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ADMISSIBLE INTEGRAL MANIFOLDS
FOR PARTIAL NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS

JIOITY CTAMI IHTEI'PAJIBHI MHOTOBU/IH JIJIs1 HEUTPAJIbHUX
OYHKIIOHAJIBHO-IU®EPEHIUIAJIBHUX PIBHAHb

We prove the existence and attraction property for admissible invariant unstable and center-unstable manifolds of admissible
classes of solutions to the partial neutral functional-differential equation in Banach space X of the form

%Fut:A(t)Fut—&—f(t,ut), t>s, t,seR,

us = ¢ € C:=C([-r,0], X)

under the conditions that the family of linear partial differential operators (A(t)),., generates the evolution family
(U(t,s)),>, with an exponential dichotomy on the whole line R; the difference operator F': C — X is bounded and
linear, and the nonlinear delay operator f satisfies the (p-Lipschitz condition, i.e., || f(¢, ¢) — f(¢,¥)]] < @(t)||¢ —||c for
¢, € C, where ¢(-) belongs to an admissible function space defined on R. We also prove that an unstable manifold of
the admissible class attracts all other solutions with exponential rates. Our main method is based on the Lyapunov — Perron
equation combined with the admissibility of function spaces. We apply our results to the finite-delayed heat equation for a
material with memory.

JloBeneHO iCHyBaHHS Ta BJIACTHBICTh HMPHUTSATAHHS JUIS JOIYCTHMHUX IHBapiaHTHHX HECTIHKHMX Ta [EHTPAIbHO-HECTIHKMX
MHOTOBHIB JOIyCTUMHX KJIAacCiB PO3B’S3KiB HEWTPaIbHOTO (YHKIIOHAIBHO-AH(EPEHIIaTbHOTO PIBHAHHS 3 YaCTHHHHUMU
HOXITHUMH B GaHAXOBOMY NpocTopi X BUIISILY

%Fut:A(t)Fut—&—f(t,ut), t>s, t,seER,

us = ¢ € C:=C([-r,0],X)

3a YMOBH, II0 MHOKHHA JIiHIHHUX OTIepaTopiB 9acTHHHOTO Judepenmitobans (A(t)), p TOPOIKY€E EBOMOLIHHY MHOKHHY
(U(t,s));>, 1110 Ma€ SKCTIOHEHIaNbHY AMXOTOMIIO Ha Beiit mpamiit R; pisauuesnii oneparop F' : C — X € oOMexeHEM i
TiHIAHNM, a HeTiHIfHMI OTlepaTop 3aTPUMKH f 3aI0BONBHSE YMOBY -Jlimmims, 10670 || f(t, ¢)—f(t, )| < o(t)||¢—1lc
s ¢, € C, ne () HaNeKUTh JOMYCTUMOMY (DYHKLIOHAIBHOMY IIPOCTOpY, BU3Ha4YeHOMY Ha R. Mu Takox I0BOIUMO,
IO HEeCTIMKWI MHOTOBHZ 3 JOIYCTUMOTO KJIacy NPHUTATYE BCI iHINI PO3B’SI3KM 3 EKCIIOHEHI[IaJbHOI MIBHAKICTIO. Hamr
OCHOBHHI MeTof 6a3yeTbesl Ha piBHAHHI JIsmyHoBa — [leppoHa B moegHaHHI 3 OMYCTUMICTIO (DYHKIIIOHAJIIBHUX IPOCTOPIB.
OTtpuMaHi pe3yibTaTi 3aCTOCOBAHO JI0 PIBHSAHHS TEIUIONPOBITHOCTI 31 CKIHUEHHOIO 3aTPUMKOIO JUISl Marepiaiy 3 mam’sTTo.

1. Introduction and preliminaries. The main concern of this paper is the existence and attraction
property of an unstable manifold of £-class for solutions to the partial neutral functional-differential
equation (PNFDE)

;Fut = A(t)F’LLt + f(t,ut), te R, (11)
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where (A(t)),cr is a family of (possibly unbounded) linear operators on a Banach X; F': C — X
is a bounded linear operator called a difference operator, f: R x C — X is a continuous nonlinear
operator called a delay operator, where C = C([—r,0], X ), and u, is the history function defined by
ut(0) == u(t + 0) for § € [—r,0].

The investigation for existence of an invariant manifold for solutions to (1.1) is of great impor-
tance since, on the one hand, it describes the behavior of solutions around a steady state or near
some specific solution, and on the other hand, it attracts all other solutions of the equation so that
the research of properties of all solutions can be deduced to studying the solutions on that manifold
using the reduction principle. The classical conditions for the presence of such a manifold are two
folds, firstly, the exponential dichotomy of the solution operators of corresponding linear homoge-
neous equations, and secondly the uniform Lipschitz continuity of the nonlinear term f (¢, u;) with a
sufficiently small Lipschitz constant, i.e., || f(¢,¢) — f(¢,9)|| < ql|¢ — 9]¢ for sufficiently small ¢
(see, e.g., [9, 12, 13] and the references therein).

Huy [2] showed such results for general semilinear evolution equations with nonlinear terms
being -Lipschitz and suitable for complicated diffusion processes. Moreover, in [1], Huy has
proved the existence of a new type of invariant manifolds, called the invariant stable manifolds of
admissible classes. Such manifolds have been constituted by trajectories belonging to the admissible
Banach space E which can be L, -space, Lorentz spaces L, , or some interpolation space.

The purpose of the present paper is to prove the existence of unstable manifolds of admissible
classes and their attraction property. We prove the existence of such manifolds for Eq. (1.1), when
its linear part (B(t)),~, generates the evolution family having an exponential dichotomy on R, and
its nonlinear term is o-Lipschitz, i.c., || f(t, ¢) — f(t,¥)|| < qll¢ — ||c, where ¢, € C and ¢(t) is
a real and positive function which belong admissible function space.

As mentioned in [4], when handling with PNFDE we face a difficult fact that the differential
operators do not apply directly to u(¢) but to Fu;, and hence the variation-of-constant formula
is available only for Fu;. Therefore, we write F' in the form F' = dy — (6o — F'), with Dirac
distribution dy concentrated at 0. Then we need certain “smallness” of ¥ := &g — F. It can be
proved that, using a renorming procedure, the smallness of ¥ can be substituted by the fact that
U has “no mass in 07, and, in case that ¥ is written as an operator integral with a kernel n of
bounded variation, the condition “having no mass in 0” of ® is equivalent to the fact that 7 is
non-atomic at 0 (see the details in [3]). Furthermore, another difficulty is lying in the fact that the
admissibly inertial manifold is constituted by trajectories of the solutions belonging to (rescaledly)
general admissible function spaces which are not necessary L..-spaces. Therefore, the techniques
and methodology used in the paper [4] cannot directly be applied here. Instead, we use the duality
arguments together with generalized Holder inequalities to obtain necessary estimates correspon-
ding to the dichotomy of the evolution family. Then we apply our techniques and results in [1]
(see also [5]) of using admissibility of function spaces to construct the solutions of Lyapunov-—
Perron equation which will be used to derive the existence of invariant unstable manifolds of &£-
class and center-invariant unstable of £-class. Our main results are contained in Theorems 2.2, 2.3
and 3.1.

Next, we recall notions and concepts for latter use.
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1366 NGUYEN THIEU HUY, VU THI NGOC HA, TRINH XUAN YEN

For a Banach spaces X (with norm || - ||) and a given r > 0, we denote by C := C([—r,0], X)
the Banach space of all continuous functions from [—r,0] into X, equipped the norm ||¢|¢c =
= Supge[—r,) |9(0)]| for ¢ € C. For a continuous function v: R — X and each ¢ € R, the history
function v, € C is defined by v.(0) = v(t + ) for all 6 € [—r,0].

Definition 1.1. 4 family of bounded linear operators U = (U(t,s))i>s on a Banach space X
is a (strongly continuous, exponentially bounded) evolution family on the line if

(1) U(t,t) =Id and U(t,r)U(r,s) =U(t,s) fort >r > s,

(ii) the map (t,s) — U(t, s)z is continuous for every x € X,

(iii) there are constants K > 1 and o € R such that |U(t,s)| < Ke**=9) for t > s.

This notion has been invented to represent the solutions to Cauchy problem

du(t)
e A(t)u(t), t>s, 12
u(s) =5 € X,

where (A(t))ier is a family of (unbounded) linear operators on X, which generates the evolution
family U = (U(t, s))+>s. That is to say, under some appropriate conditions, the solutions to Cauchy
problem (1.2) can be represented by that evolution family as u(t) := U(t, s)u(s). We refer the reader
to Pazy [11] (see also [10]) for a detailed treatment of the matter.

We then briefly recall some notions on function spaces taken from Massera and Schéffer [7] and
Huy et al. [1, 5, 6].

Let E be admissible function spaces and E’ be its associate space defined as in [5, 6]. Then we
set

E:=E[R,C):={g: R—C: g is strongly measurable and ||g(-)||c € E}

endowed with the norm

lglle == |[lg()llc]l -

Then clearly £ is a Banach space, called the Banach space corresponding to the admissible function
space E. Moreover, the following hypothesis is needed in our strategy.

Standing Hypothesis 1.1. We will consider the Banach function space E and its associate space
E' such that both are admissible spaces. Furthermore, we suppose that E' contains an exponentially
E-invariant function @ > 0 satisfying that, for any fixed v > 0, the function h,(-), defined by

ho(t) = le™ " o()e for teR,

belongs to E.

We refer the readers to [5] for various examples of admissible spaces and their applications to
invariant manifolds of admissible classes. Typical examples of admissible spaces satisfying the above
hypothesis are L,,-spaces with one type of exponentially L, -invariant functions of the form Be—eltl

for t € R and any fixed 5, a > 0.
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2. Existence and attractiveness of admissible unstable manifolds. In this section, we prove
the existence of an admissible unstable manifold of £-class for the mild solutions of Eq. (1.1).
Throughout this section we assume that the evolution family {U(¢,s)},~, has an exponential di-
chotomy on R. We recall now the notion of exponential dichotomies on the whole line.

Definition 2.1. An evolution family (U(t,s)):>s on the Banach space X is said to have an
exponential dichotomy on R if there exist bounded linear projections P(t), t € R, on X and
positive constants N, v such that:

(@) U(t,s)P(s) = P(t)U(t,s), t > s,

(b) the restriction U(t,s)|: Ker P(s) — Ker P(t), t > s, is an isomorphism (and we denote
its inverse by (U(t,s)|)~! = U(s,t)| for t > s),

) |U(t,s)z|| < Ne V=9)|z|| for x € P(s)X, t > s,

(d ||U(s,t)z] < Ne vt=9)|z|| for x € Ker P(t), t > s.

The projections P(t), t € R, are called the dichotomy projections, and the constants N, v are
the dichotomy constants.

For an evolution family (U(¢, s));>s having an exponential dichotomy on the whole line, we can
define the Green function on R as follows:

P@)U(t,7) for t=,
G(t, )= 2.1
=U(t,7)(I - P(r)) for t<T.

Thus, we have
1G(t, 7| < N1+ H)e =71 forall t+#7,

where H := sup,cp || P(t)|| < co. Note that the exponential dichotomy of (U(t, s))¢>s implies that
H := supcp || P(t)|| < oo and the map ¢ — P(t) is strongly continuous (see [8], Lemma 4.2, for
the same discussion).

We give next the notion of the ¢-Lipschitz of the nonlinear term f.

Definition 2.2. Let E be an admissible Banach function space and ¢ be a positive function
belonging to E. A function f: R x C — X is said to be p-Lipschitz if f satisfies:

1) ||f(t,0)]| =0 forall t € R,

(i) (2, 61) — F(t, 62)]| < 9(t) |61 — dllc for all t € R and all ¢, 6 € C.

Note that if f(t,¢) is p-Lipschitz, then || f(t, )| < ¢(t)||¢]lc for all ¢ € C and t € R. Note
also that ¢ is locally integrable (because it belongs to an admissible space), it follows that f(¢,u;)
is locally integrable.

To prove the existence of an unstable manifold, instead of (1.1), we consider the following
integral equations:

t
Pu = U(t, s)Fé + / Ut €)f(€ ug)de for t> s,
/ 2.2)
us = ¢ €C.

We note that if the evolution family (U(¢,s));>s arising from the well-posed Cauchy prob-
lem (1.2), then the function v: R — X, which satisfies (2.2) for some given function f, is called a
mild solution of the semilinear problems

ISSN 1027-3190. Ykp. mam. scypu., 2022, m. 74, Ne 10



1368 NGUYEN THIEU HUY, VU THI NGOC HA, TRINH XUAN YEN

gtFut =A(t)Fus + f(t,us), t>s,

us =¢ €C.

The following lemma gives the form of bounded solutions to Eq. (2.2).

Lemma 2.1. Let the evolution family (U(t,s))t>s have an exponential dichotomy with the cor-
responding projections P(t), t € R, and the dichotomy constants N, v > 0. Assume Standing
Hypothesis 1.1 and let ¢ be an exponentially E-invariant function defined as in that Standing Hy-
pothesis 1.1. Let F: C — X and f: R xC — X be respectively the difference and delay operators.
Suppose that the difference operator F' is of the form F = 6y — V¥ for ¥ € L(C, X) with ||¥| < 1,
and 0y being the Dirac function concentrated at 0. Suppose that f is p-Lipschitz and u(t) is a
solution to Eq. (2.2) on (—oo,ty| such that the function x(t) = ug for ¢ < to, t € R, belongs

0 for t >ty

to &.
Then, for t < tg, the function u(t) satisfies

to
Fu; = U(t,to)‘l/l + / g(t, T)f(T, uT)dT (2.3)

Jor some vy € X1 (to) = (I — P(to))X, where G(t,T) is the Green function defined as in (2.1).
to

Proof. Put z(t) = G(t,7)f(r,ur)dr for all t < ty. We have

to
2@ < [ N+ Ee o) fucfedr <

to
<N+ ) [ o) uedr,
Since ¢t + 6 € [—r + ¢, t] for fixed t € (—o0, o] and 6 € [—r,0], we have
to

[zellc = sup Hy(f+9)||§N(1+H)€W/e_yt_le(T)lluflch for ¢ <to.
0

—r<6<
—o0o

Since e VI"~lp(-) € E', ||u.||c € E using the “Holder inequality” [6] (inequality (15)), we obtain
lzellc < N+ H)e [l o)l g |lullele = N1+ H)e b () u(-)lle for ¢ < to.
Therefore, by Banach lattice properties we have that z(-) € £ and
[2()lle < N+ H)e" [ ()l 2llu)]e-

By straightforward calculations, we get
to
2(to) = Ulto,t)(t) + / Ulto, ) (rup)dr for ¢ < to.
t
Indeed,
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Ulto.)2(0) + [ Ulta,7)f(r,ur)dr =
:/U(to,T)f(T,UT)dT+U(to,t) / G(t,7)f(r,ur)dr =
_ / Ulto, ) f (r, un)dr + / Ulto, ) P(7) (7, ) dr — / Ulto, )(I — P(r)) f(r,un)dr =

~+

to

=/meWMﬂmmm=/g%wﬂmmm=ww

On the other hand,

to
Fug, = U(to, t) Fu +/U(to,7')f(7', ur)dr  for t < tg.
t

Hence, Fuy, — z(tg) = U(to,t)(Fus — 2(t)). For £ < t, we have

t
P(t)Fu, = P(t)U(t, &) Fue + P(t /U (1, uy)dr =
3

=U(t,§)P(&) Fue —l—/U(t,T)P(T)f(T, ur)dT.
3

Therefore, letting & — —oo, we obtain

P(t)[Fuy — 2(t)] = P(t)Fu — / U(t,m)P(r)f(ryur)dr = Jim Ut ) P(€)Fue.

We assume that limg_, o U(t, &) P(§)Fue = m # 0. On the other hand,
Ut &) P(&) Fug|| < Ne" || P(¢) Fug| < Ne "9 H(1+ | 0])fug|lc-

So, e V5| U(t, &) P(&) Fug| < Ne "' H(1+||¥|))||ugl|c for all ¢ < t. By Banach lattice property, we
have e “¢||U(t, &) P(€)Fug|| € E. Moreover, we also obtain limg_, o, e 7%||U (¢, &) P(€) Fug|| =
= o0. Therefore,

3

sup / e "T|U(t, 7)P(T)Fu,|dr = oo
fStE .
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1370 NGUYEN THIEU HUY, VU THI NGOC HA, TRINH XUAN YEN

This contradict to £/ — M(RR) (see [6], Remark 1.5). So, lim¢_, o U(t, &) P(§) Fug = 0.

Thus, Fu;—=z(t) € Ker(P(t)). This leads to Fus, —z(to) = U(to,t)(Fus — 2(t)) € Ker(P(to))-
Putting v; = Fuy, — 2(to), we have that Fuy = U(t,to)|v1 + 2(t) for all ¢ < to.

Lemma 2.1 is proved.

Remark2.1. We call Eq. (2.3) the Lyapunov— Perron equation. By computing directly, we can
see that the converse of Lemma 2.1 is also true in the sense that all solutions of Eq. (2.3) on (—o0, ]
satisfy Eq. (2.2) for all s <t < {.

In case the evolution (U (¢, s)),~ have an exponential dichotomy, using the projections (P (t))icr

on X, we can define the operators (ﬁ(t)) on C as follows.

For each t € R, we set that er
P(t): C —C,
(P(t)p)(0) = U(t +0,t)|(I — P(t))¢(0) forall 6 € [-r,0]. (2.4)

We easily see that (ﬁ(t))2 = P(t), so the operators (P(t)),_p are projections on C. Moreover,

teR
Im P(t) = {qb €C:¢(0) =U(t+0,t) forall € [~r,0] for some 17 € Ker P(t)}. (2.5)

We then come to our first result on the existence, uniqueness and exponential stability of solution to
(2.3) with initial function belonging to Im P(¢). To do this, we first recall the notion of the integral

translation operators A; (see [6], Definition 1.3, Proposition 1.6) as follows: for ¢ € FE, Ajp is
t+1

defined by A1p(t) := / o(7)dr belong to E for all ¢ € R.

t
Theorem 2.1. Let the evolution family {U(t,s)},, have an exponential dichotomy with the

dichotomy projections P(t), t € R, and constants N, v > 0. Consider the projections ]S(t) defined
as in (2.4), and function h, defined as in Standing Hypothesis 1.1. Let the difference operator F':
C — X be of the form F = 5o —V for W € L(C, X) with |V| < 1, and Sy being the Dirac function
concentrated at 0. Suppose that the delay operator f: RxC — X is p-Lipschitz for ¢ € E' being an
exponentially E-invariant function as in Standing Hypothesis 1.1, and set k = N (1 + H)e""||h,| &

Then, if < 1, there corresponding to each ¢ € Im ]3(750) one and only one solution u(t) of

R
1|y
~ t<t
(2.3) on (—o0, to] satisfying the conditions that P(to)us, = ¢ and z(t) = ue for t < to, t e R,
0 for t>tg,
belongs to £, where the function uy, is defined by U, (0) = Fuy,1¢ for all —r < 6 < 0. Moreover,
if N(1+ H)e" (N1 + Na)[|A1of|oo
1|y ~
u(+), v(+) corresponding to different initial function ¢, € Im P(ty):

< 1, then the following estimate is valid for any two solutions

[ug — velle < Cue #0=D)p(0) — (0)|| forall t<to, (2.6)

where L is a positive number satisfying

N(1+ H)e’" (N1 + No) || A1)l
0<u<y+m0_ (14 H)e’ (N1 + MIWH>

1 — |||

and
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Nel/T
N(1+4 H)e"" (N1 + No)||[A1p] oo
(1= [|¥[)(1 — e~ r=r)

C, =
1— ¥ -

Proof. Firstly, we prove that there corresponding to each ¢ € Im ﬁ(to) one and only one
solution u(t) in £ of Eq. (2.3) on (—o0,tp]. Since ¢ € Imﬁ(to), by (2.5), there exists v €
€ Ker P(to) such that ¢(0) = U(to + 0,t9)jv1 for all —r < 6 < 0. Clearly, 11 = ¢(0). Denote
by Cp((—00,to], X) the Banach space of bounded, continuous and X -valued functions defined on
(=00, to]. For 11 = ¢(0) € Ker P(tg) as above, we define a mapping

Fy: Cy((—00, to], X) = Cy((—00, to], X)

by

(ﬁqbu)(t) =U(t, to)jv1 + / gt,7)f(r,u;)dr.

We define the operator W : Cj((—oo, to], X) = Cp((—o0, tg], X) by
(Tu)(t) = Uu; for ¢ < to.
Since || V]| < 1, we have ||\Ti|| < ||¥|| < 1. Therefore, the operator (I — U) is invertible.
We now put 7 := (I — V)~'F,. Then we have

to
I(Fsu) ()] < Ne oDy || + N(1 + H) / e Tlo(7) Jur ledr =

—0o0

to
:quwwm+mrun/emfwmwwwr

Since t + 6 € [—r + ¢, ] for fixed ¢t € (—o0,tp] and all § € [—r, 0], we obtain

oo to
I(Tw)(®)lle < D el NTieu(t)GWMH+N(1+H)€’”/e_V't_Tw(T)HurHch
n=0

—00
According to the “Holder inequality”, we get

1 vr vr
IOl < ;g7 (Ve @e Inl + N0+ DOl ).

Therefore, by Banach lattice properties we have (Tu)(-) € £ and

0Ol < =g (VMo bl + N1+ BT OllelaCle )

Hence, the transformation 7" acts from & into £. Next, we will prove 7" is a contraction mapping.
Using the Neumann series, we obtain
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1372 NGUYEN THIEU HUY, VU THI NGOC HA, TRINH XUAN YEN
(Tu)(t) — [ (Z \If”) Fyu( [(Z m”) Fyvl(
- Kﬁbu) (t) — (ﬁbv) (t)} + [(Elﬁ(bu) (t) — (\Tfﬁd,v) (t)] o

We then estimate

H(ﬁqﬁu)( ) — F¢U / G, 7)(f (T, ur) — f(r,0.))|dT <

to
< N(1+H) / e o () [ur — vrlledr for ¢ < to.
—00
Next, by induction we can easily see that
to
M@@wyo—@ﬁ%omuswwwu+ﬂy/f”*wvwh—wmm for ¢ < to.
—0o0
From the above claim it follow that

[(Tu)(t) = (T H<ZH‘1’H"N( +H)/ e 1Tl (m) lur — vy llcdr =
n=0 oo

N(l—{—H)/e_”t_T|g0(T)||uT—vT||cd7' for t < to.

—0o0

1
1|y

Since t + 6 € [—r + ¢, ] for fixed ¢t € (—o0,tp] and all § € [—r, 0], we have

[(Tw)(®) = (Tv))lle = _sup_[[(Tu)(t+6) = (Tv)(t +0)]| <

to
N+ e [ Tl ur  vredr.

— 00

<
L[|y

Since e “I"="lp(-) € F', ||ur — v,||c € E, and using the “Holder inequality” [6] (inequality (15)) it
follows from the above inequality that

1(Tu)(t) = (Tv)(B)lle < 1—1H\1’HN(1 +H)e e o)) = o(O)lelle <

1

= 1_7”\1,”]\7(1 + H)e" hy (t)[[u(-) —v(-)lle  for ¢ <to.

By the Banach lattice property of E and the fact that h, () € E it follows that ||Tu(-)||¢c € E. Thus,
Tu € £, and we have
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1 k
[Tw = Tolle < -—m N+ H)e" by || g-Ju = vlle = -7 llu = vlle.
1= ' 1=y

Next, if < 1, the transformation 7" is a contraction mapping from & to it self. Hence, there

LA
A o . . .
exists a unique u(-) € &€ such that 7w = w. This yield that u(t), ¢ < %o, is the unique solution of
(2.3) with

to
(Fyury)(0) = Ulto + 0, to)p1 + / Glto + 0,7)f(rur)dr forall @€ [—r,0],

and (I — P(to))Fuy, = v1 = $(0). Therefore, P(to)liy, = ¢ by the definition of P(tg) (see (2.4)).

Secondly, by using the similar arguments as in [4] (Theorem 3.5) combined with the “Hdlder
inequality” in the admissible function spaces E and E’, we obtain (2.6).

Theorem 2.1 is proved.

Definition 2.3. 4 set U C R x C is said to be unstable manifold of £-class for the solution
to Eq. (2.2) if for every t € R the phase space splits into a direct sum C = )~(0(t) @ X1(t) with
corresponding projections P(t), t € R (ie, Xo(t) = ImP(t), X1(t) = Ker P(t)) such that
SUD;cR Hﬁ(t)H < 00, and there exists a family of Lipschitz continuous mapping

Ui Xo(t) = X1(t), teR,

with the Lipschitz constants being independent of t such that
i U= {(t, V4 () € R x (Xo(t) ® X1(t)|t € R, 0 € )?o(t)}, and we denote by

Uy ={+u:(y): (4,9 +u(¥) €U, t R}

(i1) U, is homeomorphic to )N(O(t) forall t € R;
(iii) to each ty € R, ¢ € Uy, there corresponds one and only one solution u(-) of Eq. (2.2) on
—00, to] satisfying the conditions that us;, = ¢ and
0

Ut fOl”' t < to,
x(t) = teR, belongsto €&,
0 for t>to,

where the functions Uy, is defined as in Theorem 2.1. Moreover, any two solutions u(-) and v(-) of
(2.2) corresponding to different initial functions ¢1, ¢2 € Uy, backwardly and exponentially attract
each other in the sense that there exist positive constants |1 and C,, independent of ty such that

e = wille < Cue 00| (Pito)én ) (0) = (Plto)s2) )| for ¢ < to;

(iv) U is positively F-invariant under (2.2), i.e., if u(t), t € R, is a solution to (2.2) satisfying

~ U or t < ty,
conditions that uy, € Uy, and function x(t) = v J =0y e R, belongs to & for some
0 for t>t,

to € R, then we have u; € Uy for all t € R, where the function uy is defined as in Theorem 2.1 with
to being replaced by t, i.e., uy(0) = Fugyg for all —r <0 <0 and t € R.
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We now prove the existence of an unstable manifold of £-class.
Theorem 2.2. Under the hypotheses of Theorem 2.1 and function e, (t) = e "l for all t € R.
Then if the f is @-Lipschitz with @ satisfying

s MO ) Ml NN (1 + B ledslle)
=] == o]

then there exists an invariant unstable manifold U of E-class for the solutions of Eq. (2.2), where k
is defined as in Theorem 2.1.

Proof. The proof of this theorem can be done by the similar way as in [4] (Theorem 3.7) and
using the structures of bounded solution as in Lemma 2.1. We just note that the family of Lipschitz
mapping (¥:):er determining the unstable manifold of £-class in Definition 2.3 by

Uit Xo(t) = X1(t), teR,

t

51(6)(0) = / G(t+0,7)f(r,un)dr forall 6 ¢ [—r0).

Here, u(-) is the unique solution of Eq. (2.2) on (—oo,t] satisfying P(t)i; = ¢ and z(t) =

up for t < ty, . . .
= t € R, belongs to £ (note that the existence and uniqueness of w(-) is guaran-
0 for t > ty,

teed by Theorem 2.1). Using the “Hdlder inequality”, we obtain %; is Lipschitz continuous with the
Lipschitz constant
_ NN+ H)eV|lev||sllell e

k1
1—Fk— ||

2.7)

independent of ¢.
Theorem 2.2 is proved.
The next we will prove the attraction property of an invariant unstable manifold of £-class
for solutions of Eq. (2.2). Concretely, we will show that the unstable manifold of £-class U =
= {(t,Ut) };cr F-exponentially attracts all solutions to Eq. (2.2) in the sense that any solution u(-)
to (2.2) is exponentially attracted to some F'-induced trajectory u*(-) lying in the unstable manifold
of &-class (i.e., uf € Uy for all ¢ € R). Precisely, we will prove the following theorem.
Theorem 2.3. Assume that conditions of Theorem 2.2 are satisfied. For each fixed 0 < a < v,
we define the functions e, o(t) = e~ =N and h,_o(t) = |e-@=DN=lp()||p for t € R.
Suppose that Tl o] < 1, where
N1+ Np)[[A16]loo
1— e—(u—a)

| = N(l + H)€2yr maX{N/ﬁ + ( , Nle‘lHe,,,aHE + ||hzza||E},

ky is defined in (2.7). Then the unstable manifold of E-class U = {(t,U;)},cp F-exponentially
attracts all solutions to Eq. (2.2) in the sense that for any solution u(-) to (2.2) with initial function
ug there exists a solution w*(-) such that ui € Uy for all t € R such that

lu = ulle < Ce™ O lug — gl for t=¢,

where uf(0) = Fuy , for all 6 € [-7,0], t € R.
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Proof. For any fixed £ € R, we introduce the space
qﬂz{qugwmme@:oﬁxt<gmdw“muomeEmemﬁ,
which is a Banach space endowed with the norm
lo()la = max{ 22z el §-

for ¢ > €,
We will find «*(-) in the form u*(t) = u(t) + w(t) such that z(t) = wp fort=¢ belongs
0 for t <&,

to C&a.
We see that v*(-) is a solution to (2.2) if and only if w(-) is a solution of the equation

t
Fu =U(t, &) Fuwe + /U (1,ur + wy) — f(, UT)]dT.
13

To simplify the representation, we put g(¢,w;) = f(t,us + w) — f(¢t,u). Then g: R x C — X is
also p-Lipschitz and g(¢,0) = 0. The equation for w(t) can be rewritten as

t
F%-U@QR%+/U@ﬂﬂﬂ%Mr 2.9)
13

In the same way as in the proof of Lemma 2.1 and Remark 2.1, we observe that the solution w(t) of
(2.8) defines on [ — 7, 00) (here w(t) = 0 for t < £ — r) such that z(¢) belongs to &£ if and only if
satisfies

Fuw; = vy + /Q g(t,wr)dr  forsome vyp€ImP(§) and t>¢ (2.9)
3

and

Fwt—U(2§—t§V0+/g 26 —t,7)g(T,wr)dr  forsome vy €ImP(§) and te[{—r{].
£

(2.10)
We will choose v € Im P(€) such that uf = u¢ + we € Ug. This means
(1= P(&)) (ug +we)(0) = e (P(E) (g +we) ) () for 0 € [-7,0].
Hence,
v = (1w — P(E)we ) (0) = — (e — Pl€)ue ) (0) + G (P(€) (e + ) ) (0) =
= —P(©)u(§) + T (P() (ug +we) ) (0). @.11)
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Substituting (2.11) into (2.9) and (2.10), we obtain

(U(t,€)|=P(€u(€) + e (P(&) (ug +we) ) (0)] +

+ /OO G(t,7)g(1,ws)dT for t>¢&,
Fuy = ¢ N (2.12)
U2 — 1,€) [~ P(e)u(€) + T (P(€) (ue +we) ) (0)] +

—i—/oo G(2¢ —t,1)g(T,w;)dT for tel[{—r{].
\ 13

Thus, u*(t) is a solution to (2.2) and satisfies ug € Ug if and only if w(t) satisfies (2.12).
Next, in order to prove the existence of u*(¢) satisfying assertions of the theorem, we will find
solution w(t) of Eq. (2.12) in the Banach space C¢ . To do this, we define a mapping

Fy: C([€ = 1,00), X) = C([€ — 7, 00), X)

by

U(t€) [~ P(€)u(&) + e (P(€) (ug +we) ) (0) |+

+ " G(t,m)g(r,wr)dr for 13 ¢,
13

Fyw)(t) =
(Fe) U2 ~ 1,6 [=P(€u(©) + U (P(O)(ue + ) ) (0)]+

+/Oog(2§ —t,7)g(T, ws)dT for te[¢—r¢l.
\ ¢

We also define the operator W : C([¢ — r,00), X) — C([€ — r,00), X) by

<\T/u) (t) =

Since || ¥ < 1, we have || U|| < ||¥|| < 1. Therefore, the operator I — ¥ is invertible and we now
put T'= (I — \Tl)_l]?’(b. We will prove that transformation 7" as above acts from C¢ , into C¢  is a
contraction mapping. Firstly, we show that Tw € C¢ ,. Indeed, for ¢ > £ — 7, using the Neumann
series, we have

U(uy) for t>¢&,

U(ug) for &—r<t<&.

(Tw)(t) = KZ \i> Fow| ().
n=0
Then we estimate
| (Fow) @) < N ag)) + N1+ ) / el wr ledr for t> €
13
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and similarly

o0

| (Faw) )] < NeeOunl + N+ )[BT fedr for te f¢ - ngl
3
From the inequality | ¥|| < ||®|, it follows that
I(Tw) @) < D)™ | Nem 8y +N(1+H)/6_”“_7@(7)er||ch for t>¢
n=0 ¢
and
I @] < 3 I | Ne €D o +
n=0
LN +H)/e”|25t7g0(7-)]w7\|cdr for tele—re.
3
Therefore, for ¢t > &,
1 vr —v(t— vr 7 —v|t—7
[T Bl < gy | Vee ™ lonll + N+ H)e / el (r) |wrledr |
3
Thus,
1 oo
ea(t—f)H(Tw)(t)HCS T Ne”THVOH—i—N(l—i—H)e’”/6_(V_a)|t_T|<p(T)ea(T_E)HWTHCdT <
3
N1+ H)e" (N1 + No)[A1lloc | ai-
<~ |Ner a(t—¢) ol
=1_ ||\IJ|| € ||V0|| + 1_ e,(,/,a) ||e ||wt”C||
So, e O |[(Tw)(t)]lc € Loo(R).
On the other hand, we also have
O (Tw)(B)e <
1 [e.9]
< gy Ve el + N1+ e [T edr | <
3
1 vr [+ vr a(r=£)
< 1 Ve (T ev-a) Ol + N+ H)e by a0l orlclls].
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By the Banach lattice property of E the e*(*=8)||(Tw)(t)|lc € EN Loo(R). This leads to Tw € Cg 4.
Next, by the Lipschitz continuity of y¢, we obtain

Ivoll = ||~ P(&)ute) + 7 (P(€) (e +we)) 0)]| <
< |Jie (P(&)u(€)) (0) = Pe)u(©)| + | (P(6) (e +we) ) 0) — e (P()ut©)) 0} <
< |[fe (P(eyue) = (1 = Pyugl|, + | Pléyee |, <
< ml€) + kN (1 -+ H)e” el
for
m(&) = ||ie (P(&)ue) = (I = P, < m(&) + kN + H)e" o

> Ne'"m(€)

e T

We then prove that 7" is a contraction mapping. Indeed, for w, v belongs to Cg .. Then, for
vo = Tie (P(€) (g +w¢) ) (0), 1o = Tie (P() (g +ve) ) (0), we have

|Tw|lo < max{1, N1[le,—all£}

’HWIIa- (2.13)

- 1 vr —(v—a)(t—
I(Tw)(t) — (To))lle < 57 oy | Ve e O g — ol +

[e.o]

+N(1+4 H)e”" / e~ Nl ()T | wy — vy edr |-
3
On the other hand, ||vy — pol] < kIN(1+ H)e"[|w — v]|qa-
Thus,
e Tw = Tofle)loo <
< g v e -, Y05 BN N,y
and
e Tw — Tolle|| <
< 1—1H‘I’H [kiN?Ni(1 + H)e*" [lev—allpllw = vlla + N1+ H)e" |[hy—allplw = v]la].
Therefore,

1Tw = Tolla < T—rgrllw = vlla:

l
1=
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Since < 1, we obtain that 7" is a contraction on the Banach space C . Hence, the equation

l
1L—[jw] ,
Tw = w has a unique solution w € C¢ . From (2.13) we get

HW” < max{luNlHeV—aHE}Nemi(é).
- 1— W] =1

We have therefore completed the proof of the existence of the solution u* = v + w of Eq. (2.2)
satisfying uy € U; for ¢t > £ and

e = wille = wille < e w]a <

< maX{l,N1H€V_aHE}NeW‘m(§)e*a(t*§)
- 1= [Jw]f =1

- ol il ol N (i) - 1 - Pl =

= Cllug —ugllc forall ¢>¢.

Theorem 2.3 is proved.

3. Exponential trichotomy and center-invariant unstable manifolds on R. In this section,
we will generalize Theorem 2.2 to the case that the evolution family (U(¢,s));>s has an exponen-
tial trichotomy on R and the nonlinear forcing term f is @-Lipschitz. In this case, under similar
conditions as in above section we will prove that there exists a center-invariant unstable manifold of
E-class for the solutions to Eq. (2.2). We now recall the definition of an exponential trichotomy and
a center-invariant unstable manifold of £-class.

Definition 3.1. A given evolution family (U(t,s)):>s is said to have an exponential trichotomy
on R if there are three families of projections {P;(t)}, t € R, j = 1,2, 3, and positive constants N,
«, B with o < B such that the following conditions are fulfilled.:

(i) supc [P (1)) < o0, j = 1,2,3

(i) Pi(t) + Po(t) + P3(t) = Id for t € R and P;(t)P;(t) = 0 for all j # i;

(i) P;j(t)U(t,s) =U(t,s)Pj(s) fort > s and j =1,2,3;

(iv) U(t, 8)|ltm p,(s) are homeomorphisms from Im P;(s) onto Im P;(t) for all t > s and j =
= 2,3, respectively; we also denote the inverse of U(t, s)|im p,(s) by U(s, 1)}, s < t;

(v) forallt > s and x € X, the following estimates hold:

U, s)Pr(s)z]| < Ne P Py(s)z]),
U (s, ) Pa(t)z]| < Ne P Py(t)z ],
Ut 8)Ps(s)z]| < Ne* )| Py(s)z].

The projections {P;(t)}, t € R, j = 1,2,3, are called the trichotomy projections, and the constants
N, «, B are the trichotomy constants.

Using the trichotomy projections we can now construct three families of projections {ﬁj(t)},
teR, j=1,2,3, on C as follows:

(By(1)$)(8) = U(t + 0,),(I — P;(£))¢(0) forall 6€[—r,0] and ¢eC.  (3.1)
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Definition 3.2. Let the evolution family (U(t,s))i>s have an exponential trichotomy with the
trichotomy projections {P;(t)}, t € R, j = 1,2, 3, and constants N, «, (3 given as in Definition 3.1.

A set C C R x C is said to be a center-invariant unstable manifold of E£-class for the solutions
to Eq. (2.2) if there exists a family of Lipschitz continuous mappings

fo: Tm Py(t) — Im(ﬁg(t) n ﬁg(t))

with projections {JSJ(t)}, t e R, j=1,2,3, defined as in Eq. (3.1), and Lipschitz constants being
independent of t such that C; = graph(f;) has the following properties:

(1) Cy is homeomorphic to Tm P (t) for all t € R.

(ii) To each ty € R, ¢ € Cy, there corresponds one and only one solution u(t) to Eq. (2.2) on
(—00, to] satisfying e VT Fuy o = ¢(6) for 6 € [—r,0] and

e Yty () for t < ty,
z(t) = teR, belongsto &, where = b ; <.

0 for t >ty

Moreover, for any two solutions u(t) and v(t) to Eq. (2.2) corresponding to different functions ¢,
Y € Cy,, we have the estimate

e = wille < CueT™0 =0 (Pa(t0)6)(0) = (Pito))(0)|| for ¢ <to,

where 1, C,, are positive constants independent of ty, u(-), and v(-).
(iii) C is positively F-invariant under Eq. (2.2) in the sense that, if u(t), t < tg, is the solution
to Eq. (2.2) satisfying the conditions that the function 6_7(t0+')ﬂt0 () € Cy, and

e V), () for t < to,
z(t) = teR, belongsto &,
0 for t>ty,

then the function e~ "), (-) € Cy for all t < to, where @(0) = Fug, g for all —r <0 < 0.

We come to our second main result. It proves the existence of a center-unstable manifold of
E-class for solutions of Eq. (2.2).

Theorem 3.1. Let the evolution family (U(t,s)):>s have an exponential trichotomy with the
trichotomy projections {P;(t)}, t € R, j = 1,2,3, and constants N, «, [ given as in Defi-
nition 3.1. Assume Standing Hypothesis 1.1 and let the functions ¢, hy,,e,, and the operators
F, f be determined as in Theorem 2.1 and e, = e /! for all t € R. Set q := sup{||P;(t)]|:

teR, j=1,3}, Ny :=max{N,2Ngq}, vy = f-a

7 and

k= (14 H)Noe"" || hu, || -

Then, if

ax No(1+ H)e"o" (N1 + No)||A1pllos NGN1(1+ H)e™" |ley, || elle] &
L—[ ’ 1—k— |y

for each fixed B > «, there exists a center-invariant unstable manifold of €-class for the solutions
to Eq. (2.2).
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Proof. Set P(t) := Pi(t) and Q(t) := Pa(t) + P3(t) = Id — P(t) for t € R. We have
that P(t) and Q(t) are projections complemented to each other on X. Then we define the families
of projections {P ()}, t € R, j = 1,2,3, on C as in Eq. (3.1). Setting P(t) = Pi(¢) and
Q(t) = Py(t) + P3(t), t € R, we obtain that P(¢) and Q(t) are complemented projections on C for
each ¢t € R. We consider the following rescaling evolution family:

B+ a

Ult,s) =e 79Ut s) forall t>s, where ~:= 5

We now prove that the evolution family U (t,s) has an exponential dichotomy with dichotomy
projections P(t), ¢t € R. Indeed,

P)U(t,s) = e ") PL UL, s) = e 79U, s)Py(s) = U(t, s)P(s).

Since U(t, $)|um p,(s) 15 @ homeomorphism from Im P;(s) onto Im P;(t) for t > s, j = 2,3, and
Im(Py(t) 4 Ps(t)) = Ker P(t) for all ¢ € R, we have that U (¢, s)|ker P(s) is also a homeomorphism

from KerP(s) onto KerP(t), and we denote ﬁ(s,t)| = (ﬁ(t,s)\Kerp(s))*l for s < t. By the
definition of exponential trichotomy we obtain

Hﬁ(t,s)P(s)xH < e BN | P(s)z| forall t> s
On the other hand,
HUst|Q() H e U (s, ), (Pa(t) + P3(t))a]| <
< Ne /9 (70U By ()| + )| Py (1)) =
— N9 (A9 py()Q ()| + 62| Py(H)Q(1)all)

forall t > s and z € X.
Putting ¢ := sup{||P;(t)||, t € R, j = 2,3}, we finally get the following estimate:

|0, 1@z < 28ge= 52 Q(b)all

Therefore, U (t,s) has an exponential dichotomy with the dichotomy projections P(t), ¢t > 0, and
8 —«

2
Put %(t) = e "u(t), and define the mapping f: R x C — X as follows:

constants Ny := max{N,2Ngq}, vy :=

Flt,0) =e " f(t, () for (t,6) eR xC.

Obviously, f is also @-Lipschitz. Thus, we can rewrite Eq. (2.2) in the new form

t
Fi; = U(t, s)F, —i—/ﬁ(t,&) f(&,Tc)de forall t>s,
J (3.2)
Us(-) = e Mg e C.
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Hence, by Theorem 2.2, we obtain that if

] No(L ) (N + No)[Asplloe - NEN1(1+ H)e ewylelleller | _
=] 1=k v

then there exists an invariant unstable manifold of £-class U for the solutions to Eq. (3.2). Returning
to Eq. (2.2) by using the relation u(t) := €7'u(t) and Theorems 2.1, 2.2, we can easily verify the
properties of C which are stated in (i), (ii) and (iii) in Definition 3.2. Thus, C is a center-invariant
unstable manifold of £-class for the solutions of Eq. (2.2).

4. Examples.

Example4.1. Consider the finite delayed heat equation for a material with memory which has
formula

—u(t,x) = m(t)@ u(t, x) + /(t —s)(t —s—1u(s,x)ds|+
1

t—

—1—_/1[—2(15—5)4—1] u(s, z)ds + a(t t/lln + |u(s, z)|)ds,

(4.1)
u(t,0) =u(t,m) =0, t>s,

us(0,z) =u(s+6,x) =¢(0,z), zel0,n], 6e[-1,0],
where a(t) is defined by a(t) = |l|e="*, > 1 and [ # 0, the given function ¢ is continuous. The
function m(-) € L1 1oc(R) and satisfies the condition m; > m(t) > mgy > 0 for fixed constants my,

mi and a.e. t € R.
We choose the Hilbert space X = L]0, 7], and let A: X — X be defined by

Av) ="
with the domain D(A) = {v € W?2[0,7]: v(0) = v(7) = 0}.
Also, for C = C([—1,0], X), we define the dlfference and delay operators F' and f as

0
F:C— X, F(v)=v(0)+ /b(—&)v(ﬁ)dﬁ,

-1
FiRXC— X, f(t¢)=]|le /ln(l +(6(0)(z))do, teR, Oe[-1,0. (4.2)

It is obvious that
b(t) = t(t — 1) satisfies b(0) = b(1) = 0,

0 0
5
F =06y+ U, here U(-) = —/ b(—0) - (6)d6 with || T = / 6(6 —1)]do = 2 < 1.
—1 —1
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Note that the fact that f takes value in X = Ly[0, 7] can be easily seen by using the Minkowskii
inequality.

Putting now A(t) = m(t)A, u(t) = u(t,-), t € R and ¢(0) = 9(6,-); 6 € [-1,0] the Eq. (4.1)
can now be rewritten as

0
aFut:A(t)Fut—l—f(t,ut), t>s, t,seR,

us = ¢ € C := C(|~1,0], X).

From the definition of A, it can easily seen that A is the generator of an analytic semigroup
(T(t)>0 = (etA)t>0 with o(4) = {-1,-4,...,—n% —(n+1)%,...} and o(A) NiR = @.
Applying the spectral mapping theorem for analytic semigroups, we get

o(T(t)) = et = {e*t, e et }

and o(T(t)) N{z€C: |z] =1} = @ for all ¢ > 0. Therefore, for fixed ¢, > 0, the spec-
trum of operator T'(¢o) splits into two disjoint sets og, o1, where o9 C {z € C: |z| < 1}, 01 C
C{zeC:|z| > 1}.

Next, we choose P = P(tg) to be the Riesz projections corresponding to spectral set og, and
@ = Id— P. Clearly, P and Q commute with 7'(¢) for all ¢ > 0. We denote by T (t) = T'(¢)Q the
restriction of 7'(¢) on Im (). As known Semigroup Theory, in this case, the semigroup (7°(t)),~ is
called hyperbolic (or having an exponential dichotomy) and restriction T (t) is invertible. Moreover,
there are positive constants /N,y such that

IT(t)px|l < Ne ", (4.3)
ITo(—t)|| < I Tot) || < Ne (4.4)

for all ¢ > 0.
Clearly, the family (A(?)),cg = (m(t)A),cr generates the evolution family (U (%, s)),, defined
by the formula

t
Ult,s) =T / m(r)dr | forall t>s.

From the dichotomy estimates of (7'(t)),», in (4.3), it is straightforward to check that evolution
family (U(t, s));>, has an exponential dichotomy with projection P and constants N, v = vmg by
the following estimates:

Ut s)pxll = 1T(t = 8)pxll < Nem=2),
-1 —v(t—s
1T (s, Ol = 1(U . 8) ke p) ™ [l = 1T~ (t = 5)))[| < N7

for all t > s.
We now take E = L,(R), 1 < p < +o0, the delay operator f: R x C — X defined as in (4.2)

1 1
and check that f is @-Lipschitz with ¢(t) = |lje~"l € B/ = Lg(R) for = 4+ = = 1.
p q
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Indeed, the condition (i) in Definition 2.2 is evident. To verify the condition (ii) in that definition
we use Minkowskii inequality and the fact that In(1 + ~) < h for all A > 0. Then

1
T 0 2 2

£t 61)(@) = F(t, 62)(@)|], = 1] e~ / /miﬂéii%é?}da de | <
0 —1

0 ™
< | entl/ /1n2 1+ ’(¢1(9))($)|dx 40 —
1 \0

N

1(6:0)@)
e :

et [ Ty 4 1@@@1 - (@@)@),

e /<0/1 (1 e )d)W

0 T
< fifeie / / (610)) (&) — (62(0))(@)2da | d6 =
—1 0

0
— J1] e / 161(8) — ¢ (0)]]2 d6 <
21

<|t}e™ sup |[¢1(0) — ¢2(6)])2-

0e[—1,0

Hence, f is ¢-Lipschitz. In the space L,(R), the constants N1, No are defined by Ny = Ny = 1.
We have

Q|

—+00

1

N

lolle = || /e"‘mdt :u<>q.
nq

—0o0

Also, the function h,(-) can be computed by

1

—vqlt] _ ,—nqlt| —nqlt| —vqlt| \4

€ € + € te for teR.
(n—v)q (n+v)q

) = 50 = u(

1 1
Therefore, h, € L, for — + — =1 and
p q

el =10 <q(u +s)n(n - V)f(j;));

1
2) = t+1
We have ||e, ||, = <> and A1 (1) :/ o(7)dr. Thus, ||A1¢]|sc <
vp t
By Theorem 2.2, we obtain that if

e —1)
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12N(1 4 H)e" x

el —1 N
X max , <1,

(o i) ()

then there exists an unstable manifold of £-class U for the mild solutions to problem (4.1), and this
manifold has the attraction property given in Theorem 2.3.
Example4.2. Consider the above Example 4.1, in Eq. (4.1) we replace the boundary condition

by

D=

(vp)

ul(t,0) =ul(t,7) =0, t>s.
Then we choose the Hilbert space X = L2[0, 7], and let A: X — X be defined by
A(v) ="

with the domain D(A) = {v € W?2[0,7]: v/(0) = v/(7) = 0}.
Putting now A(t) = m(t)A, u(t) = u(t,), t € R, and ¢(0) = ¥(6,-), 0 € [-1,0], the Eq. (4.1)
can now be rewritten as

0
—Fuy = A()Fuy + f(t,ug), t>s, t,seR,

ot (4.5)
us=¢ € C:=C([-1,0],X).

From the definition of A, it can easily seen that A is the generator of an analytic semigroup
(T(#)0 = (etA)t>0 with o(A) = {0,-1,—4,...,—n? —(n+1)%,...}. Applying the spectral
mapping theorem for analytic semigroups we get

o(T(t)) = eto(4) — {eit, e 4., efnzt, .. } u{1}.

Therefore, for fixed to > 0, the spectrum of operator T'(¢y) splits into three disjoint sets o1, o2, 03,
where 01 C {z € C: |z| <1}, 00 C{z€C:|z| > 1}, 03 C{z€C: |z] =1}

Next, we choose Py = Pi(ty), P» = P»(to), Ps = P3(to) to be the Riesz projections correspon-
ding to spectral set 01,09, 03. Clearly, Py, P>, P3 commute with 7'(¢) for all ¢t > 0. We can see that
Py + P, + P; = Id and P;P; = 0 Vi # j. Moreover, there exist are positive constants M,  such
that

IT(#)pyxl < Me™®" vt > 0.

We denote () := P, + P3 = Id — P, and consider the semigroup on Im @ such that Ti(¢) = T'()Q
the restriction of 7'(¢) on Im Q). Because o2 U 03 = 0(Ty(to)) implies (Ti(t)),~, can be extended
into group (7(t)),cp in Im Q. Moreover, there exist positive constants K, €0, and €1, € < €1,
such that

-1 _
ITo(=t)px |l = (To(t)1p,x) || < Ke™ vt >0,
1T )P, x|l < Keoll vt eR.
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Thus, the semigroup (7'(t));~, having an exponential trichotomy with the trichotomy projections
{P;},  =1,2,3, and constants N, €y, [ satisfies

IT(t) p x|l < NeTP,
-1 _
IT(=t)px | = (TE)pyx) || < NeTP, (4.6)
I7(t) x|l < e,

where N := max{K, M}, By := min{d, €1 }.
Clearly, the family (A(t)),cg = (m(t)A);cg generates the evolution family (U(t, s)),, defined
by the formula

¢
Ut,s)=T /m(T)dT forall ¢>s.

From the trichotomy estimates of (7'(t)),5q in (4.2), it is straightforward to check that evolution
family (U (¢, 5))1&2  has an exponential trichotomy with projections Py, k£ = 1,2, 3, and trichotomy
constants N, 8 := e1my, « := egmg by the following estimates:

1U(, S)|P1XH =[|T(t - 3)|Ple < Ne_ﬁ(t_s)’
71 _ s

1U (s, )l = (U, s)p,x) |l < Ne Blt—s),

1T (¢, 9)pyx || = IT(t = 8)pyx]| < Ne*t9)

for all ¢t > s.
Set ¢ :=sup{||P;(t)||: t € R, j =1,3}, Nop := max{N,2Ngq}, vy = ﬁ%a' By Theorem 3.1

and result in the Example 4.1, we obtain that if

12No(1 + H)e"" x

el —1 N
X max , 0 <1,

! (Vop);(nqﬁ<1—6N0(1+H)|l|<q 21 > (;p)é)

(vo +n)(vo —n)
then there exists a center-invariant unstable manifold of £-class C for the mild solutions to prob-
lem (4.5).

Q=
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