DOI: 10.37863/umzh.v74i3.6253

UDC 517.9

Rochdi Jebari (Dep. Math., College Sci. and Humanities-Al Quwayiyah, Shaqra Univ., Riyadh, Kingdom of Saudi Arabia; Dep. Math., Faculté Sci. Tunis, Univ. Tunis El-Manar, Tunisie)

ON THE HIGH ENERGY SOLITARY WAVES SOLUTIONS FOR A GENERALIZED KP EQUATION IN BOUNDED DOMAIN

РОЗВ'ЯЗКИ У ВИГЛЯДІ СОЛІТОНОВИХ ХВИЛЬ ДЛЯ УЗАГАЛЬНЕНОГО РІВНЯННЯ КАДОМЦЕВА – ПЕТВІАШВІЛІ В ОБМЕЖЕНІЙ ОБЛАСТІ

We are mainly concerned with the existence of infinitely many high energy solitary waves solutions for a class of generalized Kadomtsev−Petviashvili equation (KP equation) in bounded domain. The aim of this paper is to fill the gap in the relevant literature stated in a previous paper (J. Xu, Z. Wei, Y. Ding, *Stationary solutions for a generalized Kadomtsev−Petviashvili equation in bounded domain*, Electron. J. Qual. Theory Differ. Equ., **2012**, № 68, 1–18 (2012)). Under more relaxed assumption on the nonlinearity involved in KP equation, we obtain a new result on the existence of infinitely many high energy solitary waves solutions via a variant fountain theorem.

Розглядається, головним чином, існування нескінченної кількості розв'язків у вигляді солітонових хвиль для узагальненого рівняння Кадомцева – Петвіашвілі в обмеженій області. Мета цієї роботи — заповнити пробіли в результатах, які вказані у попередній роботі (J. Xu, Z. Wei, Y. Ding, *Stationary solutions for a generalized Kadomtsev – Petviashvili equation in bounded domain*, Electron. J. Qual. Theory Differ. Equ., **2012**, № 68, 1 – 18 (2012)). При більш слабких обмеженнях на нелінійність у рівнянні Кадомцева – Петвіашвілі за допомогою варіанта теореми про фонтан отримано новий результат щодо існування нескінченного числа розв'язків у вигляді солітонових хвиль.

1. Introduction. The Kadomtsev-Petviashvili equation (KP equation) with variable coefficients has been proposed some time ago [1-4]. The motivation was to describe water waves that propagate in straits, or rivers, rather than on unbounded surfaces, like oceans. This equation appear in many physic fields, see for example [5, 6] and the references therein. There are two distinct versions of the KP equation, which can be written in normalized form as follows:

$$(u_t + 6uu_x + u_{xxx})_x + 3\sigma^2 u_{yy} = 0 (1.1)$$

or, in the "integrated" form

$$u_t + 6uu_x + u_{xxx} + 3\sigma^2 \partial_x^{-1} u_{yy} = 0, (1.2)$$

where u = u(t, x, y) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives,

$$\partial_x^{-1} f(x) = \frac{1}{2} \left(\int_{-\infty}^x f(t) dt - \int_x^{\infty} f(t) dt \right)$$

and $\sigma^2=^+_-1$. The case $\sigma=1$ is known as the KPII equation, and models, for instance, water waves with small surface tension. The case $\sigma=i$ is known as the KPI equation, and may be used to model waves in thin films with high surface tension. The presence of the nonlocal operator $\partial_x^{-1}\partial_y^2$ imposes a constraint on the solution u of the KP equation, which, in some sense, has to be an x-derivative (see [7, 8]). This last equation (among other completely integrable systems) was studied extensively by means of algebro-geometric techniques [9], Hirota bilinear method [10] and reduction method [11].

A solitary wave or solitary wave solution of (1.2) is a solution of the form u(t, x, y) = v(x - ct, y), where c > 0 is fixed, were studied by Ablowitz et al. [12]. Consequently, solitary wave solution are important, because their properties can provide a useful platform for explaining many unusual dynamical behaviors of various physical equations (see [13–16]).

The generalized KP equation is written in the following form:

$$u_t + u_{xxx} + (f(u))_x = D_x^{-1} \Delta_y u, (1.3)$$

where $(t, x, y) := (t, x, y_1, \dots, y_{n-1}) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^{n-1}, \ n \ge 2, \ D_x^{-1}h(x, y) = \int_{-\infty}^x h(s, y)ds$ and $\Delta_y = \sum_{k=1}^{n-1} \frac{\partial^2}{\partial y_k^2}$. The equation (1.3) were studied by many authors (see [17-23]).

In [17], B. Xuan studied the existence of multiple stationary solutions of Generalized KP equation in a bounded domain with smooth boundary and for superlinear conditions of nonlinearity $f(u) = \lambda |u|^{p-2}u + |u|^{q-2}u$ where $1 \le p, q < 2^* = \frac{2(2n-1)}{2n-3}$. The techniques used in [17] are based on variational methods. In [18, 19], by means of constrained minimization method, Bouard et al. studied the existence and nonexistence of solitary waves when $f(u) = u^{\frac{k}{l}}$, where k, l are relatively prime and l is odd. In the Chapter 7 of [20], Willem extended the results of [18] to the case where n=2 and with an autonomous continuous nonlinearity f(u). In [21], Xuan extended the result in [20] to higher spatial dimension with $f \in C(\mathbb{R}, \mathbb{R})$. Their results were obtained by applying the mountain pass theorem of Ambrosetti–Rabinowitz [28] and Lusternik–Schnirelman theory.

In [23], J. Xua et al. studied the existence of multiple solitary waves for the generalized KP equation (1.3) in one-dimensional spaces when $f(u) = \mu |u|^{\mu-1}$ and $1 < \mu < 2$. Their methods were based on variant fountain Theorem [24].

To our knowledge, all known results are concerned with the case that f is autonomous. Except in paper [22], Z. Liang et al. studied the existence of nontrivial solution for the limiting case $f(x,y,u) = Q(x,y)u^{p-2}u$. Here, some compactness property for the energy functional like the Palais – Smale condition [24] were used.

Inspired by the above facts, in the present paper we consider a more general problem (1.4)

$$u_t + u_{xxx} + (f(x, y, u))_x = D_x^{-1} \Delta_y u \quad \text{in} \quad \Omega,$$

$$D_x^{-1} u_{|\partial\Omega} = 0, \quad u_{|\partial\Omega} = 0.$$
(1.4)

Note here that the nonlinearity f is non autonomous. Such equation are of scientific and practical interest because of the variety of applications involving solitary wave propagation in inhomogeneous media [25-27]. We recall that in the above papers, the high energy solitary waves solutions have not been studied. Under more general assumptions on the nonlinearity f which are much strong assumptions than used in paper [23], we obtain a new result on the existence of infinitely many high energy solitary waves solutions for the problem (1.4), (see Theorem 2 in Section 3). Such result are obtained by using some special proof techniques.

This paper is organized as follows. In Section 2, we recall some basic preliminaries. In Section 3 we give some lemmas and finally, we prove our result.

2. Preliminaries and functional setting. In this section we introduce some preliminaries which used in our paper. Let c > 0, substituting u(x - ct, y) in (1.4), we obtain

$$-cu_x + u_{xxx} + (f(x, y, u))_x = D_x^{-1} \Delta_y u$$
 (2.1)

or

$$(-u_{xx} + D_x^{-2}\Delta_y u + cu - f(x, y, u))_x = 0. (2.2)$$

Note that we can rewrite (1.4) in the following form (see [17, p. 12]):

$$-u_{xx} + D_x^{-2} \Delta_y u + cu = f(x, y, u) \quad \text{in} \quad \Omega,$$

$$D_x^{-1} u_{|\partial\Omega} = 0, \quad u_{|\partial\Omega} = 0.$$
(2.3)

Definition 2.1. For $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega$ on $Y := \{g_x : g \in C_0^{\infty}\}$, we define the inner product

$$(u,v) = \int_{\Omega} \left[u_x v_x + D_x^{-1} \nabla_y u \cdot D_x^{-1} \nabla_y v + cuv \right] dV$$
 (2.4)

where $\nabla_y = \left(\frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial y_{n-1}}\right)$, $dV = dx \, dy$ and the corresponding norm

$$||u|| := \left(\int_{\Omega} \left[u_x^2 + |D_x^{-1} \nabla_y u|^2 + cu^2 \right] dV \right)^{\frac{1}{2}}.$$
 (2.5)

A function $u: \Omega \to \mathbb{R}$ belongs to E, if there exists $\{u_m\}_{m=1}^{+\infty} \subset Y$ such that:

- (a) $u_m \to u$ a.e. on Ω ,
- (b) $||u_j u_k|| \to 0$ as $j, k \to \infty$.

Note that the space E with inner product (2.4) and norm (2.5) is a Hilbert space, see [22] (Definition) and [17, p. 12, 13].

For each $v \in E$, multiply the both sides of the above equation in (2.3) by v(x,y) and integrate over Ω to obtain

$$\int_{\Omega} \left(-\frac{\partial^2}{\partial x^2} u \right) v \, dV + \int_{\Omega} (D_x^{-2} \Delta_y u) v \, dV + c \int_{\Omega} u v \, dV = \int_{\Omega} f(x, y, u) \, v \, dV \tag{2.6}$$

and then we obtain by Green formula and integration by parts,

$$\int_{\Omega} \frac{\partial}{\partial x} u \cdot \frac{\partial}{\partial x} v \, dV + \int_{\Omega} D_x^{-1} \nabla_y u \cdot D_x^{-1} \nabla_y v \, dV + c \int_{\Omega} uv \, dV = \int_{\Omega} f(x, y, u) v \, dV. \tag{2.7}$$

Therefore, on E, define a functional ϕ as

$$\phi(u) := \frac{1}{2} \int_{\Omega} \left[u_x^2 + |D_x^{-1} \nabla_y u|^2 + cu^2 \right] dV - \int_{\Omega} F(x, y, u) dV =$$

$$= \frac{1}{2} ||u||^2 - \psi(u)$$
(2.8)

where $F(x,y,u) := \int_0^u f(x,y,s) \, ds$ and $\psi(u) := \int_\Omega F(x,y,u) \, dV$.

Lemma 2.1 (see ([17], Lemma 1). The embedding from the space (E, ||.||) into the space $(L^p(\Omega),\|.\|_p)$ is compact for $1 \leq p < \overline{p}$ with $\overline{p} = \frac{2(2n-1)}{2n-3} > 2$. In add, there exists $\tau_p > 0$ such that

$$||u||_p \le \tau_p ||u||, \quad p \in [1, \overline{p}), \quad \text{for all } u \in E$$
 (2.9)

where $||u||_p = \left(\int_{\Omega} |u|^p dV\right)^{\frac{1}{p}}$.

We assume that the nonlinearity f, satisfying the following hypotheses:

(f1) $f \in C(\Omega \times \mathbb{R}, \mathbb{R}), f(x, y, u)u \geq 0$ for all $u \in \mathbb{R}, (x, y) \in \Omega$ and there exists a constants C>0 and $p\in(2,\overline{p})$ such that

 $|f(x,y,u)| \le C(1+|u|^{p-1})$, for all $u \in \mathbb{R}$ and $(x,y) \in \Omega$.

- (f2) f(x,y,u) = o(|u|) as $|u| \to 0$ uniformly for $(x,y) \in \Omega$.
- (f3) $\lim_{|u|\to\infty}\frac{F(x,y,u)}{|u|^2}=+\infty$ uniformly for $(x,y)\in\Omega$.
- (f4) There exists $\theta \geq 1$ such that $\theta \varphi(u) \geq \varphi(\tau u)$ for all $\tau \in [0,1]$ and $(x,y,u) \in \Omega \times \mathbb{R}$ where $\varphi(u) = u f(x, y, u) - 2F(x, y, u)$.
 - (f5) f(x,y,-u) = -f(x,y,u) for all $u \in \mathbb{R}$ and $(x,y) \in \Omega$.

Example of a function f satisfying the above assumptions is

$$f(x, y, t) = a(x, y)|t|^{\nu - 2}t$$

for all $(x,y) \in \Omega$ and $t \in \mathbb{R}$ where $\nu \in (2,\overline{p})$ and a is a continuous bounded function with positive lower bound.

Lemma 2.2 (see [23]). Let (f1) holds. Then $\phi \in C^1(E, \mathbb{R})$. Moreover, we have

$$\langle \psi'(u), v \rangle = \int_{\Omega} f(x, y, u) v \, dV \tag{2.10}$$

and

$$\langle \phi'(u), v \rangle = (u, v) - (\psi'(u), v) = (u, v) - \int_{\Omega} f(x, y, u) v \, dV$$
 (2.11)

for all $u, v \in E$. We note that a critical points of ϕ on E are weak solutions of (2.3).

For the convenience of the readers, we recall some notation which will be used later.

Let X be a Banach space with the norm $\|.\|$ and let $\{X_i\}$ be a sequence of subspaces of X with $\dim X_i < \infty$ for each $j \in \mathbb{N}$.

Further,
$$X = \overline{\bigoplus_{j \in \mathbb{N}} X_j}$$
 the closure of the direct sum of all $\{X_j\}$. Set $W_k := \bigoplus_{j=0}^k X_j$ and $Z_k := \overline{\bigoplus_{j=k+1}^\infty X_j}$, for $\rho_k > r_k > 0$

$$B_k = \{u \in W_k : ||u|| \le \rho_k\}$$
 and $S_k = \{u \in Z_k : ||u|| = r_k\}.$

Consider a family of C^1 -functionals $\phi_{\lambda}: X \to \mathbb{R}$ defined by

$$\phi_{\lambda}(u) = A(u) - \lambda B(u), \quad \lambda \in [1, 2]. \tag{2.12}$$

Theorem 2.1 (see [24]). Assume that the functional ϕ_{λ} defined above satisfies

(A1) ϕ_{λ} maps bounded sets into bounded sets uniformly for $\lambda \in [0,1]$, and $\phi_{\lambda}(-u) = \phi_{\lambda}(u)$ for all $(\lambda, u) \in [1, 2] \times X$;

- (A2) $B(u) \ge 0$ for all $u \in X$, and $B(u) \to \infty$ as $||u|| \to \infty$ on any finite dimensional subspace of X, or
 - (A3) $B(u) \leq 0$ for all $u \in X$, and $B(u) \to -\infty$ as $||u|| \to \infty$.
 - (A4) There exists $\rho_k > r_k > 0$ such that

$$b_k(\lambda) := \inf_{u \in Z_k, ||u|| = r_k} \phi_{\lambda}(u) > a_k(\lambda) := \max_{u \in W_k, ||u|| = \rho_k} \phi_{\lambda}(u) \quad \textit{for all} \quad \lambda \in [1, 2].$$

Then $b_k(\lambda) \leq c_k(\lambda) := \inf_{\gamma \in \Gamma_k} \max_{u \in B_k} \phi_{\lambda}(\gamma(u))$ for all $\lambda \in [1, 2]$, where

$$\Gamma_k = \Big\{ \gamma \in C(B_k, X) : \gamma \text{ odd}, \ \gamma_{|_{\partial B_k}} = id \Big\}, \quad k \ge 2.$$

Moreover, for almost every $\lambda \in [1,2]$ there exists a sequence $u_n^k(\lambda)$ such that

$$\sup_n \|u_n^k(\lambda)\| < \infty, \qquad \phi_\lambda'(u_n^k(\lambda)) \to 0 \qquad \text{and} \qquad \phi_\lambda(u_n^k(\lambda)) \to c_k(\lambda) \quad \text{as} \quad n \to \infty.$$

3. Existence of infinitely many high solitary waves energy solutions. In order to apply the above theorem to prove our main results, we define the functional ϕ_{λ} on our working space E by

$$\phi_{\lambda}(u) := \frac{1}{2} \int_{\Omega} \left[u_x^2 + |D_x^{-1} \nabla_y u|^2 + cu^2 \right] dV - \lambda \int_{\Omega} F(x, y, u) dV = \frac{1}{2} ||u||^2 - \lambda \psi(u)$$
 (3.1)

for all $u \in E$ and $\lambda \in [0,1]$. We use the some lemma to show the existence

Lemma 3.1. For the finite dimensional subspace $F \subset E$ of E, there exists a constant $\varepsilon_0 > 0$ such that

$$\operatorname{meas}\{(x,y)\in\Omega\colon |u(x,y)|\geq \varepsilon_0\|u\|\}\geq \varepsilon_0\quad\forall u\in F\backslash\{0\}. \tag{3.2}$$

Proof. If not, for any $n \in \mathbb{N}^*$, there exists $u_n \in F \setminus \{0\}$ such that

$$\operatorname{meas}\left\{ (x,y) \in \Omega : |u_n(x,y)| \ge \frac{1}{n} ||u_n|| \right\} < \frac{1}{n} \quad \forall n \in \mathbb{N}^*.$$
 (3.3)

Let $v_n=\dfrac{u_n}{\|u_n\|}$ for all $n\in\mathbb{N}^*,$ then $\|v_n\|=1$ for all $n\in\mathbb{N}^*,$ and

$$\operatorname{meas}\left\{ (x,y) \in \Omega : |v_n(x,y)| \ge \frac{1}{n} \right\} < \frac{1}{n} \quad \forall n \in \mathbb{N}^*.$$
 (3.4)

By the boundedness of $\{v_n\}$, passing to a subsequence if necessary, we may assume that $v_n \to v$ with ||v|| = 1 in E for some $v \in E$ since E is a finite dimension. By Lemma 2.1, we have

$$\int_{\Omega} |v_n(x,y) - v(x,y)|^2 dV \to 0 \quad \text{as} \quad n \to \infty.$$
 (3.5)

Since $v \neq 0$, there exists a constant $\delta_0 > 0$ such that

$$\operatorname{meas}\{(x,y) \in \Omega : |v(x,y)| \ge \delta_0\} \ge \delta_0. \tag{3.6}$$

For any $n \in \mathbb{N}^*$, we set

$$D_n = \left\{ (x, y) \in \Omega : |v_n(x, y)| < \frac{1}{n} \right\}, \qquad D_n^c = \left\{ (x, y) \in \Omega : |v_n(x, y)| \ge \frac{1}{n} \right\}$$

and $D_0 = \{(x,y) \in \Omega : |v(x,y)| \ge \delta_0\}$. Thus for n large enough, by (3.4) and (3.6), we get

$$\operatorname{meas}(D_n \cap D_0) \ge \operatorname{meas}(D_0) - \operatorname{meas}(D_n^c) \ge \frac{2\delta_0}{3}.$$
(3.7)

Consequently, for n large enough, we have

$$\int_{\Omega} |v_{n}(x,y) - v(x,y)|^{2} dV \ge \int_{D_{n} \cap D_{0}} |v_{n}(x,y) - v(x,y)|^{2} dV \ge
\ge \int_{D_{n} \cap D_{0}} [|v(x,y)|^{2} - 2v_{n}(x,y)v(x,y)] dV \ge
\ge \int_{D_{n} \cap D_{0}} [|v(x,y)|^{2} - 2|v_{n}(x,y)||v(x,y)|] dV \ge
\ge \delta_{0} \left(\delta_{0} - \frac{2}{n}\right) \operatorname{meas}(D_{n} \cap D_{0}) \ge \frac{2}{9}\delta_{0}^{3} > 0.$$
(3.8)

This is in contradiction with (3.4). Therefore (3.2) holds.

Lemma 3.2. Assume that (f1) and (f3) hold. Then $\psi(u) \geq 0$ for all $u \in E$, and $\psi(u) \to \infty$ as $||u|| \to \infty$ on any finite dimensional subspace of E.

Proof. Evidently, from (f1), we have $\psi(u) \geq 0$ for all $u \in E$. Let $H \subset E$ be any finite dimensional subspace of E, next we will show that $\psi(u) \to \infty$ as $||u|| \to \infty$ on H.

By (f3), there exists R > 0 such that

$$F(x, y, u) \ge |u|^2$$
 for all $(x, y) \in \Omega$ and $|u| \ge R$. (3.9)

Let $D_u = \{(x,y) \in \Omega : |u(x,y)| \ge \varepsilon_0 ||u||\}$ for $u \in E \setminus \{0\}$. By Lemma 3.1, we see that for any $u \in E$ with $||u|| \ge \frac{R}{\varepsilon_0}$ we have $|u(x,y)| \ge R$, for all $(x,y) \in D_u$. Hence, for any $u \in E$ with $||u|| \ge \frac{R}{\varepsilon_0}$, from (f1) and (3.9), we get

$$\psi(u) \ge \int_{D_u} F(x, y, u) dV \ge \int_{D_u} |u|^2 dV \ge$$

$$\ge \varepsilon_0^2 ||u||^2 \operatorname{meas}(D_u) \ge \varepsilon_0^3 ||u||^2. \tag{3.10}$$

This implies that $\psi(u) \to \infty$ as $||u|| \to \infty$ on any finite dimensional subspace of E.

The proof is completed.

Let $\{e_j\}$ be a total orthonormal basis of E and $X_j = \mathbb{R}e_j$, $W_k := \bigoplus_{j=0}^k X_j$ and $Z_k := \bigoplus_{j=k+1}^\infty X_j$.

Lemma 3.3. If $p \in [1, \overline{p})$, then one has $\alpha_k(p) := \sup_{u \in Z_k, ||u|| = 1} ||u||_p \to 0$ as $k \to \infty$.

Proof. Firstly, $\alpha_k(p)$ is convergent science $\alpha_k(p) \geq 0$ and $\alpha_k(p)$ is decreasing in k. Furthermore, for any $k \in \mathbb{N}$, by the definition of $\alpha_k(p)$, there exists $u_k \in Z_k$ such that $\|u_k\| = 1$ and $\|u_k\|_p \geq \frac{\alpha_k(p)}{2}$.

For any $v \in E$, $v = \sum_{n=1}^{\infty} a_n e_n$, it has

$$\begin{split} |\langle u_k,v\rangle| &= \left|\left\langle u_k, \sum_{n=1}^\infty a_n e_n\right\rangle\right| \leq \\ &\leq \|u_k\| \left\|\sum_{k=n+1}^\infty a_n e_n\right\| \leq \left\|\sum_{k=n+1}^\infty a_n e_n\right\| \to 0, \quad \text{as} \quad k \to \infty. \end{split}$$

which implies that $u_k \to 0$ weakly in E. By virtue of Lemma 2.1, we can conclude $u_k \to 0$ strongly in $L^p(\Omega)$. The combination with implies that $\alpha_k(p) \to 0$.

Lemma 3.4. Assume that (f1) and (f2) hold. Then there exists a sequences $r_k > 0$, $k \in \mathbb{N}$ such that

$$b_k(\lambda) := \inf_{u \in Z_k, ||u|| = r_k} \phi_{\lambda}(u) > 0$$
(3.11)

uniformly for $\lambda \in [1, 2]$.

Proof. By (f1) and (f2), for any $\epsilon > 0$, there exists a $C_{\epsilon} > 0$ such that

$$|f(x, y, u)| \le \epsilon |u| + C_{\epsilon} |u|^{p-1}$$
 for all $u \in \mathbb{R}$. (3.12)

Let $\alpha_k(p) := \sup_{u \in Z_k, ||u|| = 1} ||u||_p$, from Lemma 3.3, we see that $\alpha_k(p) \to 0$. Therefore, for $u_k \in Z_k$ and ϵ small enough, by (3.12), we have

$$\phi_{\lambda}(u) \ge \frac{1}{2} \|u\|^{2} - \frac{\lambda \epsilon}{2} \|u\|_{2}^{2} - \frac{\lambda \epsilon}{p} \|u\|_{p}^{p} \ge$$

$$\ge \frac{1}{4} \|u\|^{2} - c_{4} \|u\|_{p}^{p} \ge \frac{1}{4} \|u\|^{2} - c_{4} \alpha_{k}^{p}(p) \|u\|^{p}. \tag{3.13}$$

If we choose $r_k = (8c_4\alpha_k^p(p))^{\frac{1}{2-p}}$ then for any $u \in Z_k$ with $||u|| = r_k$, we get that

$$\phi_{\lambda}(u) \ge \frac{1}{8} \left(8c_4 \alpha_k^p(p) \right)^{\frac{1}{2-p}} > 0.$$
 (3.14)

This inequality implies that

$$b_k(\lambda) := \inf_{u \in Z_k, ||u|| = r_k} \phi_{\lambda}(u) \ge \frac{1}{8} \left(8c_4 \alpha_k^p(p) \right)^{\frac{1}{2-p}} > 0 \quad \text{for all} \quad \lambda \in [1, 2].$$
 (3.15)

Lemma 3.5. Assume that (f1), (f2), and (f3) hold. Then for the positive integer k_1 and the sequence r_k obtained in Lemma 3.4, there exists $\rho_k > r_k > 0$ for any $k \ge k_1$ such that

$$a_k(\lambda) := \max_{u \in W_k, ||u|| = \rho_k} \phi_{\lambda}(u) < 0$$
 (3.16)

uniformly for $\lambda \in [1, 2]$.

Proof. By Lemma 3.1, for any $k \in \mathbb{N}$, there exists $\varepsilon_k > 0$ constant such that

$$\operatorname{meas}(S_u) \ge \varepsilon_k \quad \forall u \in W_k \setminus \{0\}, \tag{3.17}$$

where $S_u = \{(x,y) \in \Omega : |u(x,y)| \ge \varepsilon_k ||u|| \}$. By (f3), for any $k \in \mathbb{N}$, there exists a constant $R_k > 0$ such that

$$F(x, y, u) \ge \frac{1}{\varepsilon_k^3} |u|^2 \quad \forall u \ge R_k. \tag{3.18}$$

Hence, by (3.17), we see that for any $u \in W_k$ with $||u|| \geq \frac{R_k}{\varepsilon_k}$, we have $|u(x,y)| \geq R_k$ for all $(x,y) \in S_u$. Therefore, for any $u \in W_k$ with $||u|| \geq \frac{R_k}{\varepsilon_k}$ and $\lambda \in [1,2]$, by (3.17) and (3.18), we have

$$\phi_{\lambda}(u) \leq \frac{1}{2} \|u\|^{2} - \int_{\Omega} F(x, y, u) \, dV \leq \frac{1}{2} \|u\|^{2} - \int_{S_{u}} F(x, y, u) \, dV \leq$$

$$\leq \frac{1}{2} \|u\|^{2} - \int_{S_{u}} \frac{1}{\varepsilon_{k}^{3}} |u|^{2} \, dV \leq \frac{1}{2} \|u\|^{2} - \varepsilon_{k}^{2} \|u\|^{2} \frac{\text{meas}(S_{u})}{\varepsilon_{k}^{3}} \leq$$

$$\leq \frac{1}{2} \|u\|^{2} - \|u\|^{2} = -\frac{1}{2} \|u\|^{2}. \tag{3.19}$$

If we choose $\rho_k > \max\left\{r_k, \frac{R_k}{\varepsilon_k}\right\}$, we get that

$$a_k(\lambda) := \max_{u \in W_k, \|u\| = \rho_k} \phi_{\lambda}(u) \leq -\frac{r_k^2}{2} < 0 \quad \forall k \in \mathbb{N} \quad \text{and for all} \quad \lambda \in [1, 2].$$

The proof is completed.

By using (3.12) and Lemma 2.1 we can see that ϕ maps bounded sets to bounded sets uniformly for $\lambda \in [1,2]$. Moreover, by (f5), ϕ_{λ} is even. Then condition (A1) in Theorem 2.1 is satisfied. Condition (A2) is clearly true, while (A4) follows by Lemma 3.4 and Lemma 3.5. Then, by Theorem 2.1, for any $k \geq k_1$ and $\lambda \in [1,2]$ there exists a sequence $\{u_n^k(\lambda)\}_n$ such that

$$\sup_n \|u_n^k(\lambda)\| < \infty, \qquad \phi_\lambda'(u_n^k(\lambda)) \to 0 \qquad \text{and} \qquad \phi_\lambda(u_n^k(\lambda)) \to c_k(\lambda) \quad \text{as} \quad n \to \infty,$$

where $c_k(\lambda) = \inf_{\gamma \in \Gamma_k} \max_{u \in B_k} \phi_{\lambda}(\gamma(u)), \ \forall \lambda \in [1, 2] \ \text{and} \ B_k, \ \Gamma_k \ \text{are given by}$

$$B_k = \left\{u \in W_k \colon \|u\| \le \rho_k\right\} \qquad \text{and} \qquad \Gamma_k = \left\{\gamma \in C(B_k,X) \colon \gamma \text{ odd}, \ \gamma_{|_{\partial B_k}} = id\right\}, \quad k \ge 2.$$

In particular, from the proof of Lemma 3.3, we deduce that for any $k \ge k_1$ and $\lambda \in [1,2]$

$$\frac{1}{8} \left(8c_4 \alpha_k^p(p) \right)^{\frac{2}{2-p}} = : \overline{b_k} \le b_k \le c_k.$$

Also since

$$c_k(\lambda) = \inf_{\gamma \in \Gamma_k} \max_{u \in B_k} \phi_{\lambda}(\gamma(u)) \le \max_{u \in B_k} \phi_{\lambda}(\gamma(u)) = \overline{c_k}.$$

Hence,

$$\overline{b_k} \le c_k(\lambda) \le \overline{c_k}. \tag{3.20}$$

As a consequence, for any $k \ge k_1$, we can choose $\lambda_m \to 1$ (depending on k) and get the corresponding sequences satisfying

$$\sup_{n} \|u_n^k(\lambda_m)\| < \infty, \qquad \phi_{\lambda_m}'(u_n^k(\lambda_m)) \to 0 \qquad \text{and} \qquad \phi_{\lambda_m}(u_n^k(\lambda_m)) \to c_k(\lambda_m)$$
 (3.21)

as $n \to \infty$.

Lemma 3.6. For each λ_m given in [1,2] such that $\lambda_m \to 1$, the sequence $\{u_n^k(\lambda_m)\}_{n=1}^{\infty}$ has a strong convergent subsequence $\{u^k(\lambda_m)\}_m$ such that $\phi'_{\lambda_m}(u^k(\lambda_m)) = 0$ and $\phi_{\lambda_m}(u^k(\lambda_m)) \in [\overline{b_k}, \overline{c_k}]$ for all $m \in \mathbb{N}$, $k \geq k_1$.

Proof. By (3.21) we may assume, without loss of generality, that as $n \to \infty$,

$$u_n^k(\lambda_m) \to u^k(\lambda_m)$$
 in E . (3.22)

By Lemma 2.1 we have

$$u_n^k(\lambda_m) \to u^k(\lambda_m)$$
 in $L^p(\Omega)$. (3.23)

By (f1) and (f2), for any $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that

$$|f(x, y, u)| \le \epsilon |u| + C_{\epsilon} |u|^{p-1}$$
 for all $u \in \mathbb{R}$ (3.24)

and Hölder inequality it follows that

$$\left| \int_{\Omega} f(x, y, u_n^k(\lambda_m)) (u_n^k(\lambda_m) - u^k(\lambda_m)) dV \right| \le$$

$$\le \epsilon \|u_n^k(\lambda_m)\|_2 \|u_n^k(\lambda_m) - u^k(\lambda_m)\|_2 + C_{\epsilon} \|u_n^k(\lambda_m)\|_p^{p-1} \|u_n^k(\lambda_m) - u^k(\lambda_m)\|_p$$

so, by using (3.23), we obtain

$$\lim_{n \to \infty} \int_{\Omega} f(x, y, u_n^k(\lambda_m)) (u_n^k(\lambda_m) - u^k(\lambda_m)) dV = 0$$

and

$$\lim_{n \to \infty} \int_{\Omega} \left[f(x, y, u_n^k(\lambda_m)) - f(x, y, u^k(\lambda_m)) \right] (u_n^k(\lambda_m) - u^k(\lambda_m)) dV = 0.$$

Observe that

$$||u_n^k(\lambda_m) - u^k(\lambda_m)||^2 = \left\langle \phi_{\lambda_m}'(u_n^k(\lambda_m) - \phi_{\lambda_m}'(u^k(\lambda_m)) \right\rangle +$$

$$+ \int_{\Omega} \left[\lambda_m f(x, y, u_n^k(\lambda_m)) - f(x, y, u^k(\lambda_m)) \right] (u_n^k(\lambda_m) - u^k(\lambda_m)) dV$$
(3.25)

it is clear that

$$\left\langle \phi'_{\lambda_m}(u_n^k(\lambda_m) - \phi'_{\lambda_m}(u^k(\lambda_m), u_n^k(\lambda_m) - u^k(\lambda_m) \right\rangle \to 0$$
 (3.26)

as $n \to \infty$.

By (3.25), we have $||u_n^k(\lambda_m) - u^k(\lambda_m)|| \to 0$ as $n \to \infty$. As a consequence, we obtain

$$\phi'_{\lambda_m}(u^k(\lambda_m)) = 0 \quad \text{and} \quad \phi_{\lambda_m}(u^k(\lambda_m)) \in [\overline{b_k}, \overline{c_k}]$$
 (3.27)

for all $m \in \mathbb{N}$, $k \geq k_1$.

Lemma 3.7. For any $k \ge k_1$, the sequence $\{u^k(\lambda_m)\}_{m=1}^{\infty}$ is bounded in E. **Proof.** For simplicity we set $u_m = u^k(\lambda_m)$. We suppose by contradiction that, up to a subse-

$$||u_m|| \to \infty \quad \text{as} \quad m \to \infty.$$
 (3.28)

Let $w_m = \frac{u_m}{\|u_m\|}$ for any $m \in \mathbb{N}$. Then, up to subsequence, we may assume that

$$w_m \rightharpoonup w \quad \text{in} \quad E,$$

$$w_m \rightarrow w \quad \text{in} \quad L^p(\Omega),$$

$$w_m \rightarrow w \quad \text{a.e. in} \quad \Omega.$$
 (3.29)

Now we distinguish two cases.

Case w = 0. As in [29], we can say that for any $m \in \mathbb{N}$ there exists $t_m \in [0, 1]$ such that

$$\phi_{\lambda_m}(t_m u_m) = \max_{t \in [0,1]} \phi_{\lambda_m}(t u_m). \tag{3.30}$$

Since (3.28) holds, for any $j \in \mathbb{N}$, we can choose $r_j = 2\sqrt{j}w_m$ such that

$$r_i \|u_m\|^{-1} \in (0,1) \tag{3.31}$$

provided m is large enough. By (3.29), F(.,0) = 0 and the continuity of F, we can see that

$$F(x, y, r_i w_m) \to F(x, y, r_i w) = 0$$
 a.e. $(x, y) \in \Omega$ (3.32)

as $m \to \infty$ for any $j \in \mathbb{N}$. Then, taking into account (3.24), (3.29), (3.32), (A4) and by using the Dominated Convergence Theorem we deduce that

$$F(x, y, r_j w_m) \to 0 \quad \text{in} \quad L^1(\Omega)$$
 (3.33)

as $m \to \infty$ for any $j \in \mathbb{N}$. Then (3.30), (3.31) and (3.33) yield

$$\phi_{\lambda_m}(t_m u_m) \ge \phi_{\lambda_m}(r_j w_m) \ge 2j - \lambda_m \int\limits_{\Omega} F(x, y, r_j w_m) dV \ge j$$

for m is large enough and for any $j \in \mathbb{N}$. As a consequence

$$\phi_{\lambda_m}(t_m u_m) \to \infty \quad \text{as} \quad m \to \infty.$$
 (3.34)

Since $\phi_{\lambda_m}(0) = 0$ and $\phi_{\lambda_m}(u_m) \in [\overline{b_k}, \overline{c_k}]$, we deduce that $t_m \in (0,1)$ for m large enough. Thus, by (3.30) we have

$$\left\langle \phi_{\lambda_m}'(t_m u_m), t_n u_m \right\rangle = t_m \frac{d}{dt}_{|_{t=t_m}} \phi_{\lambda_m}(t u_m) = 0. \tag{3.35}$$

Taking into account (f4), (3.35) and (2.11) we obtain

$$\frac{1}{\theta}\phi_{\lambda_m}(t_m u_m) = \frac{1}{\theta} \left(\phi_{\lambda_m}(t_m u_m) - \frac{1}{2} \left\langle \phi'_{\lambda_m}(t_m u_m), t_m u_m \right\rangle \right) = \\
= \frac{\lambda_m}{2\theta} \int_{\Omega} \varphi(t_m u_m) \, dV \le \frac{\lambda_m}{2} \int_{\Omega} \varphi(u_m) \, dV = \\
= \phi_{\lambda_m}(u_m) - \frac{1}{2} \left\langle \phi'_{\lambda_n}(u_m), u_m \right\rangle = \phi_{\lambda_m}(u_m)$$

which contradicts (3.27) and (3.34).

Case $w \neq 0$. Thus the set $\Omega' := \{(x,y) \in \Omega : w(x,y) \neq 0\}$ has positive Lebesgue measure. By using (3.28) and that $w \neq 0$, we have

$$|u_m(x,y)| \to \infty$$
 a.e. $(x,y) \in \Omega'$ as $m \to \infty$. (3.36)

Putting together (3.27), (3.36) and (f3), and by applying Fatou's Lemma, we can easily deduce that

$$\frac{1}{2} - \frac{\phi_{\lambda_m}(u_m)}{\|u_m\|^2} = \lambda_m \int_{\Omega} \frac{F(x, y, u_m)}{\|u_m\|^2} dV \ge$$

$$\ge \lambda_m \int_{\Omega'} |w_m|^2 \frac{F(x, y, u_m)}{|u_m|^2} dV \to \infty \quad \text{as} \quad m \to \infty$$

which gives a contradiction because of (3.27). Then, we have proved that the sequence $\{u_m\}$ is bounded in E.

Theorem 3.1. Assume that (f2), (f3) – (f5) hold. Then problem (2.3) possesses infinitely many high energy solutions $u_k \in E$ for every $k \in \mathbb{N}$, in the sense that

$$\frac{1}{2} \int_{\Omega} \left[(u_k)_x^2 + |D_x^{-1} \nabla_y u_k|^2 + c u_k^2 \right] dV - \int_{\Omega} F(x, y, u_k) dV \to +\infty$$
 (3.37)

as $k \to \infty$.

Proof. Taking into account Lemma 3.7 and (3.27), for each $k \geq k_1$, we can use similar arguments to those in the proof of Lemma 3.6, to show that the sequence $\left\{u^k(\lambda_m)\right\}_{m=1}^\infty$ admits a strong convergent subsequence with the limit u^k being just a critical point of $\phi_1 = \phi$. Clearly, $\phi(u^k) \in \left[\overline{b_k}, \overline{c_k}\right]$ for all $k \geq k_1$. Since $\overline{b_k} \to \infty$ as $k \to \infty$ in (3.20), we deduce the existence of infinitely many nontrivial critical points of ϕ . As a consequence, we have that (2.3) possesses infinitely many nontrivial weak solutions.

References

- 1. D. David, D. Levi, P. Winternitz, *Integrable nonlinear equations for water waves in straits of varying depth and width*, Stud. Appl. Math., **76**(2), 133 168 (1987).
- 2. D. David, D. Levi, P. Winternitz, *Solitary waves in shallow seas of variable depth and in marine straits*, Stud. Appl. Math., **80**(1), 1–23 (1989).
- 3. C. O. Alves, O. H. Miyagaki, Existence, regularity and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev–Petviashvili equation, J. Math. Phys., **58**, 081503 (2017).

4. C. O. Alves, O. H. Miyagaki, A. Pomponio, Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in RN with positive and zero mass, J. Math. Anal. Appl., 477, 523-535 (2019).

- 5. P. Isaza, J. Mejia, Local and global Cauchy problem for the Kadomtsev-Petviashvili equation (KP-II) in Sobolev spaces with negative indices, Commun. Partial Differ. Equ., 26(5), 1027-1054 (2001).
- 6. B. Xuan, Nontrivial stationary solutions to GKP equation in bounded domain, Appl. Anal., 82(11), 1039–1048 (2003).
- 7. D. Lannes, Consistency of the KP approximation: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, AIMS, Wilmington, NC, USA, 517–525 (2003).
- 8. D. Lannes, J. C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19(5), 2853 2875 (2006).
- 9. I. M. Krichever, S. P. Novikov, *Holomorphic bundles over algebraic curves and nonlinear equations*, Uspekhi Mat. Nauk, **35**(6), 47–68 (1980).
- 10. A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev-Petviashvili equation, Appl. Math. and Mech. (Engl. ed.), 32(7), 875 880 (2011).
- 11. Y. Zhenya, Z. Hongqin, Similarity reductions for 2 + 1-dimensional variable coefficient generalized Kadomtsev–Petviashvili equation, Appl. Math. Mech. (Engl. ed.), 21(6), 645–650 (2000).
- 12. X. P. Wang, M. J. Ablowitz, H. Segur, *Wave collapse and instability of solitary waves of a generalized Kadomtsev–Petviashvili equation*, Phys. D: Nonlinear Phenomena, **78**(3), 241–265 (1994).
- 13. V. A. Vladimirov, C. Maçzka, A. Sergyeyev, S. Skurativskyi, *Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects*, Commun. Nonlinear Sci. Numer. Simul., **19**(6), 1770 1782 (2014).
- 14. T. V. Karamysheva, N. A. Magnitskii, *Traveling waves impulses and diffusion chaos in excitable media*, Commun. Nonlinear Sci. Numer. Simul., **19**(6), 1742 1745 (2014).
- 15. Z. X. Dai, Y. F. Xu, Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation, Appl. Math. Mech. (Engl. ed.), 32(12), 1615-1622 (2011).
- 16. Z. Yong, Strongly oblique interactions between internal solitary waves with the same model, Appl. Math. Mech. (Engl. ed.), **18**(10), 957–962 (1997).
- 17. B. Xuan, Multiple stationary solutions to GKP equation in a bounded domain, Boletín de Matemáticas Nueva Serie, 9(1), 11-22 (2002).
- 18. A. D. Bouard, J. C. Saut, Sur les ondes solitaries des équations de Kadomtsev-Petviashvili, Comptes Rendus de l'Académie des Sciences de Paris, 320, 1315-1328 (1995).
- 19. A. D. Bouard, J. C. Saut, *Solitary waves of generalized Kadomtsev-Petviashili equations*, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, **14**(2), 211 236 (1997).
- 20. M. Willem, Minimax theorems, Birkhäuser Basel, Boston (1996).
- 21. B. J. Xuan, *Nontrivial solitary waves of GKP equation in multi-dimensional spaces*, Revista Colombiana de Matemáticas, **37**(1), 11-23 (2003).
- 22. Z. Liang, J. Su, Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation, Acta Math. Sci., 32 B(3), 1149-1156 (2012).
- 23. J. Xu, Z. Wei, Y. Ding, Stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain, Electron. J. Qual. Theory Differ. Equ., (2012)(68), 1–18 (2012).
- 24. W. M. Zou, Variant fountain theorem and their applications, Manuscripta Math., 104(3), 343-358 (2001).
- 25. X. H. Meng, Wronskian and Grammian determinant structure solutions for a variable-coefficient forced Kadomtsev– Petviashvili equation in fluid dynamics, Phys. A: Stat. Mech. and its Appl., 413(C), 635–642 (2014).
- 26. X. H. Meng, B. Tian, Q. Feng, Z. Z. Yao, Y. T. Gao, Painlevé analysis and determinant Solutions of a (3 + 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in Wronskian and Grammian form, Commun. Theor. Phys. (Beijing), 51(6), 1062 (2009).
- 27. B. Tian, Symbolic computation of Bäcklund transformation and exact solutions to the variant Boussinesq model for water waves Int. J. Modern Phys. C, **10**(6), 983–987 (1999).
- 28. P. H. Rabinowitz, *Minimax methods in critical point theory with applications to differential equations*, Amer. Math. Soc., Providence, Rhode Island (1986).
- 29. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbb{R}^N , Proc. Royal Soc. Edinburgh, 129(A), 787-809 (1999).

Received 01.01.21