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EXISTENCE OF A WEAK SOLUTION FOR A CLASS
OF NONLINEAR ELLIPTIC EQUATIONS ON THE SIERPINSKI GASKET

ICHYBAHHS CJIABKOT'O PO3B’SI3KY JJISI KJIACY HEJITHIMHUX
EJINITUYHUX PIBHSAHDb HA ITPOKJIALII CEPIIIHCBKOI'O

We study the existence of a weak (strong) solution of the nonlinear elliptic problem

—Au—Augr + h(u)ga = f in V\ Vi,

u=0 on Vp,

where V is a Sierpinski gasket in RN ™', N > 2, Vj is its boundary (consisting of N its corners), and X is a real
parameter. Here, f,g1,92: V — R and h: R — R are functions satisfying suitable hypotheses.

JlocimkyeThes icHyBaHHS CIa0KOTo (CHIIBHOTO) PO3B’A3KY HENiHIMHOI eTinTHYHOI 3a1adi

—Au —Augi + h(u)gz = f B V\Vp,

u=0 Hna Vp,

ne V — npoxnagka Ceprincekoro B RN ™1 N > 2, V) — i mexa (o cknagaerses 3 1i N kyTiB) i A — miiicHuii napamerp.
Tyt f,91,92: V — Rih: R — R — dysxuii, 110 3a10BOJIBHAIOTH BiAIOBIIHI rimoTe3w.

1. Introduction. We study the existence of weak solutions for the following class of elliptic problem:

—Au— Augr + h(u)ga = f inV\ V1
(1.1)

u=0 on Vp,

where V' denotes the Sierpinski gasket in RY=!1 N > 2, Vj is its boundary (consisting of its N
corners). A denotes the Laplacian operator on V, A € R and f,g1,92: V — R, h: R — R are
functions satisfying the following hypotheses:

(H1) h:R — R isbounded (i.e., |h(t)] < A,t € R, for a fixed A > 0) and continuous;

(Hz) g1 € L>®(V), go € L*(V) and f € L*(V).

Recently, there has been a considerable interest in the study of nonlinear partial differential
equations on fractal domains and in particular on the Sierpinski gasket. Many physical problems
on fractal regions such as reaction-diffusion problems, elastic properties of fractal media and flow
through fractal regions are modeled by nonlinear equations. Now, a natural question is whether the
classical existence results (we refer to [1, 24, 29]) in the standard framework of the Laplacian also
hold in the corresponding fractal framework. To answer this we have to overcome several difficulties
that arise due to the geometrical structure of fractal domains. One main difficulty is how to define
differential operators, like the Laplacian operator, on the fractal domains for there is no concept of
a generalized derivative of functions defined on such domains. However, a Laplacian is defined on
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1318 A. K. BADAJENA, R. KAR

a few special fractals, we refer to [2, 3, 20, 21] and a Hilbert space structure is introduced in [20].
This enables us to investigate the existence of solutions for equations of type (1.1) defined on fractal
domains.

The study of nonlinear elliptic equations on the Sierpinski gasket was essentially initiated by
Falconer and Hu in the paper [15]. Since then many authors have contributed to the literature in this
direction. In [15], Falconer and Hu, considered the problem

Au+a(x)u = f(z,u), xe€V\,
(12)

U‘VO =0,

where V' denotes the Sierpinski gasket with boundary Vj and a € L'(V) satisfies suitable condition.
The authors formulated the problem in a suitable function space over Sierpinski gasket and used the
Mountain Pass theorem [1] to prove the existence of a solution. In [5], Molica Bisci et al. considered
a similar problem

Au+ a(z)u = Af(z,u), xe€V\ W,
uly, =0,

where A is a positive real parameter and proved the existence of at least two solutions for small
values of \. For this the authors used a variational result due to Ricceri [26]. In [8], Breckner et al.
studied the existence of infinitely many solutions of the problem

Au(z) + e(z)u(z) = g(2) f (u(x)), =€V \,
uly, = 0.

The authors proved the existence of infinitely many solutions by extending a method introduced
by Faraci and Kristaly [16] in the framework of Sobolev spaces to the case of function spaces on
fractal domains. For more results on the existence and multiplicity of solutions of nonlinear elliptic
equations on the Sierpinski gasket and on other fractals we refer to the papers [4, 611, 13, 14]
and [18, 19, 27, 28] as well as the references therein. The main tools used in these papers to prove
the existence of nontrivial solutions are basically Mountain Pass theorems, saddle-point theorems or
certain minimization procedures.

In [5, 15] on of the assumptions on the nonlinearity f(z,u) is

(f) there exist constants v > 2 and r > 0 such that, for |t| > r,

tf(z,t) <vF(z,t) <0,
t
where F(x,t) = / f(z, s)ds.

If the COIlditiOI(l) (f) does not hold then the energy functional associated to the problem (1.2) in
general does not satisfy certain conditions needed to apply the Mountain Pass theorem in order to
prove the existence of solutions. In this paper, we show an application of demicontinuous operators to
nonlinear elliptic problems in the fractal setting. In particular, the main tool we used to establish the
existence of at least one solution is a result due to P. Hess [12] on linear demicontinuous operators.
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Our paper was inspired by a problem on bounded domains given in Section 29.9 of the book by
Zeidler [31, p. 661], we refer also to [25] where the existence of a weak solution is established for
the fractional counterpart of (1.1).

This paper is organized as follows. Section 2 deals with preliminaries and the weak formulation
of the problem. Section 3 concerns with the main result concerning the existence of a weak solution
of (1.1). Finally, Section 4 deals with an extension to a class of continuous functions A that are not
necessarily bounded.

2. Preliminaries. Let C'(V') denotes the space of real-valued continuous functions on V' and
Co(V) ={u e C(V): uly, = 0} both equipped with the usual supremum norm || - ||oc. Let H} (V)
be the Hilbert space structure defined on V' with inner product denoted by W(u, v). We refer to [15]
(see also [3-10, 13]), for more details. The space H{(V) with the inner product W(u,v) is a
separable Hilbert space (we refer to [9]). The weak Laplacian A of w on V is defined as

(Au,v) = —W(u,v) forall ve HH(V).

Now, we can define the weak solution for the problem (1.1).
Definition 2.1. We say that a function u € H}(V) is a weak solution of (1.1) if it satisfies

W(u,0) — A / g1 (@)u(@)o(z) dy + / h(u(z))ga(x)o(z) dy = / f(@yo(z) du
1%

%4 %4

forallve HY (V).

For further details on the Laplacian operator on certain fractals, we refer to the paper [20].

We note that if the functions f, g1, g2 and h are continuous, then the weak solutions of the
equation (1.1) are also strong solutions of it; as shown by the following result.

Lemma 2.1. Assume that u € H}(V) is a weak solution to the problem (1.1). If f, g1, g2 €
€ C(V) and h € C(R), then w is a strong solution of (1.1).

Proof is similar to [15] (Lemma 2.16), hence omitted.

At each step, a generic constant is denoted by C' or ¢ to avoid too many suffixes. We recall the
embedding properties of H} (V) into the spaces Co(V) and L?(V, i) (we refer to [15]), for the sake
of completeness.

Lemma 2.2. The embedding j: H} (V) < Co(V) is compact and, for every u € HE(V),

ju(@)| < @N +3)ull gy, forany weEV.
Also, the embedding j: H} (V) — L*(V') is compact and

lull2 < Cllullgg vy 2.1)

1

3

where ||ul|2 = </ ]u(ar)]%l,u) :
1%

Let Y* denote the dual of the real Banach space Y. Let ||.|| and ||.||y+« be the norms on Y and
Y™, respectively. For z € Y and f € Y*, we write (f|z) for f(x).

Definition 2.2. Let B, N:Y — Y™ be operators on the real separable reflexive Banach space
Y. Then:
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(i) B+ N is asymptotically linear if B is linear and

[V
]

—0 as |ul]| = oo;

(ii) B satisfies condition (S) if

U, = u and lim (Bu, — Bu|lu, —u) =0, implies u, — u.
n—oo
We say that B is an (S)-operator if B satisfies condition (.S).
The following definition deals with real Garding forms (compare with [30, p. 364]).
Definition 2.3. Let X and Z be Hilbert spaces over R with the continuous embedding X C Z.
Then G: X x X = R is called a Garding form if and only if G is bilinear and bounded, and there
exist a constant ¢ > 0 and a real constant C such that

G(u,u) > cllullk — Cllull% forall ue X. (2.2)

The relation (2.2) is called a Garding inequality. If C' = 0, then G is called a strict Gdrding
form. The Gdrding form G is called regular if and only if the embedding X C Z is compact.

In Section 3, we need the following result.

Proposition 2.1. Let B,N:Y — Y™ be operators on the real separable reflexive Banach
space Y. Assume that:

(i) the operator B:Y — Y™ is linear and continuous,

(il) the operator N : Y — Y™ is demicontinuous and bounded,;

(iii) B + N is asymptotically linear;

(iv) for each T € Y* and for each t € |0,1], the operator Ay:Y — Y™ defined by Ai(u) =
= Bu+t(Nu — T) satisfies condition (.5).
If Bu = 0 implies uw = 0, then, for each T' € Y™, the equation Bu + Nu =T has a solution in Y .

For a detailed proof of the above theorem, we refer to [12] or [31] (Theorem 29.C).

We define the functionals By, Bo: HJ(V) x Hi(V) — R by

B 9) = Wiao) = A [ u(w)gs(e)o(e)d,
Vv

Ba(u ) = [ hu(z))ga(a)p(a)dn

|4

Also define T: H}(V) — R by
7(¢) = [ fla)ola)dn
1%
A function u € H}(V) is a weak solution of (1.1) if
Bi(u, ) + Ba(u,9) = T(p) Vi € Hy(V). (2:3)

By applying the Cauchy — Schwarz inequality and the inequality (2.1), we note that, for every (u, @) €
€ Hy (V) x Hy(V),
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EXISTENCE OF A WEAK SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC ... 1321
By (u, )| < W) + A / 191(@) (@) (@) du <
1%
< Nallgs oy 2l vy + Pl el llells <

< (1 + CIMlgalloo) eall i v I v

By the hypotheses (Hi), (H2), Holder’s inequality and (2.1), we have, for every (u,p) €
€ Hy(V) x Hg(V),

Ba(u, )| < / Ih(u(@))|le(@)llg2(@) d <
%4

<A / ()] g2() |y <
1%

< Alleli2llgzll2 < ACYell gy vy lg2]l2- 24

Also, we have

7(¢)] < / F@)llp@ldn < ||£]l,lelz < Ol el
1%

where C' is a constant arising out of the inequality (2.1). Now, Bj(u,-) and Ba(u,-) are linear and
bounded for every u € H} (V). We define the operators

B,N: H}(V) = H (V)

as
(Bulp) = Bi(u,¢),  (Nulp) = By(u,) for u,¢ € Hy(V).

Then, (2.3) is equivalent to the operator equation Bu + Nu =T, u € H} (V).
3. Main results. In this section, we study the existence of a weak solution for (1.1).
Theorem 3.1. Assume that the hypotheses (H1) and (Hs) hold. Let

1> AC?||g1]| ... (3.1)

where C' is the constant in inequality (2.1). Then the BVP (1.1) has at least one weak solution
U € H&(V). Moreover, every (weak) solution u of (1.1) satisfies

» C{Allgalz + 112}
)= 1A gill)

where A is the constant from hypothesis (Hy).
Proof. First we write the BVP (1.1) as the following operator equation in H—(V):

u€ Hy(V): Bu+ Nu=T.

We prove that T € H~1(V), B,N: H}(V) — H~1(V) satisfy all the conditions given in Proposi-
tion 2.1. For convenience, we divide the proof into five steps.

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 10
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Step 1. From the previous section we know that the operator B is linear and continuous. By
Lemma 2.2 the embedding of HE (V) < L?*(V) is compact which shows that B (-,-) is a regular
Garding form. Furthermore, the inequality (3.1) and

By (u,u) = W(u,u) — /\/uz(x)gl(ac)d,u, >
v

> [l ) — Al ol (32)
shows that B (-, -) is a strict Garding form. Let {uy} be any sequence in H} (V') and

(Bug|ug) = 0. (3.3)

lim

k—oo

Claim: B satisfies condition (.5). Since B is linear, as in (3.2), we have
(Bug|ug) = (B(ug)|ur) = By (ur, up) =

e A

> (1= AC%||gulloo) k1 7 - (3.4)
From (3.3) and (3.4), we note that

0<(1- )\C'QHglﬂoo) kl;nolo Hukaq&(V) < klggo (Bug|ug) = 0.

Since (1—AC?||g1]/o0) > 0, we have HukHél(V) — 0 as k — oo, which implies u; — 0 as k — oo.
0

Hence, B satisfies condition (.5).
Step 2. Claim: B + N is asymptotically linear. By (2.4), we have

INull -1 < C,
where C" = AC/|gz||2 is a constant depending on V. Consequently,

[Null gr-1(v)

— 0 as ||U||Hl v — 0
lull 2 v olV) ’

which shows that B + N is asymptotically linear. Next we show that N is strongly continuous.
Since h is continuous and is a function of w only, the hypotheses (H1) and (H6%) of [31] (Corol-
lary 26.14) are satisfied. The hypothesis (H2) follows from the fact that A is bounded. Hence, by
[31] (Corollary 26.14), N is a strongly continuous operator.

Step 3. From Step 2, we note that the operator B satisfies condition (S). Since, N is strongly
continuous, we note that the operator u € H} (V) — t(Nu—T) € (HE(V))" is strongly continuous
for t € [0,1]. Foreach t € [0, 1], the operator A;(u) = Bu+t(Nu—T) is thus a strongly continuous
perturbation of the (5)-operator B. So, the operator A;(u) satisfies condition (S) (we refer to [31],
Problem 27.1).

Step 4. Now, Bu = 0, with u € H}(V), implies

W(u,u) — )\/u2(:1c)g1 (x)dp = 0.
%4
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Consequently, we have
(1 - )‘02”91”00) HUHJQL[&(V) <0,

which shows that u = 0, since 1 — AC?||g1 /|00 > 0.

By Proposition 2.1, Bu + Nu = T has a solution u € H&(V) which equivalently shows, the
BVP (1.1) has a solution u € HZ (V).

Step 5. Let u € H} (V) be a weak solution of (1.1). As in (3.4) (with the help of the embedding
in Lemma 2.2), we obtain

Bi(u,u) > (1 - )‘02”91”00)”“”1%[5(1/)'

Since, 1 > AC?||g1 |, we have

1

2 - -
luliy) < TR B o) ()

Also, we note that
| B (u,u)] < C{Algall2 + [ fll2 } 1wl 13 (vr)- (3.6)

By (3.5) and (3.6), we get

" C{Allgallz + 1712}
v = T30 )

Theorem 3.1 is proved.

Next, we dispense with the condition (3.1) when g; does not change sign. The two results are
related to the cases when ¢g; > 0 with A < 0 and g; < 0 with A > 0. These results are similar to
that of Theorem 3.1 but with suitable changes.

Theorem 3.2. Suppose that the hypotheses (H1) and (Hs) hold. Let g1 > 0 and X\ < 0, then
the BVP (1.1) has at least one weak solution. For every weak solution u € H&(V) of (1.1) the
inequality

lullzs vy < C{Allgalz + 1112}

holds, where C' is the constant in inequality (2.1).

Proof. As in Theorem 3.1, the basic idea is to reduce the problem (1.1) to the operator equation
Bu+ Nu =T and then to apply Proposition 2.1. For this, we define B, N and 7, as in Theorem 3.1.
The compact embedding of H} (V') <+ L?*(V) and (3.1) shows that B (-, -) is a strict regular Garding
form. Also, A <0 and g; > 0 yields

B w) = Www) ~ A [ w () (@) > [l (67)
14

Let {uy} be any sequence in H} (V') and
lim (Bug|ug) = 0. (3.8)
k—oo

We claim that B satisfies condition (.S). Since B is linear, as in (3.7), we have

(Buglu) = (B(ug)lur) = Ba(ug, ur) = [|ukl| . (3.9)
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From (3.8) and (3.9), we note that
0 < lim [Jugl[3 ) < lim (Buglug) =0

which implies ||uk|| g1y — 0 as k — oo and, consequently, B satisfies condition (5). Next, we
show that B + N is asymptotically linear and, N is strongly continuous. The proof is similar to that
of Theorem 3.1 and we omit it for brevity. Since A < 0, we get from (3.7) that Bu = 0 implies
u = 0. By Proposition 2.1, Bu+ Nu = T has a solution u € H} (V') which equivalently shows that
the BVP (1.1) has at least one weak solution. Let u € H&(V) be such a solution. Then, by (3.7) and
a similar argument as in Theorem 3.1, we have

lull vy < C{Allgall2 + 11 £1l2}

where C' is the constant in inequality (2.1).

Theorem 3.2 is proved.

With suitable modifications in the proof of Theorem 3.2, we have the following result.

Theorem 3.3. Suppose that the hypotheses (H1) and (Hs) hold. Let g1 < 0 and A\ > 0, then
(1.1) has a weak solution w € H} (V') and there is a constant ko such that ||U||H3(V) < ko for every
(weak) solution wu.

4. Extensions. In Section 3, the nonlinearity h is assumed to be continuous and bounded.
In this section, we extend these results for a class of functions i which are continuous only. The
generalized Holder inequality comes handy for getting suitable estimates. We establish the existence
of a weak solution for (1.1), where h: R — R is required to be continuous and to satisfy |h(t)| < |¢€,
0 <e <1, forall t € R. Again, we consider the cases A < 0 and A > 0 separately. Since the proofs
are similar to the ones in Section 3, we restrict ourselves to sketch only the differences wherever
needed. The Corollary 26.14 in [31] is not applicable here since & is not bounded. We collect the
common hypotheses for convenience:

(H}) the function h: R — R is continuous and satisfies |h(t)] < || ¢ € R, for a fixed
0<e<;

(H,) g1 € L¥(V), ga € LT=(V), 0 < e < 1 and f € LA(V).

Theorem 4.1. Assume that the hypotheses (Hy), (H}) hold. If g1 > 0 and \ < 0, then (1.1)
has at least one weak solution and there is a constant ko such that ||u|| HI(V) < ko for every (weak)
solution u € H (V).

Proof. We give only a sketch of the proof since it is similar to the proof of Theorem 3.2. By
Lemma 2.2 and generalized Holder’s inequality [23, p. 67], we have

| Ba(u, )| < / h(u(@)le(@)llg2ldu < llullsllelzllgz]l 2 forevery o € Hg(V).
\%4

By a similar argument as in Theorem 3.2 we observe that the operator B; satisfies condition (S). We
also observe that

(Nulp)| = [Ba(u, )| < CHullip o) 2l iy o) g2l 2

which implies
||NU||H—1(V) < CE+1||U||;{3(V)HQ2”ﬁ = CHUHE'{(}(V)?
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where the constant ¢ = C“*1{|ga|| 2 . So
1—e

INul -1y Ml

I

=0 as ullgiy = o 4.1)

This shows that B + N is asymptotically linear. Also, u € L?(V) implies that h(u) € L%(V) and
define the Nemytskii operator
F:I2(V) = LE(V)

by (Fu)(x) = h(u(x)); we have that F' is continuous (by [22], Theorem 2.1). Now, the hypotheses
(Hy), (H) and the generalized Holder inequality imply that

|(Nunlp) — (Nulg)| < / (un) — () galloldp <

< C||h(un) — H2 lg2ll 2_llell mrg (vry-

Let u, — u weakly in H}(V). Then, by the continuity of F in L%(V) and by the compact
embedding H} (V) < L*(V), we have

[Nup — Nullg-10y) = 0 as n — oo.

By a similar argument as in Theorem 3.1, we can show that the operator A;(u) = Bu + t(Nu — 1)
satisfies condition (S). If A < 0, then Bu = 0 implies as in the proof of Theorem 3.2 that u = 0.
By Proposition 2.1, problem (1.1) has at least one weak solution u € H{(V'), which completes the
proof of existence result.

Let u € H}(V) be a weak solution of (1.1). Then

| Ba(u,u)| < CLC Nl vy g2l 2= + I Fll2 Il g ) (4.2)
By (3.7) and (4.2), we have
ull vy < CLCullyga vy lg2ll 2 + [1£112}- (4.3)
If HUHH(%(V) > 1, then, from (4.3), we have
lullgyvy < CC el = + £ 112) gy oy

which implies that

1
lulltty, < ¢ o llullgyy < e,

where ¢ = C(C¢|g2|| 2 + [|fl2). If lullgrvy < 1, we have nothing to prove. Let kg =
1—e

= max{1, ci} Hence, we have
lull g1 vy < Ko-

Theorem 4.1 is proved.
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Remark. Theorem 4.1 also holds if gy < 0 and A > 0. But when A > 0 and ¢; changes
sign, we need additional conditions on A and g; (stated below) as in Theorem 3.1. We state these
results below in Theorem 4.2 for which we give only a sketch of the proof. We note that in (4.1) the
asymptotic linearity of B + N is a consequence of € lying between 0 and 1.

Theorem 4.2. Let the hypotheses (H}), (Hb) hold. Also, let 1 > AC?||g1||cc. Then the BVP
(1.1) has at least one weak solution and there is a constant ko such that ||u||H(}(V) < ko for every
(weak) solution u € HL(V).

Proof. The proof for the existence of at least one weak solution u € HE (V') for (1.1) is similar
to the arguments in the proof of Theorem 4.1 and Theorem 3.1 and hence it is omitted. As in
Theorem 3.1, we note that

(1= AC?|lgnlloo)lull g vy < CLC MUl vryllgall 2 + £l el g vy
where C' is a constant. Since 1 > AC?||g1/|0, We obtain

W C(CNlullggayyllgall = + 11£1l2)
u
Hy (V) = (1= AC%g1]lo0)

(4.4)

If HUHH(}(V) > 1, from (4.4), we have

" 3 C(CEHQQH%% + HfHQ)HUH?[g(V)
u|| g1y < ’
HY(V) (1= 2C?g1l0)

which implies that

1
<c oor lullgiyy < et

1—¢
HUHH(%(V)

C(Celgal 2.+ 117]l)

(= 2Cgl) 1
If ||u||Hé(V) < 1, we have nothing to prove. Let kg = max{1,cT—<}. Then we have

where ¢ = and 0 < e < 1.

[l g1 vy < Ko-
Theorem 4.2 is proved.
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