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ON THE HIGH ENERGY SOLITARY WAVES SOLUTIONS
FOR A GENERALIZED KP EQUATION IN BOUNDED DOMAIN

PO3B’A3KHU Y BUITIAAI COJITOHOBUX XBUJIb UIAA Y3AT'AJIBHEHOI'O
PIBHAAHHS KAJIOMIIEBA - TIETBIAIIBLII B OGMEJKEHIN OBJIACTI

We are mainly concerned with the existence of infinitely many high energy solitary waves solutions for a class of
generalized Kadomtsev — Petviashvili equation (KP equation) in bounded domain. The aim of this paper is to fill the gap in
the relevant literature stated in a previous paper (J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev—
Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., 2012, Ne 68, 1-18 (2012)). Under more
relaxed assumption on the nonlinearity involved in KP equation, we obtain a new result on the existence of infinitely many
high energy solitary waves solutions via a variant fountain theorem.

Po3risinaeTsest, rOTOBHUM YHHOM, iCHYBaHHS HECKIHYEHHOI KIJIBKOCTI PO3B’SI3KiB y BUIVISII COMITOHOBUX XBHJIb TSl y3arajb-
HeHoro piBHsHH Kanomnesa — [IeTBiamBini B oOMexeHii oomacti. MeTa 1iel poOoTH — 3aliOBHUTH NPOOLIH B pe3yibrarax,
sIK1 BKa3aHi y nonepennii poooti (J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev— Petviashvili
equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., 2012, Ne 68, 118 (2012)). IIpu Ginbm cnabkux odme-
JKeHHSIX Ha HEINiHIiHICTE y piBHAHHI Kagomiera —[leTBiamBini 3a JOIOMOTOK0 BapiaHTa TEOPEMH MPO (POHTAH OTPUMAHO
HOBHI pe3yJibTar II0A0 ICHYBaHHs HECKIHYEHHOTO YMCiIa PO3B’SI3KIB y BUINISII COIITOHOBUX XBHUIIb.

1. Introduction. The Kadomtsev — Petviashvili equation (KP equation) with variable coefficients has
been proposed some time ago [1—4]. The motivation was to describe water waves that propagate
in straits, or rivers, rather than on unbounded surfaces, like oceans. This equation appear in many
physic fields, see for example [5, 6] and the references therein. There are two distinct versions of the
KP equation, which can be written in normalized form as follows:

(g + 6utty + Ugza ) + 302Uy, = 0 (1.1)
or, in the "integrated” form
up + 06Uy + Uppy + 3028;1uyy =0, (1.2)

where v = wu(t,z,y) is a scalar function, = and y are respectively the longitudinal and transverse
spatial coordinates, subscripts z, y, ¢ denote partial derivatives,

ot i@ =5 | [ rwar- [ rwa

and 02 =1 1. The case o = 1 is known as the KPII equation, and models, for instance, water waves
with small surface tension. The case ¢ = ¢ is known as the KPI equation, and may be used to model
waves in thin films with high surface tension. The presence of the nonlocal operator 9, 183 imposes a
constraint on the solution v of the KP equation, which, in some sense, has to be an z-derivative (see
[7, 8]). This last equation (among other completely integrable systems) was studied extensively by
means of algebro-geometric techniques [9], Hirota bilinear method [10] and reduction method [11].
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A solitary wave or solitary wave solution of (1.2) is a solution of the form u(t, z,y) = v(z — ct,y),
where ¢ > 0 is fixed, were studied by Ablowitz et al. [12]. Consequently, solitary wave solution
are important, because their properties can provide a useful platform for explaining many unusual
dynamical behaviors of various physical equations (see [13—16]).

The generalized KP equation is written in the following form:

s+ Ugze + (F(W)e = Dy Ayu, (13)
where (t,7,y) :== (t,2,y1,.--,Yn—-1) ERL x RxR" 1 n >2 D 'h(z,y) = / h(s,y)ds and

—00

1 82
Ay = Z: N The equation (1.3) were studied by many authors (see [17—-23]).
In [17], B. Xuan studied the existence of multiple stationary solutions of Generalized KP equation
in a bounded domain with smooth boundary and for superlinear conditions of nonlinearity f(u) =
2(2n —1)

2n —
variational methods. In [18, 19], by means of constrained minimization method, Bouard et al. studied

= MulP~2u + |u|9"2u where 1 < p,q < 2* = . The techniques used in [17] are based on
the existence and nonexistence of solitary waves when f(u) = u%, where k, [ are relatively prime
and [ is odd. In the Chapter 7 of [20], Willem extended the results of [18] to the case where n = 2
and with an autonomous continuous nonlinearity f(u). In [21], Xuan extended the result in [20] to
higher spatial dimension with f € C'(R,R). Their results were obtained by applying the mountain
pass theorem of Ambrosetti— Rabinowitz [28] and Lusternik — Schnirelman theory.

In [23], J. Xua et al. studied the existence of multiple solitary waves for the generalized KP
equation (1.3) in one-dimensional spaces when f(u) = u|u|*~! and 1 < p < 2. Their methods were
based on variant fountain Theorem [24].

To our knowledge, all known results are concerned with the case that f is autonomous. Except in
paper [22], Z. Liang et al. studied the existence of nontrivial solution for the limiting case f(z,y,u) =
= Q(z, y)uP~2u. Here, some compactness property for the energy functional like the Palais — Smale
condition [24] were used.

Inspired by the above facts, in the present paper we consider a more general problem (1.4)

Ut + Uge + (f(T,y, 1)) = D;lAyu in €, 14

D;lu‘ag = 0, u‘ag = 0.
Note here that the nonlinearity f is non autonomous. Such equation are of scientific and practical
interest because of the variety of applications involving solitary wave propagation in inhomogeneous
media [25-27]. We recall that in the above papers, the high energy solitary waves solutions have
not been studied. Under more general assumptions on the nonlinearity f which are much strong
assumptions than used in paper [23], we obtain a new result on the existence of infinitely many high
energy solitary waves solutions for the problem (1.4), (see Theorem 2 in Section 3). Such result are
obtained by using some special proof techniques.

This paper is organized as follows. In Section 2, we recall some basic preliminaries. In Section 3
we give some lemmas and finally, we prove our result.

2. Preliminaries and functional setting. In this section we introduce some preliminaries which
used in our paper. Let ¢ > 0, substituting u(z — ct,y) in (1.4), we obtain
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—CUg + Ugyr + (f(x,y,u))y = D;lAyu 2.1

or
(—Uaa + D 2Ayu+ cu— f(z,y, u))gC =0. (2.2)

Note that we can rewrite (1.4) in the following form (see [17, p. 12]):

—Ugy + D;QAyu +cu= f(z,y,u) in €,
B (2.3)
Dw 1u|aQ = 0, Ulpa = 0.

Definition 2.1. For Q C R" is a bounded domain with smooth boundary 02 on' Y := {g:
g € C3°}, we define the inner product

(u,v) = / [uzvy + Dy 'Vyu.D; Vv + cuv] dV (2.4)
Q
where V, = <88y1’ ey (‘)y81>’ dV = dx dy and the corresponding norm
bl
|| == /[ug + D' Vyul? + cu?] dV | . (2.5)
Q

A function u: Q — R belongs to E, if there exists {um}:;fl CY such that:

(@) Uy — u ae on ),

(b) ||uj —ugl| = 0 as j, k — oo.

Note that the space E with inner product (2.4) and norm (2.5) is a Hilbert space, see [22]
(Definition) and [17, p. 12, 13].

For each v € E, multiply the both sides of the above equation in (2.3) by v(z,y) and integrate
over {2 to obtain

2
/ (—&u) vdV + /(D12Ayu)v av + c/uv av = /f(m,y,u) vdV (2.6)
Q Q Q Q
and then we obtain by Green formula and integration by parts,

/;;u.;cudv+/D;1vyu.D;1vyvdv+c/uvdV: /f(:v,y,u)vdV. (2.7)
Q Q Q Q

Therefore, on E, define a functional ¢ as

1
o(u) = 2/ [u2 + |D; ' Vyul? + cu®] dV — /F(x,y,u) dv =
Q Q

= 2l ~ () 8)

where F(z,y,u) := /u f(z,y,s)ds and ¥ (u) := / F(z,y,u)dV.
0 Q

ISSN 1027-3190. VYkp. mam. scypn., 2022, m. 74, Ne 3



314 ROCHDI JEBARI

Lemma 2.1 (see ([17], Lemma 1). The embedding from the space (E,||.||) into the space

22n -1
(LP(), ||.lp) is compact for 1 < p < p with p = (2713) > 2. In add, there exists T, > 0
n—
such that
llullp, < pllull, pell,p), forall ueE (2.9)

1
where ||u||, = (/ |u|P dV)p .
Q

We assume that the nonlinearity f, satisfying the following hypotheses:

(f1) feCO@xR,R), f(z,y,u)u >0 for all u € R, (x,y) € Q and there exists a constants
C >0 and p € (2,p) such that
|f(z,y,u)| < C(1+ |ulP~1), for all u € R and (z,y) € Q.

(f2) f(z,y,u) =o(|Ju|) as |u| — 0 uniformly for (z,y) € Q.
. F(z,y,u) ,
(f3) im0 e = 400 uniformly for (z,y) € Q.
u

(f4) There exists # > 1 such that Op(u) > ¢(7u) for all 7 € [0,1] and (z,y,u) € Q x R
where p(u) = u f(x,y,u) — 2F(x,y, u).

(f5) f(z,y,—u) = —f(z,y,u) forall u € R and (z,y) € Q.
Example of a function f satisfying the above assumptions is

flwy.t) = alz,y)|t"

for all (z,y) € Q and t € R where v € (2,p) and a is a continuous bounded function with positive
lower bound.
Lemma 2.2 (see [23]). Let (f1) holds. Then ¢ € C*(E,R). Moreover, we have

(¢ (u),v) = / f(z,y,u)vdV (2.10)
Q

and

(&' (), 0) = (u,0) — (' (1), 0) = (u,0) — / f @y, uyo dV @.11)
Q

for all u,v € E. We note that a critical points of ¢ on E are weak solutions of (2.3).

For the convenience of the readers, we recall some notation which will be used later.

Let X be a Banach space with the norm ||.|| and let { X;} be a sequence of subspaces of X with
dimX; < oo for each j € N.

Further, X = @;enX; the closure of the direct sum of all {X}.

Set Wy := @?ZOX]- and Z; := @?ikHva for pr, > 1 >0

By ={ueWg:|lu| <pr} and  Sp={u€ Zy: [lul =y}
Consider a family of C'!'-functionals ¢, : X — R defined by
da(u) = A(u) — AB(u), X e]l,2]. (2.12)

Theorem 2.1 (see [24]). Assume that the functional ¢ defined above satisfies
(A1) ¢, maps bounded sets into bounded sets uniformly for \ € [0,1], and ¢\(—u) = ¢x(u)
Sorall (A\,u) € [1,2] x X;
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(A2) B(u) >0 forall u € X, and B(u) — oo as ||u|| — oo on any finite dimensional subspace
of X, or
(A3) B(u) <0 forall ue X, and B(u) — —oo as ||lul]| — oco.
(A4) There exists py > ri > 0 such that
be(A) :== inf oa(u) > ap(A) ==

max

oa(u) forall Xell,2].

Then b(X\) < ci(X) := inf er, maxuep, ¢x(y(w)) for all X € [1,2], where
) = {7 € C(By, X): v odd, 7, = id}, k> 2.

Moreover, for almost every \ € [1,2] there exists a sequence uk(\) such that

n

sup Hufl()\)H < 00, gﬁ’/\(ufl()\)) —0 and (ﬁ,\(uk()\)) = ck(A) as n— oo.

3. Existence of infinitely many high solitary waves energy solutions. In order to apply the
above theorem to prove our main results, we define the functional ¢, on our working space E by

2

() == 1/ [u2 + | D' Vyul? + cu®] dV — )\/F(:z:,y,u) dV = %HUHQ — Mp(u) (3.1)
Q Q

for all w € E and X € [0, 1]. We use the some lemma to show the existence
Lemma 3.1. For the finite dimensional subspace F' C F of E, there exists a constant €y > 0
such that
meas{ (z,y) € Q: Ju(z,y)| > eollul|} >0 Vu e F\{0}. (3.2)

Proof. If not, for any n € N*, there exists u,, € F'\{0} such that

1 1
meas{(x,y) € Q: |up(x,y)| > n\unH} <= Vn € N*. (3.3)

Un

[

Let v, = for all n € N*, then ||v,|| =1 for all n € N*, and

Vn € N*. (3.4)

1
n

1
meas{ (5.9) € 2 o (o) = 1} <

By the boundedness of {v,}, passing to a subsequence if necessary, we may assume that v,, — v
with ||v|| = 1 in E for some v € E since E is a finite dimension. By Lemma 2.1, we have

/\vn(x,y) —v(z,y)?dV -0 as n — oo. (3.5)
Q

Since v # 0, there exists a constant dy > 0 such that
meas{ (z,y) € Q: |v(z,y)| = do} > do. (3.6)
For any n € N*, we set
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D, = {(:I:,y) €0 ua(x,y)| < Tll} Dy = {(w) €Q: fon(z,y)| = i}

and Do = {(z,y) € Q: |v(z,y)| > & }. Thus for n large enough, by (3.4) and (3.6), we get

26
meas(D,, N Dy) > meas(Dy) — meas(D;,) > ?O. (3.7)
Consequently, for n large enough, we have
[l = vtwPav = [ o) - o) 2
Q D,NDy
> [ )l - 2] v >
DyNDg
> [ )P - 2ol )] av =
DyNDg
2 2
> do| 0o — — | meas(D,, N Dy) > §50 > 0. (3.8)
n

This is in contradiction with (3.4). Therefore (3.2) holds.

Lemma 3.2. Assume that (f1) and (f3) hold. Then ¢)(u) > 0 for all uw € E, and ¥ (u) — o0
as ||u|| = oo on any finite dimensional subspace of E.

Proof.  Evidently, from (f1), we have ¢)(u) > 0 for all u € E. Let H C E be any finite
dimensional subspace of E, next we will show that ¢)(u) — oo as ||u|| — oo on H.
By (f3), there exists R > 0 such that

F(z,y,u) > |u|> forall (z,y)€Q and |ul > R. (3.9

Let D, = {(z,y) € Q: |u(z,y)| > eoful|} for u € E\{0}. By Lemma 3.1, we see that for any
R

u € E with |lu|| > — we have |u(z,y)| > R, for all (z,y) € D,. Hence, for any u € E with
€0

ul| > £, from (f1) and (3.9), we get

07

P(u) > /F(m,y,u) dv > /\u|2dvz

Dy, Dy

> 5(2)HuH2meas(Du) > 53HUH2. (3.10)

This implies that ¢)(u) — oo as ||u|| — oo on any finite dimensional subspace of E.

The proof is completed.

Let {e;} be a total orthonormal basis of E and X; = Re;, W}, := EB;‘?:OXj and 7y =
= @]Qik+1Xj'

Lemma 3.3. [f'p € [1,D), then one has cu(p) := SuPycz, |ju|=1 l[ullp = 0 as k — oco.
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Proof. Firstly, ai(p) is convergent science ax(p) > 0 and ay(p) is decreasing in k. Further-
more, for any £ € N, by the definition of ay(p), there exists uy € Zj such that ||ug|| = 1 and
ak(p)

2 -
Foranyv € E, v = Z | @nén; it has

n=

lurllp >

o0
‘<Uk,7)>’: <uk72anen> <
n=1
o o0
< | Z anén S‘ Z anen|| — 0, as k — oo.
k=n+1 k=n+1

which implies that uy, — 0 weakly in F. By virtue of Lemma 2.1, we can conclude u; — 0 strongly
in LP(Q2). The combination with implies that a(p) — 0.

Lemma 3.4. Assume that (f1) and (f2) hold. Then there exists a sequences 1, > 0, k € N
such that

be(N) := inf  Pr(u) >0 (3.11)
uEZp, [|ull=rk

uniformly for X € [1,2].

Proof. By (f1) and (f2), for any € > 0, there exists a C. > 0 such that

|f(z,y,u)| < elul + CelulP™' forall ueR. (3.12)

Let ag(p) := supyez, |uj=1 [[¢llp, from Lemma 3.3, we see that ay(p) — 0. Therefore, for uy, € Zj
and € small enough, by (3.12), we have

1 pY pY
ortu) = gl = 55l = Sl >

1
> Llull® = eallullp = Jllul® = caf (p) [Ju]l” (3.13)

| =

1
If we choose 7, = (8csaf(p)) 27 then for any u € Zj, with [Ju| = ri, we get that

(8C4a§(p))f1v > 0. (3.14)

|

Pa(u) >

This inequality implies that

(N = inf  éxa(w) > < (Seaal(p))TF >0 forall A€ [1,2]. (3.15)

e
m
N
x
=
|
g
ol
oo =

Lemma 3.5. Assume that (f1), (f2), and (f3) hold. Then for the positive integer ki and the
sequence 1, obtained in Lemma 3.4, there exists py > ri > 0 for any k > ki such that

ar(A) == max  ¢a(u) <0 (3.16)
u€Wp, [|ull=pr

uniformly for X € [1,2].
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Proof. By Lemma 3.1, for any k € N, there exists £ > 0 constant such that
meas(Sy) > e VYu € Wi\{0}, (3.17)

where S, = {(z,y) € Q: |u(z,y)| > exllull}. By (f3), for any k € N, there exists a constant
Ry, > 0 such that

1
F(z,y,u) > < |ul> Vu> Ry. (3.18)
€k

R
Hence, by (3.17), we see that for any v € Wy, with |jul| > =% we have |u(z,y)| > Ry, for all
Ek

(z,y) € Sy. Therefore, for any u € Wy, with ||u|| > ? and A\ € [1,2], by (3.17) and (3.18), we
k

have

1 1
ortu) < gl = [ Py av < Sulf - [ Flapuav <
Q Su

1 1 1 meas(Sy)
<l = [ SluP av <SP - P <
€k €k
Su
1 1
< Sl = Jlul® = =S lull®. (3.19)
Ry,
If we choose p;, > max q i, — o, we get that
€k
2
ar(\):= max  ¢r(u) < —L <0 VEeN andforall \e€|[l,2].
u€Wy,[lull=px 2

The proof is completed.

By using (3.12) and Lemma 2.1 we can see that ¢ maps bounded sets to bounded sets uniformly
for A € [1,2]. Moreover, by (f5), ¢ is even. Then condition (A1) in Theorem 2.1 is satisfied.
Condition (A2) is clearly true, while (A4) follows by Lemma 3.4 and Lemma 3.5. Then, by
Theorem 2.1, for any k > k; and A € [1,2] there exists a sequence {u’(\)},, such that

sl < oo, HEEN) 50 and  gy(ub(N) = ak(N) as - oo,
where ¢ () = infyep, max,ep, da(v(w)), VA € [1,2] and By, I'y, are given by
Byo={uecWg:|u| <ps} and Ty= {7 € C(Br.X): vy odd, 7, = id}, k> 2.

In particular, from the proof of Lemma 3.3, we deduce that for any k& > k and A € [1, 2]

2
(8640[2(p))ﬁ = bk < bk < Cl.

col

Also since

cr(N) = ViEnIfk max oa(y(u)) < meax oA(y(u)) = e
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Hence,
b, < cx(N) < . (3.20)

As a consequence, for any £ > k;, we can choose \,, — 1 (depending on k) and get the corre-
sponding sequences satisfying

sup Hu’fl(/\m)H < 00, o, (u’fL(/\m)) — 0 and Dxn (qu()\m)) — cx(Am) (3.21)

as n — oo.

Lemma 3.6. For each \,, given in [1,2] such that A\, — 1, the sequence {uk(\;,)}>2, has
a strong convergent subsequence {u*(\y)}m such that o (uF(\m)) = 0 and ¢y, (u¥(\n)) €
€ by, cx) forall m € N, k > ky.

Proof. By (3.21) we may assume, without loss of generality, that as n — oo,

uf(\n) = uF(\y,) in E. (3.22)

By Lemma 2.1 we have
uF () = uF(\y,) in LP(Q). (3.23)

n

By (f1) and (f2), for any € > 0, there exists Cc > 0 such that
|f(z,y,u)| < elu| + CluP~ forall ueR (3.24)

and Holder inequality it follows that

[ O ko) — ) v <
Q

< el ) 2 llury (M) — @ () ll2 + Cellu )5l (Arm) = 1 (N1

s0, by using (3.23), we obtain

T [ £y Ovn)) (5 On) = w ) dV = 0
Q

and

lim [ [f (2,9, uy (M) = f @, 5,6 ()] (i (Am) = 0¥ (An)) dV = 0.

n—0o0

Q

Observe that
b ) = wE )l = (64, (b ) = 6, (1 (Am) ) +

Q

it is clear that
(0, (b Om) = B4, (1 o) b Oum) = () ) = 0 (3.26)

as n — oQ.
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By (3.25), we have ||uf (\,) — u*(A\n)| — 0 as n — oo,
As a consequence, we obtain

P (W (An) =0 and ¢y, (" (\n)) € [br, ] (3.27)

forallme N, k > k.
Lemma 3.7. For any k > k1, the sequence {uk()\m)}oo is bounded in E.

m=1
Proof.  For simplicity we set u,, = u*(\,,). We suppose by contradiction that, up to a subse-

quence,
|um|| = 00 as m — oo. (3.28)

U
Let w,, = ———

T for any m € N. Then, up to subsequence, we may assume that
Um

Wy, —w In K,
Wy — w in LP(Q), (3.29)

Wy, — w  ae. in .

Now we distinguish two cases.
Case w = 0. As in [29], we can say that for any m € N there exists t,, € [0, 1] such that

O, (bmtm) = max ¢y, (tum,). (3.30)
t€(0,1]

Since (3.28) holds, for any j € N, we can choose 7; = 2y/jw,, such that
rillunl € (0,1) (3.31)
provided m is large enough. By (3.29), F'(.,0) = 0 and the continuity of F', we can see that
F(x,y,rjwn) = F(z,y,rw) =0 ae. (z,y) €Q (3.32)

as m — oo for any j € N. Then, taking into account (3.24), (3.29), (3.32), (A4) and by using the
Dominated Convergence Theorem we deduce that

F(z,y,mjwm) — 0 in LYQ) (3.33)
as m — oo for any 5 € N. Then (3.30), (3.31) and (3.33) yield

¢Am(tmum) > ¢Am(rjwm) > 2j - )\m/F(xaf%Tjwm) dav 2.7
Q

for m is large enough and for any j € N. As a consequence
O, (tmm) — 00 as  m — oo. (3.34)

Since ¢y,,(0) = 0 and ¢y, (um) € [ by, Tk |, we deduce that ¢,, € (0,1) for m large enough. Thus,
by (3.30) we have
d

tm— tuy,) = 0. 3.35
dtlt:tm%m( ) (3.35)

(S (i), i) =
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Taking into account (f4), (3.35) and (2.11) we obtain

1 1 1
§¢>\m (tmum) = 5 <¢)\m (tmum) - 5 <¢£\m (tmum)a tmum>> =

—rg/ L) dV<>\2/g0(um)dV:
Q Q

1
= ¢>\m (Um) - 5 <¢/,\n (um)a um> = ¢)\m (um)

which contradicts (3.27) and (3.34).
Case w # 0. Thus the set ' := {(z,y) € Q: w(z,y) # 0} has positive Lebesgue measure.
By using (3.28) and that w # 0, we have

[t (z,y)| = 00 ae. (z,y) €Q as m — oo. (3.36)

Putting together (3.27), (3.36) and (f3), and by applying Fatou’s Lemma, we can easily deduce that
1 Qb)\m(um) —\ /F(x,yaum>
— o Dmim) N e om)

[

av >

F(
> A /\ W |? Ty’|gm)dV—>oo as m — 0o
m

which gives a contradiction because of (3.27). Then, we have proved that the sequence {u,,} is
bounded in F.

Theorem 3.1. Assume that (f2), (f3) - (f5) hold. Then problem (2.3) possesses infinitely many
high energy solutions uy, € F for every k € N, in the sense that

1
2/ ()2 + | Dy Vyug)® + cug] dV — /F(a:,y, ug) dV — +o0 (3.37)
Q Q

as k — oo.

Proof. Taking into account Lemma 3.7 and (3.27), for each £ > k;, we can use similar
arguments to those in the proof of Lemma 3.6, to show that the sequence {uk (Am)}zzl admits
a strong convergent subsequence with the limit «* being just a critical point of ¢; = ¢. Clearly,
¢(uF) € [bg,c;] for all k > ky. Since by — oo as k — oo in (3.20), we deduce the existence
of infinitely many nontrivial critical points of ¢. As a consequence, we have that (2.3) possesses
infinitely many nontrivial weak solutions.
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