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ON THE APPROXIMATION OF FUNCTIONS
BY JACOBI-DUNKL EXPANSION IN THE WEIGHTED SPACE Lé“"’ )

MMPO HABJW)KEHHS ®YHKIII 3A TOMOMOTOIO PO3KJIAJIB
SIKOBI - IAHKJIA Y BATOBOMY ITPOCTOPI L{*?

We prove some new estimates useful in applications for the approximation of certain classes of functions characterized by
the generalized continuity modulus from the space ]Lga’ﬁ ) by partial sums of the Jacobi— Dunkl series. For this purpose, we
use the generalized Jacobi— Dunkl translation operator obtained by Vinogradov in the monograph [Theory of approximation
of functions of real variable, Fizmatgiz, Moscow (1960) (in Russian)].

JloBeneHO Nesiki HOBi OLIHKH, KOPUCHI B 3aCTOCYBAaHHSX, JJIs HAOMIDKEHD MMEBHHUX KJIaciB (QYHKIIH, MO XapaKTepU3yHOThCS
y3araJlbHEeHUM MOJYJIEM HENEPEPBHOCTI 3 MPOCTOPY ]L(Qa’ﬂ >, YaCTKOBUMHM cymaMu psiaiB Sko0i—lankna. 3 niero MeToro
BUKOPHCTAHO y3arajdbHEeHHH omeparop TpaHcismii SIko6i—/lankma, mo OyB orpuMmanmii BunorpanoBum y MoHorpadii
[Theory of approximation of functions of real variable. Fizmatgiz, Moscow (1960) (in Russian)].

1. Introduction. It is well-known that many problems for partial differential equations are reduced
to a power series expansion of the desired solution in terms of special functions or orthogonal
polynomials (such as Laguerre, Hermite, Jacobi, etc. polynomials). In particular, this is associated
with the separation of variables as applied to problems in mathematical physics (see, e.g., [10, 11]).

In [2], Abilov et al. proved two useful estimates for the Fourier transform in the space of
square integrable functions on certain classes of functions characterized by the generalized continuity
modulus, using a translation operator. In this paper, we also discuss this subject. More specially, we
prove some estimates (similar to those proved in [2]) in certain classes of functions characterized by
a generalized continuity modulus and connected with the discrete Jacobi— Dunkl transform associated
with the Jacobi—Dunkl operator defined on T = [—7/2, 7/2] by

" (0 — f(— T T
Nt 0) = 5510+ 52 OSIED rea(-5.3)),

where

azﬁz—%, a#—%-

This paper is organized as follows. In Section 2, we state some basic notions and results from the
discrete harmonic analysis associated with the Jacobi— Dunkl transform that will be needed through-
out this paper. Some estimates are proved in Section 3.

2. Preliminaries. In this section, we will recall some properties of Jacobi and Jacobi— Dunkl
polynomials, we develop some results from the discrete harmonic analysis related to the differential-
difference operator A, g. Further details can be found in [3-5, 7, 8, 12]. In the following, we fix
parameters « and (3 subject to the constraints
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1 1
>p3> = —=
a>fp> 5 a# X
and set
p=oa+pB+1.

The Gauss hypergeometric function 2 F(a, b; ¢; z) is defined by

+o0
a)n(b)n n
2F1(a,b;c;z) ::Z((Z)(’H)‘Z ) |Z’ <17

n=0

where a,b,c,z € C with ¢ ¢ Z_ and (a),, is the Pochhammer symbol given by

ala+1)...(a+n—-1) if neN*
(a)p = .
1 if n=0,

where N* = {1,2,...}.
The Jacobi polynomials go%a’ﬂ )(9), n €N, €T, are defined by

907(1&”8) (0) = Rgla,ﬁ) (cos(26)) = o Fy (—n, n+ p;a + 1;sin? 0)

with R%a’ﬁ ) (z), n € N, is the normalized Jacobi polynomial of degree n such that R%a”g )(1) =1
Note that, for all n € N, we have

‘(p%a,/ﬁ)(g)‘ <1 V9eT (1
and
@A) (—0) = @B () Vo eT. 2)

The Jacobi operator A, 5 defined on C? G 0, g D is given by

>  A,p d
Appi=—5+ B =
de A g db
with S
220 (sin |6])22+ (cos 0)26+! if 9 € }—f, i [\ {0},
Aap(0) = 2°2
0 if 6=0.
For all n € N| go%a”g ) is the unique even C*-solution on } —g, g [ of the differential equation
Aa,ﬁf = _)‘ify
f(0) =1,
f(0) =0,
where
An = M) = 9sen(n)\/|n|(jn| + p), n € Z.
The Jacobi function <p£f"5 ), n € N, satisfies the following inequalities.
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Lemma 1. The following inequalities are valid for Jacobi functions cpﬁf”ﬁ ).

a) for 6 € (0,7/4], we have
L— @i P(0) < X367, (3)

b) for every v > 0, there is a number co = ca(7y,«, 3) > 0 such that, for all n and 0 with
v <nl < %, we obtain

P D(6)] < canp) 12 ©

Proof. See [9] (Proposition 3.5 and Lemma 3.1).
The Jacobi—Dunkl operator A, g is defined by

na0 —J({= T
Nt 0) = g0+ 2 O see(5.5)),

with

a,8(0)
Aa,ﬁ(e)

From [7], for all n € Z, the differential-difference equation

™

7al\Or

= (2ac+1)cotf + (26 + 1) tan¥, 96}

Aa,ﬂf(a) = ZAnf(0)7 n e Z,

admits a unique C*°-solution wiﬁﬁ ) (9) on } —g, g [ It is related to the Jacobi polynomial and to its
derivative by

@B gyt & @By ]
Pln () " 75 Pinl (0) if neZ*,

1 if n=0.

Ui (0) 1=
We note that, for all n € Z and 6 € T, we have

D P(9) = (P (=) = P (), 5)

6] < 1.

and, for all f and ¢ such that ’ Ao pf(8)g(0)An p(0)do exists, we obtain

/Aa,ﬂf(9)9(9)«4a,ﬁ(9)d9=—/f(9)Aa,ﬁg(9)«4a,ﬁ(9)d9- (6)

For all n,p € Z, we have the orthogonality formula given by (see [7])
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; 0 -1
[ e 0005010 0)d8 = (w?) 5
-3
where
s -1
2
2 I'(p+1)
(a,8) — (o,5) (a8) _ p
v /w" (9)‘ AasO)d | wy 22T (v + 1)T(B + 1)
-3
and

(@p) _ _ n[+p)T(a+[n[+ 1T (p+|n|) .
U = (D (ot D)2 (0| + DO(B + £ 1) S

We obtain the following asymptotic equality as n — +oo:

(@B || 201 |
" 2% (I(a + 1))?

By using the relation (see [7])
d (@B - M (at1,841)
0 Pln| (0) = _4(a 1) sin(26) Pln|-1 (9),

the function wﬁla’ﬁ ) can be written in the form

« Q, . )\n . fe% 8
SO = o7 O +i g g SO 0).

(7

®)

Let Léa’ﬁ ) denote the space of square integrable functions f(€) on the closed interval T with the

weight function A, 5() and the norm

| £(0)[2Aq,5(0)db.

\..w\zl

LAl =

|
INIE]

We define the weighted spaces (?(Z) := [? (Z, wﬁlaﬁ)) by

+oo
12(Z) = {(fn)nezz Z—C: Y |falw(™? < +oo}.

n=—oo

The Jacobi—Dunkl expansion of a function f € Lga’ﬁ ) is defined by (see [6, 7])

+o00
FO0)= > Frnule?@)mwe? v e,

n=—oo

©)
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where

Ff(n) = f(H)WAa,g(H)de Vn € Z.

\..w\ﬁ

[ME]

The sequence {F f(n),n € Z} is called the discrete Jacobi—Dunkl transform of f. For n € N, we
denote the partial sum of (9) by

=Y Frkw? Ow™” woeT.
k=—n

From (7), we get, for all f € Lga’ﬁ) (see [6]),

lim ‘57{ - fH ~0.

n—-+4o0o

We state some properties of the discrete Jacobi—Dunkl transform F (see [7]).
Theorem 1 (Plancherel formula). If f € ]Lga’ﬁ ), then F f belongs to 1*(Z) and we have

+oo
fJ ST IFfm) Pl (10)

Proof. See [7] (Theorem 3.4).
The generalized Jacobi— Dunkl translation operator is defined for f € Lga”g ) and 0,h €T by

/ fle)W (h,0,0)Aqp(p)de if h,0 € Gyp,
707—1— h) if h¢Gapg or 0¢G,pg,
where )
R\ {n7},c, if a>p> —g
Gap=AR\ {73} if a=p> —%,
1
0 if a=p§= Y

and W (h, 0, p) is a certain function satisfies the following properties (see [12]):
W (h,0,¢) =W(0,h, ),
W (h,0,—¢p) = W(=h,=0,¢),
W(h,80,p) =W(h,—p,—0).
In particular, the product formula
THP(0) = wi? (g7 (6). (11)

holds. Some properties of generalized Jacobi—Dunkl translation operator are fulfilled.
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Theorem 2. If f € L"), then T"f € LY and we have
IT"fI < IfIl YheT.

Proof. See [12] (Theorem 3).
Proposition 1. Let f € ]L(Qa’ﬁ) and n € 7. Then

F(T"f)(n) = @ (R)Ff(n) VheT.

Proof. See [12] (Remark 4).
For every f € ]Lga’ﬁ ), we define the differences A} f of order m, m = 1,2,..., with step
h>0,0<h<mw/2 by

NS (0) = Apf(8) = T"f(0) + T "f(8) —2f(6),
) = Ap(APTF(0))  for m > 2.
Also, we can write that

o) = (T T - 2m,) " f(),

where I1,, is the identity operator in Lga’ﬁ ),

The generalized modulus of continuity of a function f & ]Lga,,e ) is defined by

wm(f.6) = sup [|ARf], 6> 0.
0<h<d

Let W;’Zl(Aa’g), r = 0,1,..., denote the class of functions f € Lga”g ) that have generalized
derivatives satisfying the estimate

wim (Mg gf,8) = O((6™)), & =0,
where (.) is any nonnegative function given on [0, 4+00), ¥(0) = 0 and
Ag,ﬁf = f7
AL gf =Nag,
NGt r=12,..,
1e.,
Wyl (Aays) = { FeLSP A e LS and  wn (AL 4f,8) = O((8™)), & — o}.

3. Main results. Taking into account what was said in the previous section, for some classes of
functions characterized by the generalized modulus of continuity, we can prove two estimates for the

serie
En(f) = \/ ST 1F )Pl

In|2N

which are useful in applications. To prove the main results, we shall need some preliminary results.
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Lemma 2. For f € ]L(Qa”g), we get

F(Aapf)(n) = idaFf(n)
forall n € Z.
Proof. Since
n=—XAp Yn€EZ,

it follows from this and (5) that

At (0) = Mgt 57 (0) = X057 (6) = i ().

Therefore, thanks to the formula (6), we conclude that

Flhapf)m) = | Mapf@i™? (0)Ans(6)d0 =

|
w\#\m\:

f(e)Aa,ﬁ (M)Aaﬁ (0)do =

Il
|
\wh\

I
NE]

M f OV (0) Ag 5(0)d0 = iN, F f(n).

\w\ﬂ

VB

Lemma 2 is proved.
Remark1. From Lemma 2, we can see that, for all f € W, ;” (Aap),

f(Ag,Bf) (n) = (i\y) " Ff(n) VneZ

forallr=0,1,2,...,m
Lemma 3. Let 0 € T. If f € LS with

Z Ff(n (0w (a,ﬁ)

n=-—oo

then

Z FFOE D el @)l

Proof. By product formula (11) of 7", we have
T (6) = ) ().

Thus, for any polynomial

Z Ff(n (0)w (aﬁ)
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since T" is linear, we obtain

T"Qn(6) Z F ()@ (Rl (g)w P (12)
By using the fact that 7" is a linear bounded operator in ]L;a’ﬁ ) and the set of all polynomials Qn (6)

is everywhere dense in L")

Lemma 3 is proved.
Lemma 4. Let f € Wy " (Ao g) and 0 < h < /2. Then, for all n € Z, we have

, passage to the limit in (12) gives the desired equality.

o 2m o
elo” (0] 1F £ () P,

ap s =2 3 )i

n=—oo

where m =0,1,2,...and r=0,1,2,...,m
Proof. Take into account the result of Lemma 3, we get

Anf(O) =T"F(0) + T "f(0) - 2f(6) =

= 3 (DR + 0D (=) = 2) FF 0 O)wle?.
Since (see (8))

wgoz,ﬁ) (h) — (pfr‘z"»ﬁ)(h) iy, sin(2h)cp‘(:|+11’ﬁ+1)(h)7

4 i 1)

« A o
d)ﬁz 7B)(_h) @fn"ﬁ)( h) - 714(0[7 sm(2h)g0|(n‘+11’8+1)( h),

+1)

by formula (2), we have

A0 =2 3 (15700~ 1) Fa)ule 0y

n=—oo
Using the proof of recurrence for m, we obtain

+oo

O =2 Y (dfi? 0 —1) " Fr@ee O @i,
Remark 1 gives
A?(AT )=14"2m Z )\r( Wﬁ _1) Ff(n)y aﬁ)(e)w%oc,ﬁ)'

By appealing the Plancherel formula (10), we get

apasanf =2 3 i

n=—0oo

a 2m o
el ()] IFF () P,

Pl

Lemma 4 is proved.
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Theorem 3. For functions [ € ]Lga’ﬁ ) in the class W;$ (Aa,), there exists a fixed constant

¢ > 0 such that, for all N > 0, we have

En(f) = OO ¥l(e/N)™])

as N — oo, where r = 0,1,2,..., m = 1,2,..., and (.) is any nonnegative function given on

[0, 4+00).
Proof. Let f € W, $ (Aq,g), by the Holder inequality for sums, we obtain

= 3 PO Pun = 3 (1= el () 1F )P =

=N =N
= 2_521)1 = (@) mw%%n )
ENQH( "l ><(1 el () IFF () ><
: (Z ff(n)Qw”) m (Z (1 so(ﬁ’ﬂ)(h))%ff(npwn) "
nIEN =,

L
2m

= @[ (-G ) F )P

In|>N

Since
A > )% forall |n|> N,

we conclude that

= 3 W) Ff )P <

[n|>N

< (B [ W (1ol m) I E P, | <

In|>N

< (En(f) 5 [ A2 30 A (1= g ()™ F F(n) Pw
In|>N

From Lemma 4, we have

2m
2 37 X (1=l W) IFFm) P < (A7 (AL 0)

n|>N

Thus,

< 37 S MIF £ Pwn + (Ex(£) 550 N (| AT (AL o) |

In|>N

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 10
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From (4), we get

> ol M WFf ) Pwn < ex(NB)=* 2B (f).
In|>N

For f e W, ;n (Aq ), there exists a constant C' > 0 such that

AT (AL 5 )| < Co(h™).

a—1/2

Choose a constant cg such that the number ¢4 = 1 — cacy is positive. Setting h = c3/N in the

inequality (13), we have

Els

A BX(f) < (En(f) "5 Ay™ O ($](es/N)™))

By raising both sides to the power m and simplifying by (En(f))?*™ !, we finally obtain
ci'En(f) < CAYb[(c3/N)™]

for all N > 0.
Hence, the theorem is proved with ¢ = c3.
Theorem 4. Let ¢(t) =t”. Then

feWyy'(Aap)

is equivalent to
En(f)=O(N"""™),

wherer =0,1,2,..., m=1,2,...,and 0 < v < 2.
Proof. Assume that f € W, :’; (Aq,3), by using the fact that

AN =2y/N(N +p) > 2N.
Then, from this and according to the Theorem 3, we conclude that
EN(f)=O(N"""™).

This shows us this implication.

We prove necessity. Let
En(f)=0(NT""™),

1e.,

> IFf)Pw(P = o(N ). (14)

In|>N

It is easy to show that there exists a function f € ]Lga’ﬁ ) such that A7 gf € Lga’ﬁ ) and

Y NF O O,

n=—oo

From the formula above and Plancherel identity (10), we have
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= 2m
[af@nsn®=22m 30 Xt )| T IFf@)Puf?.

n=—oo

This sum is divided into two
IATHAL s DI = Th + I,

where
Ti= 30 2= e T F ) P
In|<N

and
Ty= 3 2N =g ()P FF () Pl
>N
with N = [h~!] is the integer part of A1,

Let us now estimate each of them, we estimate Z», it follows from (1) that

I, <2' Z NI\ F £ (n)Pwi?).
In|>N

Note that

22— 4n2<1 + p) <4n’(1+p) forall |n|>1, neZ (15)

n|
It follows from this that
I, <2™(dp+4)" Y 0| Ff(n)Pu?) =

In|>N

+o0
—aY Y nIEm) el <

J=0 N+j<|n|<N+j+1

“+00
<oy (N+j+1)% > [Ff ()PP =
j=0 N+j<|n|<N+j+1
+oo
=5 Y _a;(V; — Vi),
§=0

where a; = (N +j + 1)?" and V; = Z |Ff(n)>w'®?). Furthermore, for all integers

M > 1, the summation by parts gives

[n|>N+j

M M
Za’j(vj - VjJrl) =agVo — ap V41 + ZV]'((Z]' — aj,l) <
Jj=0 j=1

M
< agVy + Z Vj(aj — (ijl)-
j=1
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Moreover, by the finite increments theorem, we have
aj —aj_1 <2r(N+j+1)*L
On the other hand, by (14), there exists cg > 0 such that, for all N > 0,
E%(f) < cgN—2—2mv,

For N > 1, we obtain

M M

Y ai(Vi = Virr) S aVo+ Y Vila; —aj1) <

=0 j=1

1 2r ) M 1 2r—1 Ly
<cgll4+—) N 4+ 2rc 14+ —— N+ 4) 72 <L
<af1+ 1) (1t ye) s

M
< 6622rN72m11 + 22TTCG Z(N_’_j)flfﬁmx'

j=1

Finally, by the integral comparison test, we get
iw:(N +g) T < io i < 7oot_1_2m”dt— Ly
j=1 ’ - u:N_H'u B {4 C 2mw '

Letting M — +o0, we see that, for > 0 and m, v > 0, there exists a constant ¢7 such that, for all
N >1,
IQ S C7N_2my.

Consequently, for all h > 0, we have
T < crh*™. (16)
Now, we estimate Z;. From formulae (3) and (15), we obtain

T, < 22mc%mh4m Z )\721T+4m|ff(n)|2w§1a’ﬁ) <
[n|<N

< cghtm Z n2T+4m]ff(n)\2w£La’ﬁ) <

[n|<N

N-1
< Cgh4m Z Z n2r+4m“/—_-f(n)|2w7(1a,,8) <
=0 j<|n|<j+1

N-1
Sesh™ Y CGHDTH N [ F )Pl =
i=0 j<In|<i+1
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N-1
= csh™™ Y a;(V; = Vi),
=0
where aj = (j + 1) 4™ and V; = Z\n|>j | Ff(n)Pwi?.

Using a summation by parts and proceeding as with Z and the fact that V; < cgj 2" 2™ by
hypothesis, we get

N-1 N-1
Il S Cgh4m Z CL]'(V Vj+1) < Cgh m CLoVU + Z V CL] 1) S
7=0 7j=1

N-1
<C8h4m V0+06 27‘—1—4m Z ]_|_1 2r+4m lj—2r 2mv
J=1

From the inequality j + 1 < 2j, we conclude that

N-1
Il < 08h4m VO + cg Zj4m—2mu—1
=1

As a consequence of a series comparison, we have the inequality
qungN“ for >0 and N > 2.

If 4 = 4m — 2mv > 0 for v < 2, then we obtain
I < cgh™™ (Vo + C10N4m_2m”) < cgh'™ (Vo + 010h2m”_4m),

since N < 1/h.
If h is sufficiently small, then Vy < ¢19h?™ =™, Then we have

Ti < e h*™. (17)
Combining the estimates (16) and (17) for Z; and Z, gives

1A (AL s ) || = O™).
Consequently,
m(AG,5f,0) = O(8™) = O(4h(6™)).

Therefore, the necessity is proved and the proof of the theorem is completed.
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