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CONDITION FOR INTERSECTION OCCUPATION MEASURE
TO BE ABSOLUTELY CONTINUOUS*

YMOBA ABCOJIFOTHOI HENNEPEPBHOCTI MIPU BIJABIJYBAHb IEPETHUHIB

Given the iid. R%-valued stochastic processes Xi(t),...,X,(t), p > 2, with the stationary increments, a minimal
condition is provided for the occupation measure

e (B) = / 15(X1(s1) — X2(52), -, Xpo1(sp-1) — Xp(sp))ds1...dsp, BC R

[0,t]P

to be absolutely continuous with respect to the Lebesgue measure on RUP=D An isometry identity related to the resulting
density (known as intersection local time) is also established.

JIi1s He3aeKHUX OIHAKOBO po3nofinernx RY -3naunmx pumaaxosux mpomnecie X1 (t), ..., Xp(t), p > 2, 3i cranionapaumu
MPUPOCTaMU HABEIECHO MiHIMaJbHY YMOBY, KOJIHU Mipa Bi/IBilyBaHb IIEPETHHIB

pe(B) = / 15(X1(s1) — X2(s2), -+, Xp—1(sp—1) — Xp(sp))ds1 ...ds,, B C RV,

[0,¢]P

abcomoTHO HemepepBHa BigHocHo Mipu Jlebera ma R*P~1). Takox I0BeIEHO {30METPHUHY TOTOXKHICTH, TOB’SI3aHy i3
BiJIIOBITHOIO LIITBHICTIO (B1IOMOIO SIK JIOKaJbHUI Yac IEPETUHIB).

1. Main theorem. Let X(t) be a stochastic process taking values in RY with X (0) = 0 and let
pi(x) (z € RY) be the density function of X (¢). Assume that, for any 0 < s < t,

X(t) - X(s) £ X(t - s). (1.1)
Let Xi(t),...,X,(t) be independent copies of X (t). Given t1,...,t, > 0 and x € R¥P~1) the
intersection local time «(t1,. ..,y x) of Xi(t),..., X,(t) formally written as
t1 lp
Oé(tl, e ,tp, X) = / e / 5X(X1(Sl) — XQ(SQ), ey prl(spfl) — Xp(Sp))dsl e dSp (12)
0 0

is defined as Radon—Nikodym derivative of the occupation measure

131 tp
/’Ltly---ytp(B) = /.../1B(X1(81) —XQ(SQ),...,Xp_l(Sp_l) —Xp(sp))dsl...dsp (1.3)
0 0

with respect to the Lebesgue measure on R¥P~1). The most-investigated setting is when X (t) is
a Brownian motion. The criteria on the mutual intersection of independent Brownian motions was
completed by Dvoretzky, Erdés and Kakutani [3, 4] in 1950s. Their work was followed by the
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extensive investigations either on the trajectory properties of the Brownian intersection local times
(see, e.g., [1, 7, 8]), or on the extension to some other stochastic processes (see, e.g., [2, 5, 6]).

A critical step to construct intersection local times is to establish the absolute continuity of
fity,...t,(-) with respect to the Lebesgue measure on R¥P~D. In literature, this is mostly done
either for Gaussian processes [2, 6] or for Markov processes [5] with Gaussian/Markovian pro-
perty being used as the main tool. In this short notes, we carry this step out without the help from
Gaussian/Markovian property. The main result of this paper is the following theorem.

Theorem 1.1. Under (1.1), assume that there exists 0 > 0 such that

00 p
/ /e_tht(:U)ds dr < 0. (1.4
re L0
Then
P {Mtl,...,tp is absolutely continuous for all ty,...,t, > 0} =1. (1.5)
Further, the density a(ty, ..., t,,x) given in (1.2) lives in L*-space, i.e.,
P / [a(tl,...,tp,x}zdx<ooforalltl,...,tpzo =1 (1.6)
Rd(p—1)
and satisfies the isometry identity

P J

E / [a(tl,...,tp,x)]zdxz/ | O/(tj—s){ps(:v)—l—ps(—x)}ds e ()

Rd(p—1) Rrd LI 1

SJorany ty,...,t, > 0.
Remark1.1. In the special case, when X(¢) is symmetric, i.e., X (—t) 4 X(t) (or ps(x) =
= ps(—x)) for every t > 0, the isometry identity (1.7) becomes

p
2dx = 2P :— 8)ps(x)ds| dx. .
E / [a(ty, ... tp,x)]"dx =2 / jl;[lo/(tj )ps(z)ds| d (1.8)

Rd(p—1) R4

Proof of Theorem 1.1. For any measure ;1 on R4P~1) its Fourier transform is defined as

p—1
A, Apm1) = / exp iZ)\jxj p(dxy ... dxp_1).
R(p—1) j=1

For any 6 > 0, define the random measure

P
wo(B) = / exp{ —0 Z tj ¢ fty,..t, (B)dty ... dt,.
R+ =
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Notice the fact that

p
Piroty() S expQ 0> i b pg(), tr,...,tp >0,
j=1

To show (1.5) and (1.6), all we need is to establish the almost sure absolute continuity for ug (for
some 0 > 0) and square integrability for the consequential density of the measure 14(-). According
to Plancherel — Parseval theorem (Theorem B.3 in [1, p. 302]), this is validated by the integrability

Elfg(A1, - -5 Ap—1)[2dA1 ... dX\p—1 < 00 (1.9)

(Rd)pfl

To establish (1.9) and the isometry (1.7), we first prove that

Elfy,...t, (A1, >\p71)|2d)\1 cdAp =

(Rd)p—l
p
= (27 / H/t—s{ps +ps(—z) }ds | dz, ti,...,t, >0. (1.10)
Rd j=1 0
Notice that
p—1
/ltl,...,tp ()\1, ey /\p—l) = / exp ZZ )\j (Xj(Sj) — Xj+1($j+1)) d81 e dSp =

[0,£1]%..X[0,£] j=1

H/exp{ ~1)X;(s)}ds.
=19

Here and elsewhere we follow the convention that Ao = A, = 0.
Therefore,

it ooty (AL Apm )P = gty (A1 Apm 1)yt (AL -, Apm1) =

H // exp{ )\ - )\jfl)(Xj(S) - Xj(r))}dsdr.

Take expectation on the both sides. By the independence of Xi,..., X, and by the increment
stationarity given in (1.1), we get

E‘IEL()\17 v 7)\p—1)‘2 -
tit

/Eexp {ilA; — A=) (Xj(s) — Xj(r)) bdsdr =
0

S

i

j:l 0
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:lj/ / Eexp {i(A\j — A\j—1)X (s —7)} +

{0<r<s<t;}

" / / Eexp { —i(Aj — Aj-1)X(r — s) bdsdr p =

{0<s<r<t;}
p Y

:2PH/t = 8)ps(Aj — Aj— 1)d5—2pHQt — A1), (1.11)
Jj=179 j=1

where
1 t
oi(A) = 5 {EeiAX(t) i Ee—iAX(t)} _ RelRAX (). / (t = $)pa(A
0

and R is a Bernoulli random variable independent of X (¢) with the distribution
P{R=1}=P{R=—-1} =1/2.

Integrating on the both sides, we have

/ Elfity,..t, (M, -y Ap—1)PdAy . dApg =

(Rd)pfl
HQt Aj-1)dAr .. Ay =
(Reyp—1 I=1
p—1
[ uemn e [T @i dpen (1.12)
Rd)p—1 J=1

where the last step follows from the substitution v1 = A1, 72 = Ao — Ap, ..., Yp—1 = Ap—1 — Ap—2
(recall the convention A\g = A, = 0).

Set
t
/ )+ ps( ps(@) +ps(=2) .
0
The following steps are set for the justification of using Fubini’s theorem. Notice that
t t

/Gt(x)dx:/(t—s) /ps(x)—i_wd:c ds:/(t—s)ds:ﬁ<oo.
Rd 0 Rd 2 0 2

Since
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Qi) = / NGy (2)da,
]Rd

we have |Q;(A\)| < t?/2. In particular, for any & > 0,

Gy, (x H|Qt exp{—f|)\k] }dAl...d)\p_ldxg

(Rd)pfl xRd
p t2 c p-1
H L /exp{—2)\|2}d)\ < 0.
Ra
This justifies the use of Fubini’s theorem in the following way:
p—1 c
/ Qe (=71 — - = 1p-1) [ [ Qi () exp {—§|’Yj|§} dyi...dyp-1=
j=1

Rd)p 1

p—1
—i (YAt €
= / /e v+ +vp 1)th(x)dgg HQtj('yj)exp{—§|fyj|§}dryl vl =
(RA)p-1 LRd =1

/th le/ eAEQ, exp{—f|)\\ }dA dz =

J]= le

p—1
— (27r)d(p71) /th (x) H(Gt.i * ¢z )(x)dx
d j=1

where ¢. () is the density of the d-dimensional normal distribution N (0, elxq) (Iixq is the (dx d)
identity metrix) and the last step follows from Fourier inverse transform.
We now let € — 0T on the both sides. First, from (1.11) one can see that

Qu (=71 — - —%-1) [[ @, (%) =0 Y(m,...,5-1) € RIPTD
j=1

with a proper variable substitution. By monotonic convergence, therefore, the left-hand side increases
to

p—1
Qt, (=71 — . —Yp-1) H Q¢ (vj)dy . dyp
GO =
regardless finity or infinity of the limit.
In view of (1.12), to prove (1.10), it suffices to show that

1

[1(G:, = ¢e) (2 )dx_/ HGtJ dx. (1.13)
j=1

Jl Rd
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Indeed, for any 6 > 0,

/e_eth(:U)dt = /te_Otdt /e_etpt(x)—i_zps(_x)dt =
0 0 0
:9—2/6—97&7%(95)21’8(_93)# (1.14)
0

Therefore, by the condition (1.4), we obtain

/Gfg(m)daﬁ <oo Vt>0.
R4

By Lemma 2.2.2 in [1, p. 28],

lim/‘(th*gbe)(:z)—th(:U)‘pdx:O, =1 p—1.

e—0t

This clearly leads to (1.13).
It remains to prove (1.9) and (1.7). For (1.9), simply notice that

E|ﬂ9()\17 ceey Ap—l)’2d>\1 e d)‘p—l =

(Rd)p*l

= / E /d .dt,exp —QZt fity oty Ny ey Ape1)| dA1 o dDpog <
(Rd)pfl (]R-‘r)!]

p
<P / dty...dtyexpq =0 t; / E

R+ =) @i

ity (AL Ap1)| dAL. Ay =

= (27r)d(p—1)0—p / dty ... dtp exp —0 Z tj / | /(tj — S) {ps(JE) + ps(—x)}ds dr =

(R+)P =1 ) ga Li=13
p o
(271-) / H/e_et{pt(x) ert(*ﬁ)}dt dr <
rd L7710
oo p
S2p(27T)d(p1)93p/ /eetpt(x)dt dx,
rRd LO

where the second, the third and the fouth steps follow from Jensen inequality, (1.10) and (1.14),
respectively. Therefore, (1.9) follows from (1.4).

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 9



1310 X. CHEN
We have established (1.5) and (1.6). Further, by Parseval’s identity, we get

?dx = (2m) 4D 1 A A0 . dx
[a(tl,...,tp,x)} X = (271') /‘Ltl,.‘.,tp( Tyeooy pfl) 1.-- p—1-
Rd(p—1) (Rd)p—1

This, together with (1.10), proves the identity (1.7).

Theorem 1.1 is proved.

We end this section with the following comment: The density «(t,...,t,,x) addressed in
Theorem 1.1 exists only in the form of equivalent class — a fact that brings some inconvinience when
it comes to application. For instance, it becomes ambiguous to talk about a(t1,...,t,,0) for given
t1,...,tpas a(ty,...,tpy,0) represents a class of random variables such that any two members of this
class are equal to each other with probability 1. The treatment is to find a continuous modification
of a(ty,...,tp,x). A standard procedure by Kolmogorov extension theory requires the local Holder
type of moment continuity

m
Ela(ti,... tp,x) — a(s1,...,5p,¥) <C{t—s| +Ix-yl}’ (1.15)

for some m > 0 and S > d + 1. This can not be achieved without extra assumption. In the setting
when X (¢) is Gaussian, for example, (1.15) can be installed under some nonlocal determinism
conditions (Theorem 2.8 in [6]).

2. Applications to Gaussian processes. Let X (¢) be a R?-valued stochastic process satisfying
our pointwise increment-stationarity given in (1.1). In addition, assume that X (¢) is pointwisely
Gaussian:

X(t) ~ N (0,5(1)), >0, @1
where 3(t)) is a nonnegative definite (d x d)-matrix.

Theorem 2.1. Assume that (1.1) and (2.1) are true. The condition (1.4) is satisfied if

o0

1
/eat det (E(t))_pQTdt < oo for some 6 > 0. (2.2)
0

Consequently, all statements in Theorem 1.1 hold under (2.2).
Proof. Notice that

00 p 0o 00
p
/ /eetpt(x)dt dx = /.../dtl...dtpe(t1+"'+tp)/Hptj(x)da; <
Rd LO 0 0 Rrd J=1
oo 00 p 1/p
p
< Janaft{ [yl
0 0 Jj=1 R4
00 1/p p
_ / ot / <pt(x))pdg; dt
0 Rd
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From (2.2), X(¢) is positive-definite allmost everywhere in ¢. Therefore,

/ (pt(x)>pdx = (2m) /2 det (2()) 7/ / exp {—%?(x, Z(t)_1x>} dy —

R4 Rd
_ —1
—p22m) T det (2(1) 7T ae
Hence, by the condition (1.14) we get
%) p oo p
_ —1
/ / e Op(@)dt| dz < pH2(2m) " / e det (2(t)) " T dt p < oo

Rd LO 0

In the rest of this section, we consider two examples.

Example2.1. Let X (t) be a d-dimensional fractional Brownian motion with the Hurst parameter
(Hy,...,Hy), (Hy,...,Hy) € (0,1). That is, the components B{Il (t),...,de(t) of X (t) are
independent mean-zero Gaussian process with the covariance functions given as

Cov (B (1), B ()) = £ (tP*% + |sP! — 1 — ), j=1,....p
In particular, 3(¢) is diagonal with diagonal elements |¢|2H1 ... |¢t|?H4. Hence
P
det ( H |25 = 2t Ha) >,

Thus, the condition (2.2) is equivalent to

To compare it to the known result, we consider the special case when H; = ... = H; = H. In this
case the above inequality becomes
dH < Ll

This is the condition given in [2] ((5.7)) for existence of intersection local times of fractional Brow-
nian motions with identically distributed components.

Example2.2. An 1-dimensional Ornstein—Uhlenbeck process Uj(t) is a mean-zero stationary
Gaussian process with covariance function

Cov (U1(0), U1 (1)) = 72, t>0. (2.3)

A d-dimensional Ornstein — Uhlenbeck process U (t) = (Ui (t), ..., Uq(t)) takes i.i.d. 1-dimensional
Ornstein— Uhlenbeck processes Uy (t), ..., Uy(t) as components. In the following discussion, U(t)
is a d-dimensional Ornstein— Uhlenbeck process. Set

¢
:/U(s)ds, t>0.
0
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1312 X. CHEN

Then X () satisfies (1.1) and (2.1). To compute det (E(t)), notice that

tt t
= /COV (U( U( dsdr = /exp {—]3 — r|} I qdsdr =
00 00

=4t =2(1 = ) Luxa,

where 14 is the (d x d) identity matrix and the second inequality follows from (2.3). Hence,

det (3(t)) = 4%t —2(1 - e‘t”)}d

In particular,
det (B(t)) ~t** (¢t —07).

So, the condition (2.2) is equivalent to

In other words, (2.2) holds if and only if d = 1.
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