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SOME SIMPLEST INTEGRAL EQUALITIES EQUIVALENT
TO THE RIEMANN HYPOTHESIS

JIESIKI HAUIIPOCTIIII IHTET PAJIBHI PIBHOCTI,
IO EKBIBAJIEHTHI I'lIIOTE31 PIMAHA

We show that the following integral equalities are equivalent to the Riemann hypothesis for any real a > 0 and any real
0<e<l,e#1:
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eKBiBaJICHTHI rinote3i PiMaHa 1 noBineHOrO IificHoro a > 0 i goBiibHOTO AificHoro 0 < € < 1, € # 1.

1. Introduction. In recent papers [1, 2] (see also reprints [3]), we, together with Merlini, have
established and proved an infinite number of integral equalities equivalent to the Riemann hypothesis
(RH; see, e.g., [4] for the general discussion of the Riemann (-function). In particular, we have
shown that Balazard — Saias — Yor equality [5] and Volchkov equality [6] are certain particular cases
of our general approach.

The aim of this short note is to establish and briefly discuss what we believe possibly are the

simplest integral equalities of this type. _
i

)

is real positive, ¢ = +/—1 and 1 > ¢ > 0. We use our “standard” [1-3] contour C' com-

2. Integral equalities. Let us introduce the function g(z) = -, where a
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Fig. 1. The contour C used for the calculation of the integrals. The cut made to exclude the simple pole of the
Riemann (-function is shown, see [1—3] for details.

1 1 1
posed by the segments of straight lines [2 — T, 5 + iT} , [2 +4T,T + iT} , [T +1iT,T —iT)
1
and [T — 4T, 5~ iT} , where T is a real positive number larger than 1 (see Fig. 1), and consider a

contour integral / 9(2)In(¢(z))dz. Consideration of similar integrals with ¢ > 1 is given in [1].
C

Lemma. Assume RH. Then, for T — +o0,

(a4 it)e
C —00

/Q(z) In(¢(2))dz = 7 ! <C<; ’ Zt>) dt = —27r/1 dz
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Proof. To calculate the contour integral at question we use the generalized Littlewood theorem
concerning contour integrals of the logarithm of an analytical function [1—3]. This theorem expresses

the contour integral value via the sum over residues given by the poles of the function g(z) lying
O'“l”it 1
inside the contour, and the sum of the integrals / g(z)dz, where o +it, o > 3 is a zero or the
14it
2
pole (these contributions have different signs) of the Riemann (-function; see [1 —3] for details.
Inside the contour we have no poles of the function ¢g(z) and, due to the fact that we assume RH,

also no zeros of the Riemann (-function. Thus for any 7" we obtain

1

[ s@mic@yds = -2r [ ( <d”““ N n
a+

¢ 2

1
2

where, of course, the integral in the right-hand side is the contribution of the simple pole of the

(-function at z = 1.
.
T 111(C<2 +zt>)
From the other side, the contour integral at question is equal to / —
7 (a +1t)
corresponding integrals taken over three remaining sides of the quadratic contour C. To finish the

proof of the lemma we need to show that the latter tend to zero. First we consider an integral
T+iT T—iT

/ 9(2) In(¢(z))dz (consideration for / 9(2z)In(¢(z))dz is quite similar) and divide the
Lyr 1
2

dt plus

iir
integration area into the segments 3 +4iT,N +iT| and [N +iT,T + iT], where N < T is some

positive number depending on T (we can take it as large as we please; we will select its value later
on).

1
We use a “standard” definition of arg (C <2 + it>), that is, that where the argument starts
from zero value at z = b > 1, ¢ = 0 (In(¢(b)) > 0 here) and then is obtained by the continued
1
variation along the segments of straight lines [b, b+ it], [b + 1t, 5 + it} . With this definition, for the

segment [; +iT, N +iT |, we have |arg({(z))| = O(InT') ([4], this is Backlund theorem [7]) and
|In(¢(2))| = O(InT) [4]. Hence
N+iT

/ 9(2)n(C(2)) dz| = O(NTInT).

1 .
5+iT

For the point  + i7" with sufficiently large x belonging to the segment [N + i7", T + iT], we have
|In(¢(z))] = O(27*), which follows trivially from the definition of the Riemann ¢-function, hence

T+:iT

/ 9(=) n(C(2))dz = O(2 N T~ I T).

z+iT
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Thus it is enough to select, say, N = T2 to see the disappearance of these two integrals in the limit
of large 7. Due to the same |In(¢(2))| = 0(2_%(2)), the disappearance of the integral taken along
the line [T+ T, T — iT] in the limit of large T is evident, which finishes the proof of the lemma.

. 1n<g(2+u)>

Thus on RH the integral / (a+ i) dt for 1 > € > 0 do exists. This should not
o a+1

be surprising because “similar” integrals are known, such as, e.g., the following examples from

o 1 3
Gradshtein and Ryzhik book [8]. Example 4.421.1 gives M dr = —%(7 + Ina);
0 €T
more generally we have Example 4.422.1: for |R(u)| < 1, a > 0,
[ s r
/ nxxs;niam) dr = —éﬁ) sin % (¢(M) —Ina+ gcos %),
0

and Example 4.422.2: for 0 < R(p) < 1, a > 0,

o
In z cos(ax) I(w) i T Ty
/xl_udx = _aTCOS?(w(M) —Ina — §tan7>
0
Here ~ is Euler—Mascheroni constant and I, 1) are gamma- and digamma-functions, respectively.
Our next aim is the proof of the following theorem.
Theorem 1. For any real a > 0 the integral equality

1

001n<§<2+it>) agl

/ : dt = —27ln —2 )
a—+ it a

—00

is equivalent to the Riemann hypothesis.
Proof. Applying Eq. (1) for ¢ = 1, we see that on RH Eq. (2) takes place. If RH fails and a

non-trivial Riemann zero oy, + it with o > 3 exists, it contributes

0k
) 1) it
_Qm-/%dx _opmm AT
a+x + ity a—+ ity
0

where 9, = o), — 5 > 0, to the integral value. Pairing the contributions of zeros with oy, + ity, we

(a+ )% + 12

have the total contribution of 27 In k always a purely real and strictly positive number.
a?+t2

Theorem 1 is proved.
For large t; we see that the contribution of non-trivial zeros oy & it is equal to

0n)? + t2 1
Qﬁln% _ (9(2>_
a —|—tk tk
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The known counting function of the Riemann zeta-function zeros O(T' InT") [4] thus guaranties that

1
<n(s(a i)
this sum converges, so that the integral /

oo a+ 1t
of RH.

Similarly, we have the following theorem.

dt exists irrespective on the validity

Theorem 2. For any real a > 0 and any 0 < € < 1, the integral equality

79m<6(§+“>>dt%r((a+1)16a15> G

(a+it)e 1—ce¢ 2

—00

is equivalent to the Riemann hypothesis.

Proof. On RH, Eq. (3) is an immediate consequence of Eq. (1). If there is a non-trivial Riemann

1 . . [ (
Zero 3 + Op + ity, we take t; > O here, it contributes —27i /

de to the integral
0 a X (293

value. Two complex conjugate zeros contribute

5 5
27T/k (@ + x +ity)* jLQ(a J; l; — itg)© dp — 27r/k 2 cos(epy,) da,
((a+ ) +17) (a4 )2 +1t2)>

“4)

0

where ¢ = arctan * _ The expression under the integral sign in the right-hand side here is
a+x

. o 7r .
certainly positive if |epy| < 5 S0 that if |arctan

< 2£ This is always true because 0 <

€T €

123

T
< arctan <—and 0 <e<1.
a+x

2

T a+w .
= — — arctan we see that for large ¢, asymptotically cos(epy) =

Using arctan
& a+x 2 tr

= cos % = O(1). Hence, as it follows from Eq. (4), asymptotically each pair of complex conjugate

non-trivial Riemann zeros contributes O(&kt?). Thus the existence of the integral

(),

(a4 it)e

—00

depends on the unknown density of the non-trivial Riemann zeros. If, for example, the density of

non-trivial Riemann zeros with 6 > §g > 3 in a limit of large 7' is constant, the sum over such

zeros diverges and the integral does not exist. Of course, this makes the (not easy due to the slow

1
Nln(C(2—kﬁ>>
convergence) numerical study of the integral / -
N (a4 it)e
especially interesting from the viewpoint of the RH testing.

dt with 0 < € < 1 for large N
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3. Discussion and numerical testing. For the rest of this section, we assume RH. Then, for

a=g,we have

0 1n<<<1 +it>>
/ 2 dt = —2rIn2 = —4.35517.... (5)

.
—00 5 + it
This equation has been tested numerically with Mathematica. We used the built-in function Ninte-
grate. After some testing we found out that a good trade-off between precision and computational
time was to choose GlobalAdaptive as the integration strategy for Nintegrate (in general it has better
performance than local adaptive strategy) and to set the value of the parameter MaxRecursion to 100
and that of MaxErrorincrease to 10'000. In addition, we explicitly specified the singularities (i.e.,
where ((s) = 0) in the range of integration. The convergence of an integral is quite slow (as it
should be following the proof of Lemma 1), it takes about 4 and a half hours to calculate the integral

wn(e(z+ir))
on a standard desktop PC but for / 1 dt with N = 9878 (i.e., integrating over the

-N 5 + it
region including the first 10'000 non-trivial Riemann zeros), we succeed to obtain the “reasonable”
value —4.35518. ...

1
The value of the integral (3) for e = =, a = 2 that is,

0 1n<<<1+u>)
/ 12 dt = —4x (1 - ‘f) = —3.6806... (6)
S [g it

also has been tested numerically with the same limits obtaining —3.683. . ..
Now we want to make the following remarks. First, nothing prevents us to take a = 0 in Eq. (3)
obtaining

N | =

1
o 1n<g< +it>)

2 2¢m
/ G @)

— 00

In particular,

7 i, <C<; - Zt>) dt = —2v/2m. (8)

Vit

—0o0

Of course, integrals (7), (8) are to be understood as Cauchy principal values. .
i

+ Ly
a z 9

we get a simple pole of the function g(z) with the residue i at z = a + 3 inside the contour. This

Next, if in the same contour integral | ¢(z)In({(z))dz as above we use g(z) =
c
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1
gives the contribution —27 In (C <a + 2>> which should be summed up with the contribution of

a— =
the simple pole of ((z), —27In 2 , hence
1
ooln<g<2+z't)> 1 a1
2
t=—27l = —=
/ —a + it d T C<2+a) a

—0o0

1
Taking a = = + 6, § — 0, we have —27Ind — 27w In 2 for the contribution of a simple pole of g(z)
and 27 1Ind + O(0) for the contribution of a simple pole of ((z), that is, a total of —271n2+ O(J).

Thus we get
.
o ln<g(2+zt)>
/ T dt = —2mIn2. 9)
e —5 Tt
. 1 1 .. . .
Certainly, T = 7 — , thus combining (5) and (9) we obtain again the
— + 2 =+t 5t it

4
Balazard — Saias — Yor theorem stating that RH is equivalent to the integral equality [5]

PG,

1
s

Similarly, combining the values of the integrals

- 1n(§<;+it>) o 71n<§(;+it)> .

/ a+ it —a +it
—00

— 00

1
given above for a # o0 e restore the Theorem 3 from [1]: the equality

peliaen)), ) od)

a/
. 2 2 1
T a+t at =

S 5

is equivalent to the Riemann hypothesis. Numerous examples of this equality were tested numerically.
This is worthwhile to note that if ¢ — 0, expression (3) has a finite limit (of course) independent
on a, which we formulate as the following proposition.
Proposition. Assume RH. Then for any real positive a

(1))
lim dt = —.

e—0 (a + ’Lt) ¢

—0o0
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. . . I . « .
Thus, in a certain sense, on RH the function In{ ¢ 3 + it is indeed “almost periodic”.
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