixed and 2 < k < n — 1, the number of homological ideals |HI*| of
an algebra Ap,, ,  is given by the identity [HIF| = 2" — w(Uy) = 3- 272 4 2n—k-1,

Proof. Since there are 2" idempotent ideals in A Rg; jx» then the result holds as a consequence
of Theorem 3.

The formula obtained in Theorem 3 induces the following triangle:

k)7

Non homological triangle NHIT

k
n
2 | 3] 4] 56 |7]3

sl 1| - -]-1-1-]1-]-
a2 3| - -1]-1-]-]-
51 4 A IR (R N N
6 | 8 [ 121415 - |-]-] -
7116 | 24 [ 28|30 |31 |- |- | -

Entries [NHI®| of triangle NHIT can be calculated inductively as follows: we start by defining
INHI2| = 273 for all n > 3. Now, we assume that [NHI¥| = 0 with k& < 1 and for the sake
of clarity we denote the specialization under e of a word w(Uy) of the polygon Uy in the Brauer
configuration I';, as w®(U}}) (see Example 1). Then, for k£ > 3,

w(Ur) = w(Ug) = (w*(Up_y) + w*(UT)) = w'(UZ,)

or, equivalently,
INHIE| = (|NHIF!| + |[NHIF~1)) — |NHIF2).

These arguments prove the following proposition.
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Proposition 4. M (I'¢) equals the sum of the elements in the nth row of the non homological
triangle NHIT (see Example 1).

-1
Remark 5. The integer sequence generated by M (I'S) = ZZ—l on=2 _gn=h=l — 11 517,49,
129,321,769,1793,4097,9217, ...} is encoded A000337 in the OEIS. Elements of the sequence
A000337 also correspond to the sums of the elements of the rows of the Reinhard Zumkeller triangle.

Remark 6. The sum of entries in the diagonals of the non homological triangle is the sequence
A274868 in the OEIS, and it is related with the number of set partitions of [n] into exactly four
blocks such that all odd elements are in blocks with an odd index, whereas all even elements are in
blocks with an even index.

Similarly, for the homological ideals Corollary 1 induces the following triangle:

Homological triangle HIT

k
n
3 4 ) 6 71 8

3 _ _ _ _ R _
4 14 13 - - - - | - -
5 28 26 25 - — - | - -
6 56 52 50 49 - - | - -
7 | 112 | 104 | 100 | 98 | 97 | — | — -

The elements of the homological triangle are closely related with the research of categorification
of integer sequences. Particularly, these numbers deal with the work of Fahr and Ringel regarding
categorification of Fibonacci numbers. In Subsection 3.2, we reconstruct the partition formula for
even-index Fibonacci numbers given in [3, 5] by using the number of homological ideals of some
Nakayama algebras.

3.2. Categorification of integer sequences. In this subsection, we give some relationships
between the number of homological ideals of an algebra A Rijn) and the partition formula given by
Fahr and Ringel for even-index Fibonacci numbers in [3].

According to Fahr and Ringel [4] a categorification of a sequence of numbers means to consider
instead of these numbers suitable objects in a category (for instance, representation of quivers)
so that the numbers in question occur as invariants of the objects, equality of numbers may be
visualized by isomorphisms of objects functional relations by functorial ties. The notion of this
kind of categorification arose from the use of suitable arrays of numbers to obtain integer partitions
of dimensions of indecomposable preprojective modules over the 3-Kronecker algebra (see Fig. 3
where it is shown the 3-Kronecker quiver and a piece of the oriented 3-regular tree or universal
covering (T, E, ;) as described by Fahr and Ringel in [3]). Firstly, they noted that the vector
dimension of these kind of modules consists of even-index Fibonacci numbers (denoted f; and such
that f; = fi_1 + fi—o for i > 2, fy =0, f; = 1) then they used results from the universal covering
theory developed by Gabriel and his students to identify such Fibonacci numbers with dimensions of
representations of the corresponding universal covering.
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[ ] .\._>./. o
2 N R
O —©
AN
./( &.

Fig. 3. The 3-Kronecker quiver and an illustration of its
corresponding universal covering.

a[0]

P, Kl f2 0
1 fi 1

Py VRN
1 2 fe 2

P; K N x
1 3 fs 3

Py ¥ o ¥ X
1 4 7 fio 4

Py ¥ N ¥ N ok
1 5 12 | fi2 5

Pg ¥ N ¥ N x X
1 6 18 29 f1a 6

Py ¥ N ¥ A ox
1 7 25 53 fie 7

Fig. 4. The even-index Fibonacci partition triangle [5].

First of all note that the road to a categorification of the Fibonacci numbers has several stops some
of them dealing with diagonal (lower) arrays of numbers of the form D = (d; ;) with0 < j <i<n
(columns numbered from right to the left, see Fig. 4) for some n > 0 fixed and such that

di;=1 forall >0,
di; =0 forall j>i,
dogtii-1 =0, if i>1, k>0,
dok,0 = 3dag—1,1 — do(k—1)0, k=1,
dit1j-1 =2d;j + dij—2 — di—1-1, ©,J>2.
In addition, if ¢ > 4, then the following identity (hook rule) holds:
i—2
Zdi+k,i—k +doi—20 = d2i—1,1.

k=0

Note that to each entry d;;_; it is possible to assign a weight w;;_; by using the numbers in the
homological triangle HIT as follows:
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|HI%, .o — 225~ *+1  if iseven, i isoddand i# j+1,
HIS,, | — 2% if j iseven, i iseven,

Wii—j = 4 3, if ¢ odd, j evenand i=j+1,
1, if ¢=45=2h forsome h >0,
0, if j isodd, i#j,

where s = {;J and |x| is the greatest integer number less than x. If we consider the multipli-
cation of the entry d; ;_; with its corresponding weight w; ;_;, we can define a partition formula for

even-index Fibonacci numbers in the following form:

7

foite = Z(wi,i—j)(di,i—j)- (15)

Jj=0

Finally, we recall that Fahr and Ringel interpreted weights w; ;_; as distances in a 3-regular tree
(T, FE) (with T a vertex set and E a set of edges) from a fixed point =y € T to any point y € 7.
They define sets 7, whose points have distance r to xg, in such a case Ty = {xo}, 71 are the
neighbors of o and so on (note that |7, = 3(2"~!) if » > 1). A given vertex y is said to be even
or odd according to this parity [3].

Any vertex y € T yields a suitable reflection o, on the set of functions 7" — Z with finite
support, denoted Z[T'], and some reflection products denoted ®y and ®; according to the parity of
y are introduced in [3]. Then some maps a;: Ng — Z € Z[T] are defined in such a way that if ag
is the characteristic function of Tj then ag(z) = 0 unless = x( in which case ag(xg) = 1, and
ar = (Po®1)tap, for t > 0, with a¢[r] = a;(z), for r € Ny and = € T,, these maps a; give the
values d; ; of the array (see Fig. 4). The following table is an example of such array with n = 7.
Rows are giving by the values of ¢, P, is a notation for a 3-Kronecker preprojective module with
dimension vector [for+o for] (see [5]).

According to the present discussion the identity (15) adopts one of the following forms defined
by Fahr and Ringel in [3]:

far = Z |T;|a]r] =3 Z 22m . at[2m + 1],

rodd m>1
(16)
farra = [Trlagfr] = ar0] +3 > 2°™ 1. ay[2m].
T even m2>1

For example, for ¢ = 3 and ¢t = 4, we compute fg and fi¢ as follows:
21 =fs=0+3(3-2°)+0+1(3-2%,
55=fio=1-T+0+4(3-2") +0+1(3-2%).

Sequences a;[0] = d; 0 and a;[1] = da; 41,1 are encoded respectively as A132262 and A110122 in
the OEIS. Actually, sequence a;[0] had not been registered in the OEIS before the publication of
Fahr and Ringel.
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The following result giving a relationship between the number of homological ideals and Fi-
bonacci numbers is a direct consequence of identities (15) and (16).

Theorem 4.
2t
Z(w2t,2t—j)<d2t,2t—j) = Z Tr|aslr], ¢ =0,
7=0 T even
2%—1
Z(w2t71,2t717j)(d2t71,2t717j) = Z Tylaelr], t=1.
3=0 r odd
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