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EIGENFUNCTION AND GREEN’S FUNCTION ASYMPTOTICS
FOR HILL’S EQUATION WITH SYMMETRIC SINGLE WELL POTENTIAL

ACUMIITOTHUKA BJIACHOI ®YHKIII TA ®YHKIIIi T'PIHA
JIJISI PIBHSIHHS XIJLUIA 13 CUMETPUYHHAM NOTEHILIAJIOM
OJIHIEI CBEPIJIOBUHHU

This paper is devoted to determine the asymptotic formulae for eigenfunctions of the Hill’s equation with symmetric single
well potential under periodic and semi-periodic boundary conditions. The obtained results for eigenvalues by H. Coskun
and the others (2019) are used. With these estimates on the eigenfunctions, Green’s functions related to the Hill’s equation
are obtained. The method is based on the work of C. T. Fulton (1977) to derive Green’s functions in an asymptotical manner.
We need the derivatives of the solutions in this method. Therefore, the asymptotic approximations for the derivatives of
the eigenfunctions are also calculated with different types of restrictions on the potential.

CTaTTIO NMPUCBSYEHO BCTAHOBJICHHIO aCUMIITOTHYHUX (OopMyI Juisl BiIacHUX (yHKIiH piBHAHHA Xiuia i3 CHMETPUYHHM
HOTEHIIIaJIOM OJIHi€] CBEPAJIOBUHH IIPH MEPIOANYHUX Ta HAIIBHEPIOANYHUX TPAHUYHUX yMOBax. [IpH 1IbOMY BHKOPHUCTaHO
pe3yasTaTu s BIaCHHX 3HaueHb, oTpuMani B poboti H. Coskun Tta in. (2019). 3a 10mOMOrorw BiAMOBIAHKX OIIHOK IS
BIacHUX (QYHKIIA orpumano QyHkuii [piHa, mos’s3ani 3 piBHsSHHAM Xiuta. Meron 6a3yerbes Ha poboti Y. T. dynrona
(1977) mono acuMOTOTHYHOTO OTpuMaHHS GyHKUOid [piHa. ¥ mpomy Meromi Ham HOTPiOHI MOXigHI PO3B’A3KIB, TOMY
00YHCIICHO TaKOXK aCUMITOTHYHI HaOJMMIKEHHS MOXIIHHUX BIaCHUX (YHKILIH i3 pi3HUMH THUIIaMH OOMEXCHb Ha MOTEHIiall.

1. Introduction. The Hill’s equation is the second-order linear differential equation

Y +q(z)y =0, (1.1)

where ¢(z) is a real-valued and periodic function. This equation has numerous applications in
engineering and physics. Some of them contain the problems in mechanics, astronomy, circuits,
electric conductivity of metals, cyclotrons, quadrupole mass spectrometers, quantum optics of two-
level systems and accelerator physics.

Furthermore, the theory related to the Hill’s equation can be extended to every differential equa-
tion written in the general form

ao(z)y” + a1 (x)y’ + az(x)y =0 (1.2)

such that the coefficients ag, a; and ay have enough regularity. This is due to the fact that, with
a suitable transformation, (1.2) can be reduced into one of the type of (1.1) (details can be seen in
[10, 11]).

As an example let us consider a mathematical (or inverted) pendulum studied in [9]. If we assume
that the oscillations of the pendulum are small and that the suspension point of the string vibrates
vertically with an acceleration a(¢), then, as it is proved in [9], the movement would be modelled by
the equation (which follows the form (1.1))

(1) 1 g+ alt))6(t) =0,
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where g denotes the gravity, [ is the length of the string and 6 represents the angle between the string
and the perpendicular line to the base [4].
Another equation that fit on the framework of Hill’s equation is Mathieu’s equation

y"(x) + (a +beosz)y(z) =0

(see [14]).

At the moment of studying oscillation phenomena of the solutions of (1.1), it is observed that
these are determined by the potential ¢(x). In particular, solutions of (1.1) do not oscillate when
q(z) < 0 but they do it infinite times for ¢(z) > 0 large enough. Moreover, the larger the potential
q(x) is, the faster the solutions of (1.1) oscillate [4].

The theory on Hill’s equation takes on a new significance when the equation (1.1) involves a real
parameter A in the form

v+ AN=q(x)]y=0, z€l0,al. (1.3)

If we consider (1.3) coupled with suitable boundary value conditions, we have a spectral problem.
We introduce here two eigenvalue problems associated with (1.3) and the interval [0,a], where A
is regarded as the eigenvalue parameter. The periodic eigenvalue problem is defined with (1.3) and
boundary conditions y(0) = y(a), ¥'(0) = ¥'(a) and the semiperiodic eigenvalue problem is given
with (1.3) and boundary conditions y(0) = —y(a), y'(0) = —y'(a). The periodic and semiperiodic
eigenvalue problems are self-adjoint and they have a countable infinity of eigenvalues denoted by
An and up,, n=0,1,2,..., respectively. It is known [11] that the eigenvalues of periodic problem
satisfy

)\0§A1§A2§..., An—>OO as n — oo

and the eigenvalues of semiperiodic problem satisfy
po < p1 < g2 <..., f[p—>00 as n — 0.

The periodic and semiperiodic problems with various types of restrictions on the potential have
been widely studied in the literature [1, 2, 6, 7, 11, 15, 17]. Important results about the eigenvalues
and instability intervals were obtained in [1, 6, 13, 16]. The properties of the Green’s functions and
some criteria for the maximum and antimaximum principles were investigated in [3 —5]. In addition,
Coskun in [8] has studied on the inverse problem.

Throughout this paper, the equation (1.3) under the periodic and semiperiodic boundary con-
ditions is considered when the potential ¢(x) is a real-valued, absolutely continuous and periodic
function with period a. Here, the first purpose is to derive asymptotic formulae for the eigenfunc-
tions of the periodic and semiperiodic problems with ¢(z) being of a symmetric single well potential
with mean value zero. By a symmetric single well potential on [0, a], we mean a continuous function
q(z) on [0, a] which is symmetric about = = g and nonincreasing on |0, al.

It was shown in [6] that the periodic and semiperiodic eigenvalues of (1.3) having symmetric
single well potential are, as n — oo,
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a/2
)‘;ﬁrl ~2n+)m a / o . (A(n+ D) a?
N2 T T TRt 0l q(O)sin | == =t )dt| = G s
a/2 a/2
« |ag(a) + 24 / o) (1)t — 4 / ta(®)d (D)t | + o(n?) (14)
0 0
and
1/2 a/2
P (2n+1)m - a /q’(t) <in (2(2n+ 1)7rt> gl
:“ér/zi—l a 2(2n + 1)272 /
) a/2 a/2
a 2 / / -3
S — 2 -y . 1.
S@n 1 1) | ™ (a) + a/q(t)q (t)dt /tq(t)q (t)dt| +o(n™?) (1.5)
0 0

In this work, the eigenfunctions corresponding to A,, and i, given by (1.4) and (1.5) are investigated.
The following results obtained in [11] will be used to determine the eigenfunctions.
We define the linearly independent solutions ¢q(z,\) and ¢2(z, A) of (1.3) with the initial
conditions

and

Theorem 1.1 ([11], §4.3). Let ¢1(x,\) and ¢o(x, \) be the solutions of (1.3) satisfying (1.6)
and (1.7), respectively. Assume that q(x) is an absolutely continuous function. Then, as A — o0,

¢1(z,A) = cos (zVA) + %A_%Q(x) sin (zVA)+
Jé)‘*l {Q(ﬂf) —4(0) - ;Qz(ﬂf)} cos (zVA) +o(A71), (1.8)

da(z, A) = A"2 sin (x\f)\) - %)\_IQ(SC) cos (x\f)\)Jr

%A—% {q(a:) +q(0) — ;QQ(;U)} sin (zvVX) + o(A"2), (1.9)
where
Q(x) = [ q(t)dt. (1.10)
/
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Theorem 1.2 ([11], §4.3). Let ¢1(x,\) and ¢o(x, \) be the solutions of (1.3) satisfying (1.6)
and (1.7), respectively. Assume that q(x) is a piecewise continuous function. Then, as \ — oo,

gbl(x,)\):cos(x\f)\)—i—)\_%/sm{ (x—t \F}q ) cos(tV/\)dit+

0

xT

+A71 /sin {(z - t)ﬁ}q(t)dt / sin{ (t — u)VA}q(u) cos(uv/\)du + O()\_%), (1.11)
0 0

T

P2z, \) = A"2 sin (x\f)\) + A /sm{ x—t \F}q ) sin(tvV/\)dt+

0

x t

e / sin {(z — O)VAYg(t)dt / sin{(t — )V Abg(w) sin(wy/N)du + OA2).  (1.12)

0 0

The second goal of this paper is to determine the Green’s function asymptotics related to the Hill’s
equation with the estimates on the eigenfunctions. The method developed by Fulton [12] is followed.
In this method since the derivatives of the solutions are needed, the asymptotic approximations for
the derivatives of ¢1(x, \) and ¢2(x, \) are also calculated with different types of restrictions on the
potential g(x).

2. Approximations for the eigenfunctions. In this section, we obtain approximations for the
solutions ¢;(x, \) and ¢o(x, \) of (1.3) satisfying the initial conditions (1.6) and (1.7), respectively.

Before, we give the following lemma for ¢(x) being of a symmetric single well potential.

Lemma 2.1. [f q(x) is a symmetric single well potential on [0, a|, then

/q(t)dt = zq(x) + /(a —t)q (t)dt — /tq'(t)dt. (2.1
0 a/2 a/2

Proof. Using integration by parts gives

[atwit=ato|_ - [t war =
0 Bl 0
a/2 z a/2 z
= zq(z) — /tq'(t)dtJr /tq'(t)dt = zq(z) — /tq’(at)dtJr/tq'(t)dt =
0 a/2 0 a/2
a/2 T a T
:xq(x)—/(a—t) ()dt—/tq’(t)dt:a:q(az)—i—/(a—t) ()dt—/tq’(t)dt.
a a/2 a/2 a/2

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 2



EIGENFUNCTION AND GREEN’S FUNCTION ASYMPTOTICS FOR HILL’S EQUATION ... 195

Theorem 2.1. Let q(z) be a symmetric single well potential on [0, a]. Then, as A\ — oo, for the
solutions of (1.3) with the initial conditions (1.6) and (1.7), respectively, we have

a x

¢1(x,\) = cos (:I:ﬁ) + %)\7% zq(z) + /(a —t)q'(t)dt — / tq' (t)dt | sin (3:\&)4-
a/2 a/2
a x 2
A g(@) — a(0) 3 [wale) + /(a —0)q(t)di — /tq’(t)dt cos (zVX) +o(A1),
a/2 a/2
2.2)
d2(z, \) = A" 2 sin (VX)) - %)\_1 zq(x) + /(a —t)q'(t)dt — / tq'(t)dt | cos (zv/\)+
a/2 a/2
a x 2
+%)\_% q(x) +¢q(0) — % zq(x) + /(a — )¢ (t)dt — / tq' (t)dt sin (2VX) + o(A73).
a/2 a/2
2.3)

Proof. 1f we use Theorem 1.1 and substitute (2.1) in (1.10), the proof is done.
Theorem 2.2. The eigenfunctions of the periodic problem having symmetric single well potential

satisfy, as n — 0o,

¢1(x,n) = cos M—i—

@ r R B [ , 2+ Dz
+4(n+1)7r zq(w) + /(a t)q (t)dt /tq (t)dt | sin X
a/2 a,/2
a z 2
+a72 (7) — (0)—1 ()+/( —t) '(t)dt—/t’(t)dt X
16(n + 1)272 | 1 71 5 |rale a—t)q q
a/2 a/2
X COS 2(n + Dz + 0(7172)7
a
_ a 2(n+ 1)z
a2 a / x / 2(n+1>ﬂx
o [+ [a-0dOar— [ o 0ar|eos DT
a/2 a/2
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2
(I3 a x
5o 138 q(z) + q(0) —% zq(x) + /(a—t)q’(t)dt— /tq’(t)dt v
a/2 a/2
X sin M + O(Tl_3),

a

Theorem 2.3. The eigenfunctions of the semiperiodic problem having symmetric single well
potential satisfy, as n — o0,

b1(a,m) = cos BT
e N S BT oo
+2(2n—|—1)7r zq(z) + /(a t)q (t)dt /tq (t)dt | sin +
a/2 a/2
a z 2
e 00— a0) = 3 [sa@)+ [ (@ 0d 0 [ 0| <
4(2n+ 1)271'2 q\xr q 9 rg\x a q q
a/2 a/2
X COSM +0(n72)7
a
— a . (@2n+ D7z

¢2(l’,n) = (2n+ 1)7r sin .
a2 a , T , (2n+1)7rx
s [sate) + (a0 [ 0] cos EEDTE

a/2 a/2
a z 2
+a73 (z) + (0)—1 ()+/( _t),(t)dt—/t’(t)dt 5
4(2n+ 1)371'3 q\x q 9 rg\x a q q
a/2 a/2
X Sinw +0(’I?,_3).

a

To prove Theorems 2.2 and 2.3, the related eigenvalues given by (1.4) and (1.5) are substituted
in Theorem 2.1.

We have also some approximations for the derivatives of ¢;(z,\) and ¢a(z, \). We will use
them in calculation of the Green’s functions.

Lemma 2.2. If q(x) is a piecewise continuous function, then the derivative of (1.11) is, as
A — 00,
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T

& (z,\) = — A2 sin (x\f)\) —I-/cos{ (x —t \F}q ) cos(tV\)dit+

0

xT

+)\_§/cos{(azt)\a}q(t)dt/sm{ (t—u \f}q ) cos(uvA)du + O(AY). (2.4)
0

0

Proof. The usual variation of constants formula [10] (§2.5) gives

x

¢1(x, \) = cos (1‘\5\) + Az /sin {(z - t)\ﬁ)\}q(t)qbl(t, A\)dt
0

If we arrange this formula, one can write

¢1(x, \) = cos (1:\5\)%—

A2 {sm w\f /cos (t) 1 (t, N)dt — cos ( x\f /sm (t)1(t, N\)d } (2.5)
0

0

It is obtained by differentiating (2.5) with respect to x and substituting ¢1(¢, A) from (1.11) in the
integral that

&) (z,\) = —\Z sin (x\f)\) + Az {)\; cos (1‘\5\) /cos(t\ﬁ)\)q(t)qbl(t, A)dt+

0

+)\% sin (m\ﬁ)\)

o\&

sin(tv/\)q(t) by (t, )\)dt} =

= —AZsin (V) + [ cos {(z — t)VA}q(t) 1 (t, \)dt =

O\H

= A2 sin ( x\f —i—/cos{ (x—t \f}q ) cos(tV/\)dt+
0

T

+)\_;/cos{(:pt \f}q

0

bln{t—u \f}q ) cos(uvA)du + O(A1).

o\

n [11] (§4.3), it is determined similarly

x

¢ (z, \) = cos (x\F)\) /Cos{ z—t \F}q ) sin( tf)dt—{—

0
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+A71 /cos {(z - t)\[\}q(t)dt/sin{(t — u)VA}q(u) sin(uvA)du + O()\_%).
0 0

Lemma 2.3. Let q(x) be absolutely continuous. Then the derivatives of (1.8) and (1.9) are, as
A — 00,

& (z, ) = ~)\Zsin (a:\f)\) + %Q(.CL‘) cos (l’\/X)—F

+i)\_% {q(x) +q(0) + ;QQ(x)} sin (:L’\/X) + 0()\_%), (2.6)
®h(x,\) = cos (xﬁ) + %)\7%@(:15) sin (a:\&)—

&A—l {q(aj) —q(0)+ ;Q2(x)} cos (zv/X) + o(AD). 2.7)

Proof. 1f g(x) is absolutely continuous, this implies that ¢/(z) exists p.p. and is integrable.
Under these conditions, let consider the second term on the right-hand side of (2.4). We have

xT

/cos {(z - t)\&}q(t) cos(tV\)dt =

0

T

= ;/ [cos (x\f/\) + cos {(m — 2t)\r)\}} q(t)dt =
0

x

= %Q(z) cos (x\F)\) + % /cos {(z - 2t)\ﬁ)\}q(t)dt =

0

= %Q(SL‘) cos (m\f)\) + % {;)\éq(t) sin {(z — 2t)\5}‘j20 +

+;)\_;/ql(t) Sin{(m%)ﬁ}dt} =

0

= %Q(i) cos (a:ﬁ) + i)f% [q(z) + q(0)] sin (a:ﬁ)—i—

+i)ﬁ% /q/(t) sin {(z — 2t)\f)\}dt.
0

The last integral on the right-hand side is o(1) as A — oo by the Riemann — Lebesgue lemma. So,
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T

/cos{x—t\f}q (t) cos(tV/\)dt

0

= %Q(x) Ccos (1:\5\) + i)\_% [q(z) + ¢(0)] sin (x\f)\) + 0()\_%). (2.8)

Also, from [11] (§4.3)

T

/sm{x—t WA g(t) cos(tV/ ) dt

0

= %Q(SU) sin (x\r)\) + i/\_% [q(z) — q(0)] cos (xﬁ) - 0()\_%). (2.9)

For the third term on the right-hand side of (2.4), together with (2.9) we find

T t

é/cos{ x—t \f}q dt/sin{(t—u)\f)\}q(u) cos(uVA)du =

0 0

xT

= ;/\%/cos{ x—t \f}q Sln(t\f)dt-l-O()\ )
0

T

:%)\ /[Sln(w\f)—sm{x—% \F}} (t)dt + O(A~ )
0

xT

= Iy (av) {QZ@)}

t=0

~ L2 sin (V) +o(A72), (2.10)

again by using the Riemann - Lebesgue lemma. (2.8) and (2.10) prove (2.6). The proof of (2.7) is
similar.

Lemma 2.4. Consider the equation (1.3) having symmetric single well potential. As A — oo,
for the derivatives of its solutions ¢1(x, \) and ¢o(xz, \) which satisfy (1.6) and (1.7), respectively,
we have

a T

& (z,\) = —\Zsin (x\f)\) +% zq(z) + /(a —t)q'(t)dt — /tq/(t)dt cos (I\f)\)'F
a/2 a/2
a x 2
J&)\’% Q(x)—i—q(O)—i—% rq(r) + /(a—t) '(t)dt — /tq’(t)dt sin (zv/A) + o(A77),
a/2 a/2

(2.11)
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¢h(z, \) = cos (ZL’\/X) + %)\_% zq(z) + /(a — )¢ (t)dt — / tq'(t)dt | sin (:v\f)\)—
a/2 a/2
a x 2
—i)\_l q(z) —q(0) + % zq(x) + /(a —t)q'(t)dt — / tq'(t)dt cos (:1:\5) +o(A7h).
a/2 a/2

(2.12)

Proof. By using (2.1) in (1.10) and substituting this in (2.6) and (2.7), we prove the lemma.

3. Approximations for Green’s functions. In this section, we aim to improve asymptotic
formulae for Green’s functions of the periodic and semiperiodic problems with symmetric single
well potential. The Green’s function G(z, &, \) is given by

G(z,6, ) = (3.1

(see [12]). Here, ¢1(x, \) and ¢2(x, \) are linearly independent solutions of (1.3) satisfying (1.6)
and (1.7), respectively. And, we define w(\) as follows:

w(>‘) = ¢1(x7>‘)¢/2(x7>‘) _qbll(m))‘)QSZ(xa)‘)' (3.2)

It is known as the Wronskian function of ¢ (z, \) and ¢a(z, \).

Theorem 3.1. Suppose that the equation (1.3) has the symmetric single well potential and its
independent solutions ¢1(x, \) and ¢o(x, \) satisfy the initial conditions (1.6) and (1.7), respectively.
Then the Green's function of the problem is, as A — oo,

G(z, & N) = A" 2 cos (f\&) sin (:1:\5\)—

—%)\_1 [A(x) cos (f\f)\) cos (x\r)\) — A(§) sin (f\f)\) sin (w\ﬁ)\)} +
L o3 L2 2 :
+ZA 2 {[q(g) +q(x) — i(A &+ A (:c))]cos (5\[\) sin (x\f)\) _

— A(§)A(x) sin (fﬁ) cos (m\a)} + 0()\*%), 0<¢<z<a,

where
A(z) == zq(x) + /(a —t)q'(t)dt — /tq’(t)dt.
a/2 a/2

Similar result holds for 0 < x < & < a changing the role of £ and .
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Proof. We begin to the proof by evaluating the Wronskian function w(\). For this, we substitute

(2.2), (2.3), (2.11) and (2.12) into (3.2). Hence,

w\) =1-— %)\_1 [q(x) —q(0) + ;AQ(.CE):| cos? (x\F)\)—i-

—i—i/\*l [q(a:) +q(0) — ;AQ(J}):| sin? (x\r)\)—i-

+i)\71A2(:p) + i)fl [q(:c) —q(0) — ;A2(az)} cos? (:L’ﬁ)—

—ixl [q(m) +q(0)+ ;A%x)] sin? (xv/3) + o(A 1) =

1 1
=1 A A%@) + AT @) oA = 1+ o(A ).

From that, we can write

11
wh)  1T+o(\ 1)

Finally, by using (2.2), (2.3), (3.3) in (3.1), we find

=1+o0(\7h).

P16, A)da(z, A) = {cos (5\5\) + %)\_%A(g) sin ({\[\)—i—

w(A)

A 00 - 00 - 5420 oos (6VR) or )

X {)\5 sin (az\ﬁ) - %)\7114(56) cos (az\ﬁ)—l-

%A—% [q<x>+q<0>—;A2< )}m(mf)w }{1+o D}
_ {)\—5 cos (/) sin (4vA) — A () cos (€VA) cos (#vA ) +
J&x% {q(aj) 1 q(0) ;AQ(J;)} cos (/X ) sin (aV/X )+
oA A s (VA ) sin (V/R) = PAFAQ)A() sin (6VX) cos 2V ) +

J&)\_% [q(g)—q(O)—;A% )}cos (eV/X\) sin (zVA) + o(A~ }{1+o o)
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— A\"2 cos (ﬁﬁ) sin (x\[\) — %)\_1 [A(m) cos ({\F/\) coS (a:\&) — A(&) sin (5\5\) sin (a;\r)\)} +
—i—i/\_g{ [q(f) +q(z) — %(Az(ﬁ) + AQ(w))} cos (VX ) sin (VX )~

—A(§)A(x) sin (5\5) cos (a:\&) } + 0()\*%).

Theorem 3.2. Green’s functions of the periodic problem with symmetric single well potential
satisfy, as n — oo,

B a 2n+ )€ . 2(n+ )7z a?
Gl &n) = 2(n+ 1)m o8 a S a 8(n + 1)2x2 %

x | A(x) cos 2n Zl)wf cos 2" Zl)mc — A(¢) sin 2(n Zl)ﬁf G 2 —Zl)mc] N

3

*mminﬁsﬂﬂﬂ+ﬂ@—§wﬂo+A%mﬂx

X COS 2(n —f(;l)wf sin 2(n Zl)7m — A(¢)A(x)sin 2(n Zl)ﬂg cos 2(n —Zl)wx} +o(n™?%)

for 0 < € < x < a. Similar result holds for 0 < © < £ < a changing the role of € and .
Theorem 3.3. Green’s functions of the semiperiodic problem with symmetric single well poten-
tial satisfy, as n — 00,

— a Cn+1)7m¢ . (2n+ 1)z
G(z,§,n) = @n 1 )r cos . sin - —

? 2n+1 2n +1
iz [ Al cos EEUE g (Bt Dne

—A(€) sin (2n+ 1)m sin (2n + 1)7”1;} +
a a
«’ Loy 2 Cn+ )7 . 2n+ Dmx
M@HWWH&MM—JA@+Am*% sin (LT

a

—A(§)A(x) sin (2n —1;1)775 cos (2n + Dmﬂ} +o(n™?)

for 0 < € < x < a. Similar result holds for 0 < © < £ < a changing the role of € and .
To prove Theorems 3.2 and 3.3, the related eigenvalues given by (1.4) and (1.5) are used together
with Theorem 3.1.
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