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ON THE RATE OF CONVERGENCE IN THE INVARIANCE PRINCIPLE
FOR WEAKLY DEPENDENT RANDOM VARIABLES

IMPO IBUJAKICTD 35I’)KHOCTI B ITIPUHIUIII IHBAPIAHTHOCTI
JJISAA CJIABKO 3AJIE2XKHUX BUITAJIKOBUX BEJIMYUH

We consider nonstationary sequences of ¢-mixing random variables. By using the Levy — Prokhorov distance, we estimate
the rate of convergence in the invariance principle for nonstationary ¢-mixing random variables. The obtained results
extend and generalize several known results for nonstationary (-mixing random variables.

Po3rmisiHyTO HEcTallioHapHI MOCIHIZOBHOCTI (-MilllaHUX BHIIAJKOBHX BeJIW4MH. 3a normomMororo Bincraui Jlesi—IIpoxoposa
OIIIHEHO IIBUJIKICTh 301KHOCTI B IPUHIIUII 1HBapiaHTHOCTI JJIsl HECTAIIOHAPHUX (p-MIIIaHUX BHIAJIKOBUX BennuuH. Oxuep-
KaHI pe3yJbTaTH PO3LIMPIOIOTH Ta Y3arajbHIOIOTH PAA BIIOMHUX DPE3yJIbTaTiB IPO HECTALIOHAPHI (-MillaHi BUMAIKOBi
BEJIMYUHHU.

1. Introduction. Let {&,, kK = 1,2,...,k(n), n = 1,2,...} be a sequence of random variables
(r.v.’s) on a probability space {Q, 3, P}. Let M%(n) = 0{&pn,a <k < b}, 1 <a < b < k(n). For
each m > 1 define (see [11])
a(m) = sup sup |P(ANB) — P(A)P(B)|,
ki AeMf(n), BeM ™) (n)

B(m)=Eqsup sup |P(A/Mf(n))— P(A)] ¢,
kn Aemf™) ()

k+m
p(m) = sup sup [P(BfA) = P(B)|,  P(4)>0.
R Aenl(n), BEM) (n)

The sequence is said to be strongly mixing (s.m.), absolutely regular (a.r.), uniformly strong
mixing (u.s.m.), if a(m) — 0, [(m)— 0 and p(m) — 0 as m — oo, respectively.
Let
Skn =Y &n» Sn =Skt Bin = ESty,  Bi =Bl Son = Bj, =0,

i<k

Lns=B," Y Elnl’, E&n=0, ¢(0)=1
J<k(n)
By C(-) with an index or without it, we denote a positive constants (not always the same in the

various formulas) depending only on the values in parentheses, by C' an absolute positive constant.

. . max,<;<i B> . )
Consider the points tz,, = Lsisk m2 in the interval [0; 1], order them and construct on
max; <i<i(n) B

S
kn> If some ¢y, are the

n

the interval [0; 1] continuous random polygon W,,(t) with vertices <t;m;

same, i.e.,
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2 2 2
Bkln :Ban —_ ... :Bkrn? kz # k],

Sk,
then we take any of these points <tan; g")
n
Consider the space C[0; 1] of continuous functions on [0; 1] equipped with the norm ||z(t)| =

= supg<;<1 |¢(t)], which generates o-algebra 3¢. If a W), is distribution of the process {W,(t),
t € [0;1]} and W is distribution of the standard Winer process {W (t), t € [0;1]}, then the weak
convergence W,, to W means that

lim P(W,(t) € A) = P(W(A))

n—o0

for any Borel set A such that W(JA) = 0. This fact is usually called the invariance principle
(IP). Donsker [8] proved IP for i.i.d. random variables and Yu. V. Prokhorov [16] proved IP for the
triangular arrays {flm, kE=1,2,...,k(n), n=1,2,... } of independent in each series r.v.’s under
Lundeberg’s condition:

1 n
An(e) = oo > E{X}.; |Xpn| > By} -0 as n—oo forall &> 0.
k=1
Under Lundeberg’s condition T. M. Zuparov, A. K. Muhamedov [26] and M. Peligrad, S. Utev
[15] proved IP for a nonstationary (-mixing and a-mixing r.v.’s, respectively.
Define L(P; Q) the Levy — Prokhorov distance between the distributions P and @ in C10; 1] (see
[3, p. 327))

L(P;Q) = inf{e > 0: P(A) < Q(A°) +¢ and Q(A) < P(A°) +¢ forall A€ S¢},

where A° is a e-neighborhood of A. Then IP can be written as L(W,,; W) — 0 as n — oo.
It is known that

L(Wy; W) = max{e: P([Wa(-) = W(Q)[ > e)}- (D

In order to estimate (1) it is enough to estimate P(||W,,(-) — W(-)|| > €). A rate of convergence
in the IP was studied in detail when the sequence of r.v.’s are independent. The first estimation in this
case was proposed by Yu. V. Prokhorov [16]. He proved that

LW, W) = o(L:lgl In? Ln3>, n — 0.
This latter estimate was improved in i.i.d. case by Heyde [10], Dudley [7], and others. A. A. Borov-
kov [4] proved that

L(Wn; W) = C(s)Li*t, 2< s <3, @)

It should be noted that in all the above estimates the one probability space method was used.
R. M. Dudley [7] and A. A. Borovkov [4] showed that neither method of Prokhorov nor method of
Skorokhod can be used to get (2) in the case s > 5. J. Komlos, P. Major, G. Tusnady (KMT) [13]
proposed method which allowed them in i.i.d. case to prove (1) for all s > 2. Modifying the method
of KMT, A. I. Sakhanenko [17-21] extends (2) to the general case.
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1218 A. K. MUKHAMEDOV

The fact that (2) is the best possible was proved by several authors A. A. Borovkov [4],
A. I. Sakhanenko [17-21], T. V. Arak [1], J. Komlos, P. Major and G. Tusnady [14]. I. Berkes,
W. Philipp [2], and A. A. Borovkov, A. 1. Sakhanenko [5], T. M. Zuparov, A. K. Muhamedov [26,
27] proposed the methods to obtain estimates of Levy — Prokhorov distances for different classes of
weakly dependent sequence.

Yoshihara [25] obtained the first result:

LW, W) = o(n*1/8 In'/2 n)

for a.r. strictly stationary sequence {{;, k € N} satisfying
o0
> k- (B(R))H) <o,
k=1

under the existence of an absolute moment of order 4 + §, > 0. Kanagawa [12] obtained the rate
of convergence for the u.s.m. and s.m. strictly stationary sequences of r.v.’s.

Using the Prokhorov method, the best estimate in IP is obtained [9] in the stationary case with
s.m. conditions, namely,

1) if the coefficients (k) of s.m. decreases exponentially to zero and

0<a:E£%—|—2ZE£1£i<oo, (3)
=2

then
LW W) = o(n‘ﬂ%w n* n));
2) if the coefficients a(k) of s.m. decreases to zero as following:
a(k) < On 0s6=D/=2° o5 0 9>1,
and condition (3) holds, then
LW, W) = O (052017 Vinn).

For the case u.s.m. S. A. Utev [23] for weak stationary sequences {{, k € N} showed that

n 1/(s+1)
L(W,; W) = C(s: g3 ) <n—s/2ZE|a|S) , 2<s<5,
=1

under the conditions (3) and ¢(k) < A-k~90) g(s) > j(u)(j(u) — 1), u = (2 + 5s)/2(5 — s),
j(uw) =2min{k € N : 2k > u}.

T. M. Zuparov and A. K. Muhamedov [27] announced the estimate for nonstatsionary u.s.m.
sequence

1

L(Wy; W) < C(s;0; K) L'
under 2 < s < 6 and ¢(k) < Ak~ here 0(s) > 2s.
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In this paper, using Levy —Prokhorov distance, Bernshtein’s method, 1. Berkes, W. Philipp [2]
approximation theorem’s, S. A. Utev’s [24] moment inequalities and results of A. I. Sakhanenko [19],
we will obtain the best possible rate of convergence in the IP, extend and generalize several known
results on a nonstationary ¢-mixing random variables.

This paper is organized as follows. The main results will be given in Section 2. In Section 3, we
will give auxiliary lemmas, and in Section 4, we will prove the results.

2. Main results.

Theorem 2.1. Suppose that for any numbers 6 and s such that

0 > max(4,s,s(s —2)/4), s>2,
the following conditions hold.:
o) <Kr? K>0,
E&ml’ <oo, k=1,2,...,k(n), n=12,....

Then there exist a Wiener process {W(t), t € [0;1]} and a constant C(s;0; K) such that
inequality
LTLS

xS

P([Wa(t) - W(O)| > 2) < C(s:6; K)

holds for all x > 0.
Corollary. Under the conditions of Theorem 2.1 the following inequality takes place:

1
L(Wyp; W) < C(s;0; K)Lyét

Theorem 2.2. Under the conditions of Theorem 2.1 and 6 > max(4, s, 3s(s — 2)/4) there exist
a Wiener process {W (t), t € [0;1]} and a constant C(s;0; K) such that inequality

E[[W,(t) = W(B)I° < C(s;0; K) Lns

holds.

Remark. S. A. Utev [24] proved convergence of E||W,,(t) — W (t)||® to zero. The inequality in
Theorem 2.2 for nonstationary sequence of -mixing random variables is obtained the first time.

Concerning the existence of the sequences which satisfy the conditions of Theorems 2.1 and 2.2,
we can say the following:

R. C. Bradley [6] proved in the Theorem 3.3 that if X := (X, k € Z) is a (not necessarily
stationary) Markov chain and ¢(n) < 1/2 for some n > 1, then ¢(n) — 0 at least exponentially
fast as n — oo.

From X := (X}, k € Z) strictly stationary sequence of Markov chain we constructed nonstati-
onary sequence & := (xn,1 <k <n) following: &1, = —Xok—1, 1 < 2k —1 < n, and
Eokn = Xog, 1 < 2k < n, for every series. As X := (X, k € Z) strictly stationary sequence
are satisfying ¢-mixing condition with exponentially fast as n — oo, then & := (g, 1 < k < n)
sequence are also satisfying -mixing condition with exponentially fast as n — oo. In addition, if
E|Xk|®, s > 2, then £ := (&kn, 1 < k < n) nonstationary sequence satisfies the conditions of the
main theorems.
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1220 A. K. MUKHAMEDOV

3. Auxiliary lemmas.
Lemma 3.1 (see [11]). Let rv.’s & and n be measurable with respect to o-algebras Mlk and

M]’:_(ir@, respectively, where k > 1, k+ 1 < k(n). If E|¢|P < o0 and E|n|? < oo forp>1, ¢ > 1

1 1
such that — + — =1, then
p q

|B€ -1 — E¢ - Bn| < 2% (1)E¥ |€PE1 |n|e.

Lemma 3.2 (see [2]). Let {(Sk,0k), k > 1} be a sequence of complete separable metric spaces.
Let { Xy, k> 1} be a sequence of random variables with values in Sy and let {By, k > 1} be a
sequence of o-fields such that Xy, is By-measurable. Suppose that, for some ¢j, > 0,

|P(AB) — P(A)P(B)| < ¢ P(A)

for all B € By, A € \J Bj. Then without changing its distribution we can redefine the sequence
i<k

{Xk, k > 1} on a richer probability space together with a sequence {Y}, k > 1} of independent

random variables such that Y, has the same distribution as X}, and

P(0k(Xk, Vi) > 6p) < 6, k=1,2,....

Lemma 3.3 (see [24]). Let {Xy, k > 1} the sequence of random variables satisfying u.s.m.
1
condition and ¢(p) < T Then there exists a constant C(p(p)), depending only on o(p), such that
forall t > 1 and all 1 < q <t the following inequality takes place:
t q

k
E X < ¢ t E X E X,
| 70| = (N PE Pl e (] 2%

j= .

Lemma 3.4 (see [19]). Let {Xy, k > 1} be a sequence of independent random variables such
n k
that EX}, = 0, de EX? = 1. Suppose that ty = 0, t;, = Zizl EX2 k=1,2,...,n, Lns =
= Zn ) E|X|°. Let S(t) be continuous random polygon with vertices (tk, S(ty) = )
1=

Then, for any numbers s > 2 and b > 1, there exists a Wiener process {W (t), t € [0, 1]} Such that
inequality

PUIS®#) — W(t)]| > Cisba) < (Lb;)b + P< max (X > x>

is true for all x > 0.
We introduce the following notation:

Ein(x) = EnI{[éjn| < CxBp} — EEnI{|€n] < CxBn},  Ein(x) = Ejn — Ejnl),

where x > 0 an arbitrary real number,

b+k b+k b+k
Sen®) = D &iny Skn(b,2) = D &), Skalbz) = > &l
j=b+1 j=b+1 j=b+1
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Sn(ZL‘) = Sk(n)n(07 33‘),

k(n)+1
B (b) = ESp,(b),  Bin(b,2) = ESE,(b,2), Bi(x) = BSy(x Z !/ (0)

b

Lns == B;s Z E|§jn|sv Lnsm(aab) = B;S Z E‘f]n(x)|s7 s> 27

J<k(n) Jj=a+1

k(n)+

Z (i+1) 1/t)

i=0
We define the positive integers m; using the algorithm

2

m+1
mo=0, miz1=ming m:m; <m<n:FE Z Ekn(z) | > h(n)
fort=1,2,...,M — 1, where M — 1 is the last, for which we can define m;_1, i.e.,

k(n) 2

E > Gala) | <h(n),

Jj=mp—1+1

where h(n) is a sequence of positive numbers.
By n; and n;(z), respectively, we denote the amount

=Y Gn M) = > Gnla)

i:m]-_1+1 i:mj_1+1

We describe the positive integers [; using the mentioned algorithm
I+1 2
lo=0, lLipp=minql:l;<l<M:E| Y mnx)| >T(n)
k=l;+1

fori=1,2,...,N — 1, where M — 1 is the last, for which we can define Iy_1, i.e.,

2

E[ ) ni@] <T(n),

J=In_1+1

where T'(n) is a sequence of positive numbers. 7'(n) and h(n) will be selected later.
By 1; and v;(x), respectively, we denote the amount

-1 -1
Soom Wiy = Y nia).
i=l;_1+1 i=l;_1+1
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1222 A. K. MUKHAMEDOV

Lemma 3.5. The following inequalities are true:

| B (b) — Bi,(b,2)| < Clps) Bra® " Lns(b), 4)
k
. 2; Dy — Dyj(x))| < C(ps)Baz® " Las, )
o
max | B, ZDw] < C(p2)N - h(n), (6)
Ey3(x) <T(n)+6-h(n), 6] <C(p2), @)
M<C(*)B’2L(x) N<C(*)B72”(x) (8)
>~ ©2 h(n) 3 = Y2 T(TL) .

Proof. 1t is obvious that

b+k B 2 b+k 2
|Bin(0) = Biu(b,2)| = |E[ D (Gula) +&ul@)) | —E| D &ulo) || <
j=b+1 j=b+1

b+1<i#j<b+k b+1<i#Aj<b+k
H Y Ea@E)|.
b+1<iAj<b+k

We estimate first term on the right-hand side of the inequality. Another term will be estimated
analogously. Due to Lemma 3.1 and the Holder inequality, we have

Y En(n)n(x)| <
b+1<i#£j<b+k

< Z @1/5(‘j - Z“)El/s’&n(x”sE(s—l)/s‘Ejn(x)‘s(sfl) <
b+1<izj<b+k

k(n)
<C Z ©'/2(0) | B22? 75 Lys(b) < C(ps)B22? 5 Ly (b).

Inequality (4) is proved. Inequality (5) can be estimated analogously.
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Now, we prove inequality (6). For this, the difference will be esti-

B2(x Z Dyj(a

mated when k = N, and other cases will be proved analogously. It is obvious that B2(z) =

2
= E(Zjvl(wj(x) + (a:))) . By Lemma 3.1, we have

2
N

N N
=S B = B @) () | =3 Beda)| <
j=1 j=1

j=1

<12 ) E@y) +m, (@) (We(z) +my ()] <

1<j<I<N

N
Z )+, () ZEW )+, (2)) || <

I=j+1

I

N l;
<20) E(Y mi@) | D m@)]|<
=1 \i=1

i=l;+1

k(n)
<2 (i + D 2(i)N - h(n) < C(@2)N - h(n).
1

—

<.
I

Proof of inequality (7). By the definitions of random variables 1;(x) and 7;;(z), we obtain
B2, 1,(@) < hin) and

Ey2(z) < T(n) < E(¢;(x) +m,(x))* < BY2(2) + 2B (a)m, () +

L
+Enf (x) <T(n)+2E( > mix) |m,(x) + Enf (z) <
i=l;_1+1

N
<T(n)+2) @ OBV () BV i 1 (2) + Enf 4 (2) <
=1

< T(n) + C(p2)h(n).

Relations (4) and (5) imply that

) > ZDq/;J C(p2)N - h(n Z Dyj(x) = C(p2)N - h(n) =

> (N —=1)-T(n) = C(p2)N - h(n).

Hence, we obtained second inequality (8). Since h(n) = o(T(n)), first inequality (8) estimated
analogously this. Consequently, Lemma 3.5 is proved.
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1224 A. K. MUKHAMEDOV

4. Proofs of theorems. Proof of Theorem 2.1. Denote by W, (t), the random polygon with

ng) S”g(x) > denoted by W, (t). Denote by TV

vertices (t;m; ) Polygon with vertices (tmkn;

k koo~
_ S ) S G
and Wy, (t) the random polygons with vertices | t,, n; %Bi and | tp,n; j_Bi ,
respectively, where 12;]- (x), 7 =1,2,..., N, are independent r.v.’s marginal distributions of which
coincide with the distributions of r.v.’s ¢;(x). Polygon with vertices
NI CO N S
o oI ZFl bj(x)
N ' N
¢ > D) \/ >, DY)
denoted by W, ().
It is obvious that
x
P([Wn(t) = W@ > z) < P([[Wa(t) = Wne(t)[| > E)Jr
__ € J— =] X
+P<Han(t) - Wmc(t)H > 6) +P<Han(t) - an(t)H > 6)"_
= = x — ~ x
P ([T oa®) = Woa 0] > 5) + P(|[Fralt) = Woalt)]| > 5 )+
+P(HWm;(t) —W(t)H > 6> :;Pi. )

Now to prove Theorem 2.1, we estimate each terms on the right-hand side of (9). Without loss of
2(t—s)

2
generality, we assume that L,,s < 1. Let T'(n) = C(s,0, K)B2x =2 L}3>, t > s. Then

2 t—s __2
N < C(s,0, K) ?’12? < O(s.0, K)o 552 1,77

Estimate P;. It is apparent that

Lns
xs

X
— — ] < <
P = P(HWn(t) Wz ()] > 6) < P(kmggé) |Ekn| > Canx> <C

Estimate P>. By virtue of the Chebyshev inequality, Lemmas 3.3 and 3.5 for ¢ = 2, t > s, we
have

Py = P([|Woa(t) = W (8)]| > %) <

< Z P( max  |Spp(x) — Sm;_yn(z)| > CxBn> <

]SN mj_lgkgm]- ].2

1
< Ca;tBt Z E  max |Sgu(z) — Sm]._ln(x)\t <

n N mj—1<k<m;
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< C(t,e,K)[Lm(ar) L <T(n)>‘

t 7t 2
T xt\ B2

L
<C(s,0,K)—/.

xS

Estimate P3. It is obvious that
Py = P(HWm(t) - Wm(t)H > f) < P max| 3" iy (@) |

Now estimate the P3, analogously P, we obtain

Py = P(HWm(t) - Wm(t)H > f) < C(s,0,K)

Estimate Py. It is obvious that

P(HWm(t) - /V[?m(t)H > %) < P max Z(%(m) - %(:”)) > %

k<N B B
= ]Sk n n

Using the Berkes — Philipp approximation theorem (see Lemma 3.2), Lemmas 3.3 and 3.4, we get
x
Py < P — | <
=S ( . GN) <

J<N
> 6@(19)) <6Ny(p)

Yi(z) (@)
B, B,

B, B,

SZP<

J<N

when 6Nx( ) > 6 or 36Ny(p) < x, where p = minj<y(m; —m;_1). To obtain the estimation
PP -

Lns ..
P, <C(s,0,K) 3(:17) , we find p from condition
x
No(p) < C,
Lns
Ne(p) = C—

From this and due to Lemma 3.5, we have

_ 2(t—s) _2 L
NSD(p) é nKp—9 S C(S, 9, K).’E t—2 Lnst72p_0 S C(S, 0’ K) min (x, $’r;s> )

Then

C3t—2(s+1) -2 ¢(s—2) __t %
p>C(s,0,K) (max(x =2 [, x 2 Ln;2>> )
Estimate Py. It is clear that
P(|[Fast) = Waalt)| > 7) <

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 9



1226 A. K. MUKHAMEDOV

B n
S o~ 3 n
\/ ngw Dy;(x) | i<k

2By, \/ ngN Dij(z)

;(x)

<P r]&a&( > <

i<k \/Z]<N V;(z 5 (Bn - \/ngN D?/)j(x))

t t

B, — D
ngN vi@) Y; (:c)
<cC FE | max
$BTL k<N <1§ Z
= ]<N J
Hence, by Lemma 3.3, we obtain
t
B | max (z) < O(t,0,K). (10)

1/}'
2 —
RN \/ZjSNij(m)

B, — \/ngw D{(x) . B D ien Diy(x)

B, - B, (Bn + \/ngz\f Dz@-(:g))

and D&J\j(l‘) = Dij(x), from Lemma 3.5 we have Z . Dipi(z) = B2(1+ o(1)). As a result,
j<

. s 1
estimation of B2 — Z . D1 (z) will be enough. Let h(n) = T(n)xtTLﬁs, Lemma 3.5 implies
i<
that

B2 =3 nDvj(x) Nh(n) + B222 5L, ,
i<y P < (g (MM D -
xB; xB;
= C(p2) i(n) +2'7°L < C(t, p2) :L'_%L% + 5L (11)
l’T(n) ns — ) ns ns .
It follows that
- s 1 t
Ps P(HWM H ) <Ct soz)<xtL;;s +x13Lns) <

t
< Clt ) (Lx " (#;) ) (12)
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L
It is obvious that if 0 < x < 1, then P5; < C(¢, @2)%. Now let > 1, then to obtain estimation of
z

L Los\' L
P < C(t, @2)%, second term of inequality (12) should satisfy the condition <x ZS) < 22
T

:CS

t—1
L
This inequality holds, if z > L% V=" Hence, inequality P, < C(t, p2) -
T
Estimate Pg. Using Lemma 3.4, we have

t

Ps = P(H/I/Iv/m(t) - W(t)H > %) < C’<1> Z B e
T J<N \/Z]<N e

~ ~
Now we estimate Z E ‘wj ) Since 1)j(x) are independent r.v.’s marginal distributions

of which coincide with the d1str1but10ns of r.v.’s 1;(z), by Lemmas 3.3 and 3.5, we find

lj

YoEW@) <Y | D Eln@)l' + (Dyy())"? )| <

J<N JSN \i=lj—1

ZEwsm )"+ N(Tm) . (13)
Hence, from Lemma 3.5 and the definition of 7'(n), we get

Po= P([Fult) - W) > §) = Clt.0) (;Lm + 2 (37 >> < Clhp) 2 ad

:L‘S

We will demonstrate the possibility of dividing above mentioned isolated groups, namely, when
n — oo, the conditions B2, T'(n), h(n) — oo, T'(n) = o(B2), h(n) = o(T(n)), Lus — 0 should
be satisfied and we will explain the necessity of curtailing in order to prove Theorem 2.1. The

conditions are clear in the stationary case. In this case, the following asymptotical relations will be
2t2 _(35—2)t+2s—4

valid, i.e., Lns ~ n~ "7 for s > 2, T(n) = nt2 for some t,t>s,and h(n) = n  2¢-2
3s — 2+ 1952 — 285 + 36 t(s—-2) ts=2)
for some ¢, t > tg = + + S, p > n29(f 2> N < n5<t 2) and 0 >
-2
> max (4, s, S(S4)>

To obtain necessary estimation of P, and Pj, it will be demanded the availability of a moment
of t which is bigger than s. That is why, curtailing is necessary.
Theorem 2.1 is proved.

As it was mentioned above, Levy — Prokhorov distance between the distributions W,, and W were
1

determined in (1). Through selecting ¢ = « = L;;" in relation (1) and Theorem 2.1, respectively, a
proof of corollary can be obtained.

Proof of Theorem 2.2. The method of the proof of Theorem 2.2 remains the same as of
Theorem 2.1. Here we only list those places in which we make the appropriate changes.

As in the proof of Theorem 2.1, the following inequality is valid:
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E|Wa(t) = WO < El[Wa(t) = Was ()| + B|[Waa(t) — Waa ()| +

+EHWm(t) Woa®)||” + E[Woa(t) = Woa(t)

6
=> E. (15)

Now, to prove Theorem 2.2, we estimate each term on the right-hand side of (15) and we take
o = LY*. Then we have
2t 3t—2 Bg s(t2t2) h(n)

1
T(n) = BiLi™, hn) = TO)L = BILi™ . N = ot = L0, 708 = Lis.

an (t) - W(t)

B[ Waa(8) = W)

Estimate E4. It is obvious that
= E||Wp(t) — W (®)|” < E( max |€kn |® /BS> < L.

Estimate E». Based on moment inequality, Lemmas 3.3 (for ¢ = 2, ¢ > s) and 3.5, the definition
of T'(n), the following inequality takes place:

By = E|Waa(t) = Waa(t)||” < B¥||[Waa(t) = Waa(8)]|” <

<C ZE(l max ‘Skn(az)— 1

—~ Bt m; 1 <k<m;
i<

t—2

s/t
< C(t,0,K) <Lm(;p) n <T$)> 2 ) < C(s,0, K)Lps. (16)

n

Estimate E3. It is obvious that

S

E<N B,

s

By = B|[Wa(t) = Wralt

i<k

Now estimate the F'3, analogously Fy we obtain
R f— S
By = EHWm(t) - Wm(t)H < (5,0, K)Lns

Estimate E4. By Lemmas 3.2, 3.3, and 3.5 and replicating a paper [24], E4 can be estimated as
follows:

s

Ey; < E| max Z<¢§$) — %(ax)) < N°max FE ¥j

E<N = B, J<N
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<))

S

, 6p(p) < vil) _ ¥i(@)

By, B,

Yi@) ()
B, B,

< N® ((6s0(p))s + max <E

1=

vi(@) b
B, B,

26%@)+<2§)W)SLM

In this case, mixing coefficients decreases be as N°p(p) < L. In its turn, N¥p(p) < L, 2pf <

Lys = p > Lpd“ for § > max| 4, s, 1

+N°max E
J<N

Yi(x)  hy(x)
B, B,

< S S
<CN (cp (p)+1;fg<P<

Estimate Ex. It is obvious that

EHan(t) - Wna}(t) ’ <
B, — Dy, ~ s
\/ngN vi(@) ¥;(x)
<C 5 FE gl<a]i>/( Z —
" A ngN Dipj(z)
By Lemma 3.5 and inequalities (10), (11), we get
— — s By = /2 j<n Dq;j(x) h(n) s

VS 2—s
_ < < | —= < .
B[ Waa(t) = Waa 0)]| < C(s,2) 5 (Tm)+x Lm> < Lns

Estimate Eg. Due to moment inequality and analogous estimates for (13), (14) and (16), by
Lemmas 3.3 and 3.4, we have

t\ S/t

E||[Woat) = Wit < B Woat) - W(t)Ht - b (x)

S| F =
J<N \/Zj<ND¢j(x)

IA

s/t
<C@Kﬁ%bﬂ@+(B2> ) < C(t,K,0)Lns.

Theorem 2.2 is proved.
Acknowledgment. The author would like to thank Professor O. Sh. Sharipov for detailed and
helpful suggestions and discussions on this study.
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