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ON SKOROKHOD DIFFERENTIABLE MEASURES*

ПРО МIРИ, ДИФЕРЕНЦIЙОВНI ЗА СКОРОХОДОМ

This paper is a survey of Skorohod** differentiability of measures on linear spaces, which also gives new proofs of some
key results in this area along with some new observations.

Наведено огляд диференцiйовностi мiр за Скороходом на лiнiйних просторах, який мiстить також новi доведення
деяких ключових результатiв у цiй областi разом iз низкою нових спостережeнь.

1. Introduction. Among the major contributions to measure theory of Anatolii Vladimirovich
Skorohod, one of the most eminent probabilists of the XX century, it is customary to cite several
results of especial significance: the Skorohod representation of weakly convergent sequences of mea-
sures by almost surely convergent sequences of mappings, his approach to stochastic equations where
weak solutions are interpreted as measures on path spaces, the Skorohod space and his fundamental
results on weak convergence of measures on path spaces, the proof of exponential integrability of
norms of Gaussian vectors (prior to Fernique’s celebrated theorem), and Skorohod’s differentiability
of measures. All these seminal achievements — particularly the last one, the most analytic in this
list — have a clear probabilistic flavor, and definitely belong to measure theory and all have been
very well presented in many surveys and monographs. In particular, the first topic is discussed in
detail in my books [11] and [16] and the last one is thoroughly covered in [12]. Nevertheless, I find
Skorohod’s treatment of differentiation on the space of measures the most appropriate subject for
this memorial issue, and there are two reasons for this. One is a personal reason and the other one
is connected with recent activities in the study of BV spaces on spaces with measures and surface
measures in infinite dimensions.

Thus, this paper is a brief survey of Skorohod differentiability of measures, which also gives new
proofs of some key results in this area along with some new observations.

Skorohod differentiability of measures is one of several of the most natural options for diffe-
rentiability of families of measures. It is a classical situation in probability theory and mathematical
statistics that one has a family of measures \mu t on a measurable space (\Omega ,\scrB ) depending on a para-
meter t from an interval T or a more general parametric space with a certain differentiable structure.
What does it mean that t \mapsto \rightarrow \mu t is differentiable? In many applications, a quite common setting
is this: the measures \mu t are given by densities ft with respect to a fixed measure \lambda on \Omega , which
reduces the question to differentiable mappings on T with values in a suitable space of functions,
such as L1(\lambda ) or L2(\lambda ). Of course, one can also speak of the usual differentiability of the function
t \mapsto \rightarrow ft(x) for fixed x. However, the whole space of bounded measures \scrM \scrB on (\Omega ,\scrB ) possesses a
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1160 V. I. BOGACHEV

number of different important topologies which do not reduce to topologies on function spaces. First
of all, \scrM \scrB is a Banach space with respect to the total variation norm \| \cdot \| , which leads to a natural
differentiation of mappings with values in this space. Next, there are two natural locally convex
topologies on \scrM \scrB . One is the topology of setwise convergence generated by the seminorms

\mu \mapsto \rightarrow 
\bigm| \bigm| \mu (B)

\bigm| \bigm| , B \in \scrB ,

and the other one is the topology of duality with the space of bounded \scrB -measurable functions, in
which generating seminorms have the form

\mu \mapsto \rightarrow 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
X

f d\mu 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,
where f is some bounded \scrB -measurable function. The latter is somewhat stronger than the former.
Finally, if X is a completely regular space and \scrB is its Baire or Borel \sigma -algebra, then there is a yet
weaker topology given by duality with the space Cb(X) of bounded continuous functions on X, i.e.,
the topology induced by the seminorms

\mu \mapsto \rightarrow 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
X

f d\mu 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| , f \in Cb(X).

This is precisely the topology relevant for our discussion of Skorohod’s differentiability. Note that this
topology is not comparable on the whole space of measures with the topology of setwise convergence,
but on subsets bounded in variation and on the set of nonnegative measures it is weaker than the
topology of setwise convergence.

All these topologies can be used for analysis of arbitrary families of measures depending on a
parameter (see [12, 50, 51]), but the Skorohod definition (as well as the Fomin definition) deals with
a quite specific situation where the family of measures consists of shifts of a single measure along a
fixed vector, that is, has the form \mu th, where

\mu h(B) := \mu (B + h)

for a measure \mu defined on the Baire \sigma -algebra \scrB a(X) of a locally convex space X (the \sigma -algebra
generated by all continuous functions on X ) or on the broader Borel \sigma -algebra \scrB (X) (the one
generated by all open sets). In terms of integrals, we have\int 

X

f(x)\mu h(dx) =

\int 
X

f(x - h)\mu (dx).

It should be noted that differentiability of such families had already been considered by Pitcher [44]
for distributions of diffusion processes (with constant diffusion coefficients) in the path space. Ho-
wever, Pitcher was dealing with a stronger kind of differentiability, which was a particular case of
Fomin’s differentiability introduced in 1966 in [34] (see also [5, 32, 35]). Precise definitions are
given in the next section.
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ON SKOROKHOD DIFFERENTIABLE MEASURES 1161

2. Notation and terminology. Throughout the paper X will stand for a real locally convex
space. The space of bounded continuous functions on X with its sup-norm is denoted by Cb(X).

We recall some basic concepts connected with Radon measures on locally convex spaces (see [11] or
[26] for details), but the essence of the problems we discuss is such that without significant loss the
reader can assume that we deal with separable Hilbert spaces, as it was in the original construction
of Skorohod. The general framework of locally convex spaces is just more natural for Skorohod’s
differentiability, because it actually simplifies matters making them “coordinate-free”.

A measure on a \sigma -algebra \scrA in a space X will always mean a real (finite) countably additive
measure. A signed measure \mu is the difference of two mutually singular nonnegative measures \mu +

and \mu  - , called its positive and negative parts. The measure | \mu | = \mu + + \mu  - is called the total
variation of \mu and \| \mu \| = | \mu | (X) is called the variation norm of \mu . Convergence in this norm is
called convergence in variation. An equivalent norm is given by \mathrm{s}\mathrm{u}\mathrm{p}A\in \scrA 

\bigm| \bigm| \mu (A)\bigm| \bigm| .
A measure \nu on \scrA is called absolutely continuous with respect to a measure \mu on \scrA if \nu (A) = 0

when | \mu | (A) = 0. This is denoted by \nu \ll \mu , and in this case there is a function \varrho \in L1(| \mu | ),
called the Radon – Nikodym derivative of \nu with respect to \mu , such that \nu is given by density \varrho with
respect to \mu , which is written as \nu = \varrho \cdot \mu .

The Borel \sigma -algebra \scrB (X) of a topological space X is generated by all open sets. The Baire
\sigma -algebra \scrB a(X) is the smallest \sigma -algebra with respect to which all continuous functions are mea-
surable, i.e., it is generated by all sets \{ f > 0\} , where f \in Cb(X). If X is a metric space, then
\scrB (X) = \scrB a(X), but on general topological spaces the Baire \sigma -algebra can be strictly smaller, for
example, this happens if X is an uncountable power of the real line (in other words, the space of all
real functions on an uncountable set with the topology of pointwise convergence).

Borel and Baire measures are measures on Borel and Baire sets, respectively. As noted above,
there is no difference between these two classes of measures on a metric space.

A Borel measure on a topological space X is called Radon if, for every Borel set B and every
\varepsilon > 0, there is a compact set K \subset B such that | \mu | (B\setminus K) < \varepsilon . On a complete separable metric
space, all Borel measures are Radon.

A family \scrM of Radon measures on X is called uniformly tight if, for every \varepsilon > 0, there is
a compact set K such that | \mu | (X\setminus K) < \varepsilon for all \mu \in \scrM . If \scrM is bounded in variation, then
uniform tightness implies that \scrM has compact closure in the weak topology. The converse is true for
complete separable metric spaces, but not for arbitrary spaces (even simple ones such as the space of
rational numbers).

The Sobolev space W 1,1(\BbbR n) consists of integrable functions f such that their generalized partial
derivatives \partial xif are also integrable functions. The space BV (\BbbR n) of functions of bounded variation
consists of integrable functions f such that their generalized partial derivatives \partial xif are bounded
measures (see [53]). For example, the indicator function of [0, 1] belongs to BV (\BbbR ), but not to
W 1,1(\BbbR ), its generalized derivative is the difference of Dirac’s measures at 0 and 1.

Definition 2.1. Let X be a linear space, let \scrA be a \sigma -algebra of subsets of X, and let \mu be a
measure on \scrA . The measure \mu is said to be Fomin differentiable along a vector h \in X such that
A+ th \in \scrA for all A \in \scrA and t \in \BbbR if there is a finite limit

dh\mu (A) := \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

\mu (A+ th) - \mu (A)

t
\forall A \in \scrA .

It follows by the Nikodym theorem (which asserts that a sequence of countably additive measures
on a \sigma -algebra bounded on every set is bounded in variation and that if this sequence converges on
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1162 V. I. BOGACHEV

every set, then the limit is a countably additive measure, see, e.g., [11], \S 4.6) such that A \mapsto \rightarrow dh\mu (A)

is automatically a bounded measure on \scrA absolutely continuous with respect to \mu . It is called the
Fomin derivative of \mu along h. The Radon – Nikodym density \beta \mu h of dh\mu with respect to \mu is called
the logarithmic derivative of \mu along h.

The terminology is explained by the fact that if \mu is a measure on the real line, then it is Fomin
differentiable along 1 if and only if it has an absolutely continuous density \varrho with respect to Lebesgue
measure with \varrho \prime \in L1(\BbbR ) and then d1\mu = \varrho \prime dx and \beta \mu 1 = \varrho \prime /\varrho .

The situation is similar on \BbbR n : a measure \mu on \BbbR n is Fomin differentiable along all basis vectors
ei if and only if \mu has a density \varrho from the Sobolev class W 1,1(\BbbR n), in which case dei\mu has density
\partial xi\varrho and \beta ei\mu = \partial xi\varrho /\varrho .

Thus, Fomin’s differentiability corresponds to the topology of setwise convergence. However, it
was shown in [5] that it yields an a priori stronger differentiability in the total variation norm: one
automatically has

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

\bigm\| \bigm\| \bigm\| \bigm\| \mu th  - \mu 

t
 - tdh\mu 

\bigm\| \bigm\| \bigm\| \bigm\| = 0.

This definition is quite similar to the definition of the partial derivative \partial hf for a function f on a
locally convex space X and a vector h \in X by the equality

\partial hf(x) = \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

f(x+ th) - f(x)

t
,

whenever this finite limit exists.
Yet another convenient description of Fomin’s differentiability is available for Radon measures

on locally convex spaces: such a measure \mu is Fomin differentiable along a vector h if and only if
there is a Radon measure \nu absolutely continuous with respect to \mu such that the integration by parts
formula \int 

X

\partial hf(x)\mu (dx) =  - 
\int 
X

f(x) \nu (dx) (2.1)

holds for all functions f from the class \scrF \scrC (X) of all functions on X of the form f(x) =

= f0
\bigl( 
l1(x), . . . , ln(x)

\bigr) 
, where f0 \in C\infty 

b (\BbbR n) and l1, . . . , ln \in X\ast . In this case we have \nu = dh\mu .

This integration by parts formula can be rewritten without using derivatives as follows:

\int 
X

\bigl[ 
f(x+ th) - f(x)

\bigr] 
\mu (dx) =  - 

t\int 
0

\int 
X

f(x+ sh) \nu (dx) ds (2.2)

for all functions f of the form indicated above, hence, also for all bounded Borel functions f, which
can be also written as

\mu th  - \mu =

t\int 
0

\nu sh ds.

The equivalence of both identities for smooth cylindrical functions f is verified by differentiation
in t. Once identity (2.2) holds for smooth cylindrical functions, it extends to bounded Borel functions,
because Radon measures with equal integrals on cylindrical functions must coincide.
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ON SKOROKHOD DIFFERENTIABLE MEASURES 1163

Definition 2.2. A Radon measure \mu on a locally convex space X is called Skorohod differen-
tiable along a vector h \in X if there exists a Radon measure \nu such that the measures (\mu th  - \mu )/t

converge weakly to \nu as t\rightarrow 0, that is,

\mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow 0

\int 
X

f(x+ th) - f(x)

t
\mu (dx) =  - 

\int 
X

f(x) \nu (dx) \forall f \in Cb(X).

The measure \nu is called the Skorohod derivative of \mu along h and denoted by dh\mu .
We shall see below that it is sufficient that the sequence of measures (\mu tnh  - \mu )/tn be bounded

in variation for some sequence tn \rightarrow 0 of nonzero numbers. Hence it suffices that this sequence be
Cauchy in the weak topology. This was the original definition of Skorohod in the case of Hilbert
spaces (see [49], \S 21), which was followed by the proof of existence of the weak limit \nu . However,
there is a general result of A. D. Alexandroff (see [2] or the modern exposition in [11, 16]) that on
an arbitrary topological space, every sequence of measures \mu n on the Baire \sigma -algebra that is Cauchy
in the weak topology converges weakly to a measure on the Baire \sigma -algebra. Hence on complete
separable metric spaces (we recall that on such spaces all Baire measures are automatically Radon)
the limit measure is always Radon. However, on general spaces the weak limit of a sequence of
Radon measures can fail to be Radon. Nevertheless, we shall see below that such a thing cannot
occur for sequences arising in connection with Skorohod’s differentiation.

Definition 2.3. A Radon measure \mu on a locally convex space X is called continuous along a
vector h if \mathrm{l}\mathrm{i}\mathrm{m}t\rightarrow 0 \| \mu th  - \mu \| = 0.

This property was considered in [5] and later studied in [47] and other papers. The continuity
along h is equivalent to a formally weaker property that for every Borel set B the function t \mapsto \rightarrow \mu (B+

+ th) is continuous. The continuity along h follows from Fomin’s or Skorohod’s differentiability.
Mixed derivatives dh1 . . . dhn\mu and higher order derivatives dnh\mu (in the Fomin or Skorohod

sense) are defined inductively.
The Fourier transform of a Radon measure \mu on a locally convex space X with the topological

dual X\ast is defined by the equality

\widetilde \mu (l) = \int 
X

\mathrm{e}\mathrm{x}\mathrm{p}(il(x))\mu (dx), l \in X\ast .

Obviously, this function can be also defined for any measure \mu defined on the \sigma -algebra generated
by X\ast . It is known that Radon measures with equal Fourier transforms coincide (see [11], \S 7.13).

The convolution of Radon measures \mu and \nu on a locally convex space X is defined (see
[11, p. 146]) by the formula

\mu \ast \nu (B) =

\int 
X

\mu (B  - x) \nu (dx).

It is known that this is also a Radon measure and \widetilde \mu \ast \nu = \widetilde \mu \widetilde \nu , hence \mu \ast \nu = \nu \ast \mu .
Good examples of differentiable measures are Gaussian measures. Recall (see [10]) that a Radon

probability measure \gamma on a locally convex space X is called centered Gaussian if every continuous
linear functional on X is a centered Gaussian random variable with respect to \gamma . The Cameron –
Martin space H of \gamma consists of all vectors h with finite norm

| h| H = \mathrm{s}\mathrm{u}\mathrm{p}
\bigl\{ 
l(h) : l \in X\ast , \| l\| L2(\gamma ) \leq 1

\bigr\} 
.
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This subspace coincides with the set of all vectors h such that \gamma h is equivalent to \gamma . It is readily
verified that it also coincides with the set of vectors of Fomin’s or Skorohod’s differentiability.

The fact that here the set of vectors of differentiability is much smaller than the whole space
(and has measure zero) is not occasional: this is always the case for any nonzero measure on an
infinite-dimensional space.

An immediate corollary of Skorohod’s definition is the integration by parts formula\int 
X

\partial hf(x)\mu (dx) =  - 
\int 
X

f(x) dh\mu (dx)

for every function f \in Cb(X) such that \partial hf(x) exists and is uniformly bounded. However, we shall
see below that this formula remains valid even for Borel functions f integrable with respect to dh\mu 
such that \partial hf exists and is \mu -integrable.

3. Basic properties of Skorohod differentiable measures. Here we give a brief overview of
basic properties of Skorohod differentiable measures, some results are given with proofs, others with
references.

First of all, it is readily verified that if \mu is Skorohod differentiable along vectors h and k, then
it is also differentiable along sh+ tk and

dsh+tk\mu = sdh\mu + tdk\mu .

Next, for any Radon measure \sigma on the same space X, we obtain

dh(\mu \ast \sigma ) = dh\mu \ast \sigma .

If \sigma is a Radon measure on a locally convex space Y, then

d(h,0)(\mu \otimes \sigma ) = dh\mu \otimes \sigma .

Finally, if T : X \rightarrow Y is a continuous affine mapping, then for the image \mu \circ T - 1 of \mu under T we
have

dTh(\mu \circ T - 1) = (dh\mu ) \circ T - 1.

Let us proceed to some less obvious properties.
Theorem 3.1. Let \mu be a Radon measure on a locally convex space X Skorohod differentiable

along a vector h. Then (2.2) holds with \nu equal to its Skorohod derivative dh\nu for all bounded
Borel functions f. Conversely, if there is a Radon measure \nu such that (2.2) holds for all smooth
cylindrical functions f, then \mu is Skorohod differentiable along h and \nu is its Skorohod derivative.

Proof. As explained above, (2.2) for smooth cylindrical functions is equivalent to the same
identity for all bounded Borel functions. If \mu is Skorohod differentiable, then we have (2.1) for
smooth cylindrical functions f. Then (2.2) also holds, which is verified by differentiation in t.

Conversely, if we have (2.2) for smooth cylindrical functions, then it holds for f \in Cb(X), but
for such functions the right-hand side of this equality is differentiable in t and the corresponding
derivative at zero is the integral of  - f against \nu , which shows that \mu is Skorohod differentiable and
\nu is its Skorohod derivative.

Theorem 3.1 is proved.
We shall see below that it suffices to have (2.2) with some Baire measure \nu that is not a priori

Radon, but then automatically such a measure extends to a Radon measure (of course, this may be
of interest only for those who deal with spaces on which not all Baire measures are Radon).
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ON SKOROKHOD DIFFERENTIABLE MEASURES 1165

Corollary 3.1. Suppose that a Radon measure \mu is Skorohod differentiable along a vector h. It
is Fomin differentiable along h if and only if dh\mu \ll \mu , which is also equivalent to the continuity of
dh\mu along h.

Proof. If \mu is Fomin differentiable along h, then dh\mu \ll \mu (see [5], [12] or [25]). Conversely,
if dh\mu is absolutely continuous with respect to \mu , then dh\mu is continuous along h (see [12]), but
then the right-hand side of (2.2) is differentiable in t, because the function under the integral sign is
continuous in s.

It follows that if \mu is twice Skorohod differentiable along h, then it is Fomin differentiable.
Therefore, if \mu is Skorohod differentiable along h, then \mu \ast \mu is Fomin differentiable along h.

Corollary 3.2. A Radon measure \mu on a locally convex space X is Skorohod differentiable along
a vector h is and only if there is a Radon measure \nu such that

\widetilde \nu (l) = il(h)\widetilde \mu (l) \forall l \in X\ast .

In this case, \nu = dh\mu .

Proof. Both implications follow easily from (2.2). If dh\mu exists, then the integration by parts
formula gives the desired equality, since \partial h \mathrm{e}\mathrm{x}\mathrm{p}(il) = il(h) \mathrm{e}\mathrm{x}\mathrm{p}(il). Conversely, if \nu satisfies the
stated equality, then (2.2) holds for f = \mathrm{e}\mathrm{x}\mathrm{p}(il), which is easily verified by differentiation in t. Then
it follows that

\mu th  - \mu =

t\int 
0

\nu sh ds,

which gives our claim.
The following simple observation seems to be new, it is of interest for the following reason: in

general locally convex spaces, where the Prokhorov theorem fails, a weakly convergent sequence
of Radon measures with a Radon limit need not be uniformly tight, but in the specific situation of
measures of the form (\mu th  - \mu )/t the situation is the same as in Polish spaces.

Theorem 3.2. Suppose that a Radon measure \mu on a locally convex space X is Skorohod
differentiable along a vector h. Then the family of measures (\mu th  - \mu )/t, where 0 < | t| \leq 1, is
uniformly tight.

Proof. Let \varepsilon > 0. There is a compact set K \subset X such that | dh\mu | (X\setminus K) < \varepsilon . The set
S = \{ k + sh : k \in K, | s| \leq 2\} is also compact as the image of the compact set K \times [ - 2, 2] under
the continuous mapping (k, s) \mapsto \rightarrow k + sh. Let us show that | \mu th  - \mu | (X\setminus S) \leq \varepsilon | t| if | t| \leq 1. Let
t > 0. It follows from (2.2) that for \nu = dh\mu we have

| \mu th  - \mu | (X\setminus S) \leq 
t\int 

0

| \nu sh| (X\setminus S) ds \leq t \mathrm{s}\mathrm{u}\mathrm{p}
s\in [0,1]

| \nu sh| (X\setminus S).

It remains to observe that

| \nu sh| (X\setminus S) = | \nu | sh(X\setminus S) \leq | \nu | (X\setminus K) \leq \varepsilon ,

because | \sigma h| = | \sigma | h for any measure \sigma , which can be readily seen from the definition of | \sigma | ,
and (X\setminus S)  - sh \subset X\setminus K. The latter is verified as follows: if y  - sh \in K with | s| \leq 1, then
y \in K + sh \subset S. The case t < 0 is similar.

Theorem 3.2 is proved.
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1166 V. I. BOGACHEV

There is a useful characterization of differentiability in terms of conditional measures. We men-
tion here only the formulation with Skorohod’s differentiability, but a similar result holds for Fomin’s
differentiability (see [12], Chapter 3).

We recall (see [11], Chapter 10 or [12], Chapter 1) that for every Radon measure \mu on a locally
convex space X and every finite-dimensional subspace L in X one can find a closed subspace Y
such that X = L \oplus Y is a direct topological sum and there are Radon measures \mu y on L (called
conditional measures), y \in Y, for which

\mu =

\int 
Y

\mu y | \mu | Y (dy),

where | \mu | Y is the projection of | \mu | on Y under the natural projection operator. This representation
is understood in the following way: for every bounded Borel measurable function f on L \oplus Y, the
function

y \mapsto \rightarrow 
\int 
L

f(u, y)\mu y(du)

is Borel measurable on Y and\int 
X

f(x)\mu (dx) =

\int 
Y

\int 
L

f(u, y)\mu y(du) | \mu | Y (dy).

In addition, one has

\| \mu \| =

\int 
Y

\| \mu y\| | \mu | Y (dy),

and conditional measures are unique up to a redefinition for y from a set of | \mu | Y -measure zero.
Theorem 3.3. Let e1, . . . , en be a basis in L. The measure \mu is Skorohod differentiable along

all vectors in L precisely when the Skorohod derivatives dei\mu 
y, i = 1, . . . , n, exist for | \mu | Y -almost

all y and \int 
Y

\| dei\mu y\| | \mu | Y (dy) <\infty .

In this case,

dei\mu =

\int 
Y

dei\mu 
y | \mu | Y (dy).

This criterion implies the following result that is far from being obvious from the definition.
Corollary 3.3. Let \mu be a Radon measure on a locally convex space X Skorohod differentiable

along a vector h. Then its positive part \mu +, its negative part \mu  - and the total variation | \mu | are also
Skorohod differentiable along h. In addition,

\| (dh| \mu | )\| \leq \| dh\mu \| , \| dh\mu +\| \leq \| dh\mu \| , \| dh\mu  - \| \leq \| dh\mu \| .

By using conditional measures and the one-dimensional integration by parts formula, we obtain
the following sharper version of the integration by parts formula.

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 9



ON SKOROKHOD DIFFERENTIABLE MEASURES 1167

Corollary 3.4. Let \mu be a Radon measure on a locally convex space X Skorohod differentiable
along a vector h and let f be a Borel function integrable with respect to | dh\mu | such that \partial hf exists
everywhere and is | \mu | -integrable. Then\int 

X

\partial hf(x)\mu (dx) =  - 
\int 
X

f(x) dh\mu (dx).

Note that this formula is not immediate on the real line where it gives the equality\int 
f \prime (x)\varrho (x) dx =  - 

\int 
f(x) d\varrho (x)

for an everywhere differentiable function f and an integrable function \varrho of bounded variation such
that f \prime \varrho is integrable with respect to Lebesgue measure and f is integrable with respect to d\varrho .

Justification is easily reduced to bounded functions f. Now, if \varrho is continuously differentiable, then
this is a classical result (although, not obvious, because it is rather involved to show that f\varrho is
absolutely continuous on bounded intervals). Finally, the general case follows by using convolutions.

Example 3.1. Suppose that a Radon probability measure \mu on a locally convex space X is
Skorohod differentiable along a vector h and B is a Borel set such that the sections B \cap (\BbbR h + x)

are convex or empty. Then the measure IB \cdot \mu is Skorohod differentiable along h and \| dh(IB \cdot \mu )\| \leq 
\leq 2\| dh\mu \| .

Indeed, if X = \BbbR , \mu is Fomin differentiable, \varrho is the absolutely continuous density of \mu and B
is a bounded interval (a, b), then the generalized derivative of IB\varrho is \varrho (a)\delta a  - \varrho (b)\delta b + IB\varrho 

\prime , so the
variation of this measure does not exceed

2 \mathrm{s}\mathrm{u}\mathrm{p}
x

\bigm| \bigm| \varrho (x)\bigm| \bigm| + \| \varrho \prime \| L1 \leq 3\| \varrho \prime \| L1 .

The same is true if (a, b) is a ray. The case of Skorohod’s differentiability is similar, moreover, it can
be deduced from the considered case by using approximations with convolutions. The general case
follows from this estimate for differentiable conditional measures \mu y. Note that the same reasoning
applies if the indicated sections are unions of k intervals with some fixed k.

4. Setwise characterizations of Skorohod’s differentiability. In this section, we discuss
various properties of functions t \mapsto \rightarrow \mu (A+ th). We know that the continuity of such functions (for a
given vector h) is the continuity of \mu along h, and their differentiability is Fomin’s differentiability.
Another possible property is analyticity (see [12] and [25]). The place of Skorohod’s differentiability
in these terms is this.

Theorem 4.1. A Radon measure \mu on a locally convex space X is Skorohod differentiable along
a vector h precisely if, for every Borel set A, the function t \mapsto \rightarrow \mu (A + th) is Lipschitz on [0, 1]. In
this case, such functions have a common Lipschitz constant.

Proof. There are several different proofs of this fact (of course, one implication is easy and
follows from (2.2) for indicator functions of Borel sets). Probably, the shortest one is based on
Theorem 3.3 about conditional measures, but here we include a more naive justification in the spirit
of the original proof in [8] where this fact was first proved. However, the proof below is slightly
shorter.

If \mu has compact support K, the proof is almost immediate. From the Nikodym theorem we
conclude that the measures (\mu th  - \mu )/t with t \in (0, 1] are uniformly bounded in variation. These
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measures are concentrated on the compact set

S = K + I, where I = \{ sh : | s| \leq 1\} .

Hence by the Alaoglu – Banach – Bourbaki theorem about weak-\ast compactness of balls in duals to
Banach spaces (combined with the fact that the dual to C(S) can be identified with the space of
Radon measures on S ) there is a Radon measure \nu on S that is a limit point of the sequence of
measures n(\mu h/n  - \mu ) in the weak topology. It follows that \widetilde \nu (l) = \mathrm{e}\mathrm{x}\mathrm{p}(il(h))\widetilde \mu (l) for all l \in X\ast ,

hence \nu is the Skorohod derivative of \mu along h. By construction, the derivative is concentrated
on S, but the same reasoning shows that it is concentrated on every compact set K + \varepsilon I, hence on
the their intersection K.

We now turn to the general case. We have \| \mu th  - \mu \| \leq Ct for some C and all | t| \leq 1. Take
increasing compact sets Kn with | \mu | (X\setminus Kn) \rightarrow 0. Next, construct inductively larger increasing
compact sets Sn such that Sn+1 = Kn+nI, where I = \{ sh : | s| \leq 1\} . It is clear that S =

\bigcup \infty 
n=1 Sn

is invariant under translations by all vectors th and | \mu | (X\setminus S) = 0. Let us set

fn+1(x) =

1/2\int 
 - 1/2

ISn+1(x+ sh) ds.

Then 0 \leq fn \leq 1, fn(x) = 1 if x \in Sn, fn(x) = 0 if x \not \in Sn+2, and\bigm| \bigm| f(x+ th) - f(x)
\bigm| \bigm| \leq 2| t| for all t.

The measures \mu n = fn \cdot \mu given by densities fn with respect to \mu converge to the original measure
\mu in variation and \mu n+1 = \mu n on Sn. In addition,\bigm\| \bigm\| (\mu n)th  - \mu n

\bigm\| \bigm\| \leq 
\bigl( 
C + 2\| \mu \| 

\bigr) 
| t| =M | t| ,

which is seen from the equality

(fn \cdot \mu )th  - f\cdot \mu = (fn \cdot \mu )th  - fn \cdot \mu th + fn \cdot \mu th  - fn \cdot \mu 

and the estimates \bigm\| \bigm\| (fn \cdot \mu )th  - fn \cdot \mu th
\bigm\| \bigm\| \leq 2| t| \| \mu \| 

and \| \mu th  - \mu \| \leq C, | fn| \leq 1. Since the measure \mu n with compact support in Sn+2 is Skorohod
differentiable along h, its Skorohod derivative is concentrated on Sn+2 and \| dh\mu n\| \leq M.

We also observe that dh\mu n+2 and dh\mu n+1 coincide on Sn. Indeed, let \psi be a bounded Borel
function vanishing outside Sn + I/2 such that the functions t \mapsto \rightarrow \psi (x + th) are continuous for all
x \in X. Then, for each t \in [0, 1/2], we have

\int 
X

\bigl[ 
\psi (x+ th) - \psi (x)

\bigr] 
\mu n+1(dx) =

t\int 
0

\int 
X

\psi (x+ sh) dh\mu n+1(dx) ds,

and the same is true for \mu n+2, but the left-hand sides for \mu n+1 and \mu n+2 coincide. By the continuity
of \psi along h the right-hand sides are differentiable in t, hence their derivatives coincide, which
means that \psi has equal integrals against dh\mu n+1 and dh\mu n+2. So, in order to prove the coincidence
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of both measures on Sn it suffices to verify the following fact: if \sigma is a Radon measure such that
the integral against \sigma for every function \psi with the stated properties is zero, then | \sigma | (Sn) = 0. If
not, there is a compact set K \subset Sn with \sigma (K) > 0 or \sigma (K) < 0. We can assume that \sigma (K) > 0.

There is a closed hyperplane Y such that X is the direct topological sum of Y and \BbbR h. By using this
decomposition, we can construct a sequence of Borel functions \psi n with n > 1 such that 0 \leq \psi n \leq 1,

\psi n(x) = 1 if x \in K, \psi n(x) = 0 if x \not \in Sn + I/2, the functions t \mapsto \rightarrow \psi n(x+ th) are continuous for
every x \in X, and \psi n(x) \rightarrow IK(x) for all x. To this end, we set

\theta (y, t) = \mathrm{i}\mathrm{n}\mathrm{f}
\bigl\{ 
s \geq 0 : y + th+ sh \in Kory + th - sh \in K

\bigr\} 
, y \in Y, t \in \BbbR ,

\psi n = 1 - \mathrm{m}\mathrm{i}\mathrm{n}(n\theta , 1).

When y is fixed, the function \theta (y, t) of t behaves as follows: it vanishes on some compact set and is
of the form c - t or c+ t on the intervals of the complement of this compact set (more precisely, c - t
on the left halves of such bounded intervals and c+ t on the right halves). Note that if \psi n(y, t) > 0,

then \theta (y, t) < 1/n, so there is s \in [0, 1/n) such that either y + th+ sh \in K or y + th - sh \in K,

which means that y+th \in K+I/2 \subset Sn+I/2. Thus, \psi n = 0 outside Sn+I/2. If y+th \in K, then
\theta (y, t) = 0. If \theta (y, t) = \alpha > 0, then n\theta (y, t) > 1 for all n large enough, so that \psi n(y, t) = 0. By
the dominated convergence theorem the integral of \psi n against \sigma is positive for all n large enough,
which is a contradiction.

Finally, we observe that | dh\mu n| (X\setminus S) = 0. Indeed, otherwise there is a compact set K \subset X\setminus S
with dh\mu n(K) > 0 or dh\mu n(K) > 0. There is an absolutely convex neighborhood of zero V such
that (K + V ) \cap (Sn+2 + V ) = \varnothing . There is also a bounded continuous function f with support in
K + V such that its integral against dn\mu n is nonzero. However, the integrals of f(x+ th) and f(x)
against \mu n are zero for sufficiently small t, because f(x) = f(x+ th) = 0 for all x \in Sn+2, so by
differentiating (2.2) we arrive at a contradiction.

After these preparations we obtain a bounded measure \nu on the set S such that on every fixed set
Sn this measure coincides with dh\mu k for all k \geq n + 2. We extend \nu by zero outside S. It follows
that (2.2) holds for every bounded Borel function f vanishing outside some Sn. Since the measures
\mu th, \mu , \nu are concentrated on S, we conclude that (2.2) holds for all bounded Borel functions, so that
\nu is the Skorohod derivative of \mu along h.

Theorem 4.1 is proved.
Corollary 4.1. Let \{ \mu \alpha \} be a net of Radon measures on a locally convex space X Skorohod

differentiable along vectors h\alpha such that these vectors converge weakly to a vector h and there is a
Radon measure \mu with \widetilde \mu (l) = \mathrm{l}\mathrm{i}\mathrm{m}

\alpha 
\widetilde \mu \alpha (l) for every l \in X\ast . Suppose also that

\mathrm{s}\mathrm{u}\mathrm{p}
\alpha 

\| dh\alpha \mu \alpha \| \leq C <\infty .

Then \mu is Skorohod differentiable along h and \| dh\mu \| \leq C.

Proof. Suppose first that X = \BbbR n. Then for every function f that is a linear combination of
functions of the form \mathrm{e}\mathrm{x}\mathrm{p}(i(v, x)) we have\int 

\BbbR n

\bigl[ 
f(x - th) - f(x)

\bigr] 
\mu (dx) = \mathrm{l}\mathrm{i}\mathrm{m}

\alpha 

\int 
\BbbR n

\bigl[ 
f(x - th) - f(x)

\bigr] 
\mu \alpha (dx) =

=

t\int 
0

\int 
\BbbR n

f(x - sh) dh\alpha \mu \alpha (dx) ds,
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which does not exceed C| t| \mathrm{s}\mathrm{u}\mathrm{p}x | f(x)| in absolute value. Hence this bound extends to bounded
continuous functions and further to bounded Borel functions. Therefore, in the general case we obtain
the same estimate for functions of the form f(l1, . . . , ln), where f is a bounded Borel function and
li \in X\ast . It follows that \| \mu th  - \mu \| \leq C| t| .

Corollary 4.2. Let \mu be a Radon measure on a locally convex space X and h \in X. Suppose that
there is a measure \nu on the \sigma -algebra generated by X\ast such that identity (2.2) holds for all smooth
cylindrical functions. Then \nu uniquely extends to a Radon measure that is the Skorohod derivative
of \mu along h.

Proof. It follows from the assumption that \| \mu th  - \mu \| \leq | t| \| \nu \| . By the theorem \mu is Skorohod
differentiable along h and its Skorohod derivative dh\mu is a Radon measure. Now (2.2) yields the
equality \widetilde \nu = \widetilde dh\mu , hence \nu = dh\mu on the the \sigma -algebra generated by X\ast . A Radon extension is
unique, because Radon measures with equal Fourier transforms coincide.

It also follows in the same manner that in Corollary 3.2 it suffices to have the measure \nu only on
the \sigma -algebra generated by X\ast .

Corollary 4.3. If \mu is a Radon measure on a locally convex space X such that for some h \in X

there is a sequence of nonzero numbers tn \rightarrow 0 with the property that, for every bounded continuous
function f on X, the sequence of integrals of f with respect to the measures (\mu tnh  - \mu )/tn is
bounded, then \mu is Skorohod differentiable along h.

Proof. By the Banach – Steinhaus theorem the norms of (\mu tnh  - \mu )/tn in Cb(X)\ast are uniformly
bounded by some number C, but these are exactly the variations of (\mu tnh  - \mu )/tn. Let us take the
standard Gaussian measure \gamma on the real line and denote by \gamma \varepsilon its image under the function t \mapsto \rightarrow \varepsilon t.

The image of \gamma \varepsilon under the mapping t \mapsto \rightarrow th will be denoted by \sigma \varepsilon . Let \mu \varepsilon = \mu \ast \sigma \varepsilon . Then

\widetilde \mu \varepsilon (l) = \widetilde \mu (l)\widetilde \sigma \varepsilon (l) = \widetilde \mu (l)\widetilde \sigma 1(\varepsilon l) \rightarrow \widetilde \mu (l)
pointwise as \varepsilon \rightarrow 0. Obviously, the measures \mu \varepsilon are Fomin differentiable along h. Let us show that
\| dh\mu \varepsilon \| \leq C. For any function f \in Cb(X), we have

t - 1
n

\int 
X

\bigl[ 
f(x - tnh) - f(x)

\bigr] 
\mu \varepsilon (dx) =

= t - 1
n

\int 
\BbbR 

\int 
X

\bigl[ 
f(x - tnh+ \varepsilon sh) - f(x+ \varepsilon sh)

\bigr] 
\mu (dx) \gamma (ds) =

=

\int 
\BbbR 

\int 
X

f(x - \varepsilon sh)t - 1
n

\bigl[ 
\mu tnh  - \mu 

\bigr] 
(dx) \gamma (ds),

which is estimated in absolute value by C \mathrm{s}\mathrm{u}\mathrm{p}x | f(x)| . Hence the integral of f against dh\mu \varepsilon does
not exceed C \mathrm{s}\mathrm{u}\mathrm{p}x | f(x)| , which implies the announced bound.

We now show that the integration by parts formula characterizing Skorohod’s differentiability is
equivalent to an inequality. This is a complete analog of the classical characterization of functions in
BV (\BbbR ) by the estimate \int 

\varphi \prime (x)f(x) dx \leq C \mathrm{s}\mathrm{u}\mathrm{p}
x

| \varphi (x)| 

for all smooth compactly supported functions \varphi .
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Corollary 4.4. A Radon measure \mu on a locally convex space X is Skorohod differentiable along
a vector h \in X precisely when there is a number C \geq 0 such that\int 

X

\partial h\varphi (x)\mu (dx) \leq C \mathrm{s}\mathrm{u}\mathrm{p}
x

| \varphi (x)| \forall \varphi \in \scrF \scrC (X).

Proof. We have

\int 
X

\bigl[ 
\varphi (x - th) - \varphi (x)

\bigr] 
\mu (dx) =

\int 
X

t\int 
0

\partial h\varphi (x - sh) ds \mu (dx) =

=

t\int 
0

\int 
X

\partial h\varphi (x - sh)\mu (dx) ds,

which is estimated by Ct \mathrm{s}\mathrm{u}\mathrm{p}x | \varphi (x)| for every \varphi \in \scrF \scrC (X) and t \geq 0. Therefore, we have

\| \mu th  - \mu \| \leq C| t| .

Corollary 4.5. A Radon measure \mu on a locally convex space X is infinitely differentiable along
a vector h \in X (in Fomin’s or Skorohod’s sense) precisely when there are numbers Cn \geq 0 such
that \int 

X

\partial nh\varphi (x)\mu (dx) \leq Cn \mathrm{s}\mathrm{u}\mathrm{p}
x

| \varphi (x)| \forall \varphi \in \scrF \scrC (X).

Proof. We conclude that dh\mu exists and continue inductively using the integration by parts
formula. Fomin’s differentiability follows, since a measure twice Skorohod differentiable is Fomin
differentiable.

Once the situation with the Lipschitz property is clarified, it is natural to ask about absolute
continuity. Similarly to the Lipschitz property, one can think of the absolute continuity of the
mapping t \mapsto \rightarrow \mu th with values in the Banach space of measures and the absolute continuity of scalar
functions t \mapsto \rightarrow \mu (A+ th). Moreover, such absolutely continuity can be required on an interval or on
the whole real line. These subtle and interesting questions had remained open for quite a long time
until A. Shaposhnikov published his short note [48] with complete proofs of the following results.
We reproduce here the proof of only one of these results, since it is quite illuminating.

Theorem 4.2. A Radon measure \mu on a locally convex space X is Skorohod differentiable along
a vector h if and only if the mapping t \mapsto \rightarrow \mu th with values in the Banach space of Borel measures
equipped with the total variation norm is absolutely continuous on the interval [0, 1].

Proof. By the definition of absolute continuity, for every \varepsilon > 0 there is \delta > 0 such that, for any
disjoint intervals [s1, t1], . . . , [sk, tk] in [0, 1] of total length

k\sum 
i=1

| ti  - si| < \delta ,

we have
k\sum 

i=1

\| \mu tih  - \mu sih\| \leq \varepsilon .
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We show that for every Borel set A in X the function t \mapsto \rightarrow \mu (A - th) is Lipschitz on [0, 1]. To this
end, we employ the following simple, but useful observation due to G. M. Fichtenholz (see [33] or
[27], Exercise 4.5.18): if f is a function on the interval [0, 1] such that, for every \varepsilon > 0, there is

\delta > 0 with the property that
\sum n

i=1

\bigm| \bigm| f(bi) - f(ai)\bigm| \bigm| < \varepsilon for every finite collection of intervals [ai, bi]

in [0, 1] (possibly, overlapping) with
\sum n

i=1
| bi  - ai| < \delta , then f is Lipschitz.

Given \varepsilon > 0, we take the corresponding \delta \in (0, 1). Then, for any finite collection of intervals
[a1, b1], . . . , [ak, bk] (possibly, overlapping) in [0, 1] with

k\sum 
i=1

| ai  - bi| < \delta < 1,

we can pick numbers c1, c2, . . . , ck such that the intervals\bigl[ 
a1 + c1, b1 + c1

\bigr] 
,
\bigl[ 
a2 + c2, b2 + c2

\bigr] 
, . . . ,

\bigl[ 
ak + ck, bk + ck

\bigr] 
also belong to [0, 1], but are disjoint (here it is important that \delta < 1). Then

k\sum 
i=1

\bigm| \bigm| \mu (A - aih) - \mu (A - bih)
\bigm| \bigm| \leq k\sum 

i=1

\| \mu aih - cih  - \mu bih - cih\| \leq \varepsilon .

Therefore, our function t \mapsto \rightarrow \mu (A - th) is Lipschitz on [0, 1].

Theorem 4.2 is proved.
Theorem 4.3. Let \mu be a Radon measure on a locally convex space X and h \in X. The

following conditions are equivalent:

(i) for each Borel set A \subset X, the function t \mapsto \rightarrow \mu (A+ th) is absolutely continuous on [0, 1];
(ii) for each open set U \subset X, the function t \mapsto \rightarrow \mu (U + th) is absolutely continuous on [0, 1];
(iii) for each bounded Borel function f on X, the function

t \mapsto \rightarrow 
\int 
X

f(x)\mu th(dx) =

\int 
X

f(x+ th)\mu (dx)

is absolutely continuous on [0, 1].

Remark 4.1. If the measure \mu is compactly supported, then the properties specified above are
also equivalent to the absolute continuity of the functions t \mapsto \rightarrow \mu (K + th) for all compact sets K.

The reader may wonder why the conditions in (i) – (iii) are not symmetric with respect to t unlike
the definition of differentiability, in which t of any sign is allowed. However, a closer look reveals
that no symmetry is lost, because for A we can also take A - h, so that A - th = (A - h)+(1 - t)h
with nonnegative 1 - t for t \in [0, 1].

It should be noted that the equivalences mentioned in the previous theorem do not include the
assertion that \mu is Skorohod differentiable. As shown in [48] by an explicit (but highly nontrivial
example), they do not imply differentiability.

Theorem 4.4. There is a Borel probability measure \mu on the real line such that the functions
t \mapsto \rightarrow \mu (A  - t) are absolutely continuous on the interval [0, 1] for all Borel sets A, but not all these
functions are Lipschitz, so that \mu is not Skorohod differentiable.
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The corresponding example constructed in [48] is as follows (we omit the details of verification
that are unexpectedly involved and can be found in [48]). For every m \in \BbbN we set \varrho m(x) = \mathrm{s}\mathrm{i}\mathrm{n}2mx

and
\varrho (x) := (m5/32m) - 1\varrho m(x), x \in 

\bigl[ 
2\pi am, 2\pi (am + 2m)

\bigr] 
,

where am are natural numbers picked such that the distances between the indicated intervals are
greater than 100\pi , i.e., am+1  - am > 2m + 50. At all remaining points we set \varrho (x) := 0.

Thus, the absolute continuity of the functions t \mapsto \rightarrow \mu (A  - th) on all intervals is weaker than
the Skorohod differentiability. It turns out that the situation is different if we impose the absolute
continuity on the whole real line in place of every compact interval.

Theorem 4.5. Let \mu be a Radon measure on a locally convex space X and h \in X. Suppose
that, for every Borel set A \subset X, the function t \mapsto \rightarrow \mu (A - th) is absolutely continuous on the entire
real line in the sense that, for every \varepsilon > 0, there exists \delta > 0 such that, for every finite set of

disjoint intervals [s1, t1], [s2, t2], . . . , [sk, tk] with total length
\sum k

i=1
| tk  - sk| < \delta , the inequality\sum k

i=1

\bigm| \bigm| \mu (A - tih) - \mu (A - sih)
\bigm| \bigm| < \varepsilon holds. Then the measure \mu is Skorohod differentiable along h.

The proof of this result also employs the Fichtenholz observation.
5. The classes BV and SBV. In the last two decades, there has been a growing interest in

analogs of classes BV for measures on infinite-dimensional spaces, introduced in [36, 37] and further
studied by many authors, see [3, 4, 13, 22 – 24, 28 – 31, 38, 39, 43, 45, 46], and related constructions
of surface measures appearing in connection with such classes. About surface measures associated
with differentiable measures, see [1, 12, 15, 21, 52]; note also that Skorohod suggested a construction
of surface measures in [49].

The characterization of Skorohod differentiable measures on \BbbR n as measures with densities from
the class BV (\BbbR n) of functions of bounded variation leads naturally to the idea of defining classes BV
on infinite-dimensional spaces via Skorohod differentiable measures. The idea is this: for a fixed nice
reference measure \mu (say, a Gaussian measure), a function f is of bounded variation if the measure
f \cdot \mu is Skorohod differentiable. Actually, even two classes of functions appear depending on whether
the corresponding derivatives are vector measures of bounded variation or bounded semivariation.
Let us recall that a measure \Lambda with values in a separable Hilbert space H defined on \scrB (X) is said
to be of bounded semivariation if every scalar measure \Lambda (k) = (k,\Lambda ) is countably additive. It is
known that in this case

V (\Lambda ) = \mathrm{s}\mathrm{u}\mathrm{p}
| k| H\leq 1

\| \Lambda (k)\| <\infty .

However, this does not mean that \Lambda is of bounded variation defined by

V ar(\Lambda ) = \mathrm{s}\mathrm{u}\mathrm{p}
n\sum 

i=1

| \Lambda (Bi)| H ,

where sup is taken over all finite partitions of X into disjoint Borel sets Bi.

We first consider the case of Gaussian reference measures. Suppose that \gamma is a centered Radon –
Gaussian measure on a locally convex space X and H is its Cameron – Martin space. Every vector
h \in H generates a measurable linear functional \widehat h that belongs to the closure of X\ast in L2(\gamma ) and is
defined by

l(h) =

\int 
X

l(x)\widehat h(x) \gamma (dx), l \in X\ast .
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For example, if \gamma is the countable power of the standard Gaussian measure on \BbbR , then \widehat h(x) =

=
\sum \infty 

n=1
hnxn, h = (hn) \in l2. The series above converges in L2(\gamma ) and also almost everywhere.

Definition 5.1. The class BV (\gamma ) consists of all functions f \in L1(\gamma ) such that f\widehat h \in L1(\gamma ) for
all h \in H and there is an H -valued measure \Lambda f of bounded variation satisfying the identity\int 

X

\varphi (x) (\Lambda f, h)H(dx) =  - 
\int \bigl[ 

f(x)\partial h\varphi (x) - \widehat h(x)f(x)\varphi (x)\bigr] \gamma (dx) (5.1)

for all \varphi \in \scrF \scrC (X) and all h \in H.

It is easy to show that the Sobolev class W 1,1(\gamma ) is contained in BV (\gamma ) and \Lambda f = DHf \cdot \gamma .
Definition 5.2. The class SBV (\gamma ) consists of all functions f \in L1(\gamma ) such that f\widehat h \in L1(\gamma )

for all h \in H and there is an H -valued measure \Lambda f of bounded semivariation satisfying (5.1).
In the finite-dimensional case the classes BV (\gamma ) and SBV (\gamma ) coincide as sets, but their norms

are different. Even for smooth functions f, where \Lambda f is given by a vector density DHf with
respect to \gamma , the BV -norm may be much larger, since it involves the integral of | DHf | H , while the
SBV -norm deals with the integrals of | \partial hf | with | h| \leq 1.

The space BV (\gamma ) is Banach with the norm

\| f\| BV = \| f\| 1 +\mathrm{V}\mathrm{a}\mathrm{r}(\Lambda f).

The space SBV (\gamma ) is Banach with the norm

\| f\| SBV = \| f\| 1 + V (\Lambda f).

We now consider any differentiable reference measures. Let H be a separable Hilbert space
continuously embedded into a locally convex space X.

Let us observe that for any measure \sigma on X Skorohod differentiable along all vectors in H we
obtain an H -valued measure D\sigma defined by the equality\bigl( 

D\sigma (B), h
\bigr) 
H

= dh\sigma (B).

As noted above, this measure is automatically of bounded semivariation. If H is infinite-dimensional
and \sigma is not zero, then the measure D\sigma has unbounded variation (see [12], Proposition 7.3.2).
However, if D\sigma is regarded as an X -valued measure and X is a Banach space, then under broad
assumptions this X -valued measure has bounded variation (e.g., if the embedding H \rightarrow X is
absolutely summing, see [11], Chapter 7). If \mu is a centered Gaussian measure and H is its Cameron –
Martin space, then D\mu as an X -valued measure has vector density  - x with respect to \mu .

We now fix a Radon probability measure \mu on a locally convex space X Fomin differentiable
along all vectors from a separable Hilbert space H continuously embedded into X. Set

MH(\mu ) =
\bigl\{ 
f \in L1(\mu ) : f\beta \mu h \in L1(\mu ) \forall h \in H

\bigr\} 
.

Definition 5.3. Let

SV (\mu ) =
\bigl\{ 
f \in L1(\mu ) : the Skorohod derivative dh(f \cdot \mu ) exists for all h \in H

\bigr\} 
,

SBV (\mu ) = SV (\mu ) \cap MH(\mu ).
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In other words, the class SBV (\mu ) consists of all functions f \in L1(\mu ) for which

\mathrm{s}\mathrm{u}\mathrm{p}
| h| \leq 1

| f\beta h| L1(\mu ) <\infty 

and there exists an H -valued measure \Lambda f of bounded semivariation such that the Skorohod derivative
dh(f \cdot \mu ) exists and equals (\Lambda f, h)H + f\beta h\mu for each h \in H.

It follows from Example 3.1 that if V is a Borel convex set, then its indicator function IV belongs
to SBV (\mu ).

Definition 5.4. Let BV (\mu ) be the class of all functions f \in SBV (\mu ) such that the H -valued
measure \Lambda f has bounded variation.

Theorem 5.1. The set MH(\mu ) is a Banach space with the norm

\| f\| M := \| f\| L1(\mu ) + \mathrm{s}\mathrm{u}\mathrm{p}
| h| H\leq 1

\| f\beta \mu h\| L1(\mu ).

Theorem 5.2. (i) The set SV (\mu ) is a Banach space with the norm

\| f\| SV := \| f\| L1(\mu ) + \mathrm{s}\mathrm{u}\mathrm{p}
| h| H\leq 1

\| dh(f \cdot \mu )\| ,

and for every function f \in SV (\mu ) there is an H -valued measure D(f \cdot \mu ) of bounded semivariation
such that dh(f \cdot \mu ) =

\bigl( 
D(f \cdot \mu ), h

\bigr) 
H

for all h \in H.

(ii) The set SBV (\mu ) is a Banach space with the norm

\| f\| SBV := \| f\| M + \| f\| SV ,

and for every function f \in SBV (\mu ) there is an H -valued measure \Lambda f of bounded semivariation
such that dh(f \cdot \mu ) = (\Lambda f, h)H + f \cdot dh\mu for all h \in H.

Theorem 5.3. The set BV (\mu ) is a Banach space with the norm

\| f\| BV := \| f\| SBV + \| \Lambda f\| .

See [22 – 24] for the proofs.
I would like to close this discussion by mentioning a number of challenging open problems

connected with Skorohod’s differentiability of measures. Probably, the most intriguing one concerns
the so-called logarithmically concave measures (which are called convex measures in my book [11],
although this term is also used in the literature for some broader class of measures). Let us recall
that a Radon probability measure \mu on a locally convex space X is called logarithmically concave
(log-concave) if for all compact sets A and B one has

\mu (tA+ (1 - t)B) \geq \mu t(A)\mu 1 - t(B) \forall t \in [0, 1].

This is equivalent to the following: for every continuous linear operator T : X \rightarrow \BbbR n the induced
measure \mu \circ T - 1 is either given by a density of the form \mathrm{e}\mathrm{x}\mathrm{p}( - V ) with a convex function V or
is concentrated on a proper affine subspace and is given there by such a density. It was shown
by [41] that every absolutely continuous log-concave measure on \BbbR n is Skorohod differentiable
along all vectors, i.e., has a density of class BV. Therefore, if a log-concave measure on a finite-
dimensional space is not a Dirac measure, it must have nonzero vectors of differentiability. It is a
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long-standing open problem whether the same is true in infinite dimensions. However, the following
nice inequality was established by [41]: if a log-concave measure \mu on a locally convex space is
Skorohod differentiable along a vector h, then

\| \mu h  - \mu \| \geq 2 - \mathrm{e}\mathrm{x}\mathrm{p}( - \| dh\mu \| /2).

It follows from this universal bound that dh\mu exists provided that \mu th is not mutually singular with
\mu for some t \not = 0. Obviously, the converse is also true. On differentiability of log-concave measures,
see also [42]. We recall that log-concave measures on Hilbert spaces are weak limits of sequences
of uniform distributions on finite-dimensional convex compact sets (see [16], Exercise 2.7.52). So
for the study of differentiability of log-concave measures on infinite-dimensional spaces it would be
useful to look for possible uniforms bounds for the Skorohod derivatives of uniform distributions on
finite-dimensional convex bodies.

Another interesting open question concerns the subspace of Skorohod differentiability of general
measures. It is known (see [6, 7, 9] and [12], Chapter 5) that for any nonzero Radon measure \mu on a
locally convex space X the set DC(\mu ) of all vectors in X along which \mu is Skorohod differentiable
is a linear space that can be equipped with the norm \| h\| DC

= \| dh\mu \| with respect to which it is
a Banach space whose closed unit ball is compact in X. The subspace D(\mu ) of vectors of Fomin
differentiability is a closed linear subspace in DC(\mu ). If X is a Fréchet space (say, a separable
Hilbert space), then D(\mu ) is separable with this norm

\bigl( 
and isometric to a closed subspace in L1(\mu )

\bigr) 
.

However, it is not known whether DC(\mu ) is always separable for measures on Hilbert spaces.
Skorohod differentiable measures are involved in the study of distributions of functionals on

infinite-dimensional spaces and fractional Besov-type classes on such spaces, see [14, 17 – 20, 40]. An
interesting problem is connected with extensions of Sobolev and BV classes from infinite-dimensional
domains. Skorohod differentiable measures fit naturally this framework, and one can expect that
further investigation of their properties will be fruitful and inspiring.

I am grateful to Alessandra Lunardi, Michael Röckner and Alexander Shaposhnikov for fruitful
discussions of Skorohod’s differentiability of measures.
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