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ON APPROXIMATIONS OF THE POINT MEASURES
ASSOCIATED WITH THE BROWNIAN WEB

BY MEANS OF THE FRACTIONAL STEP METHOD

AND THE DISCRETIZATION OF THE INITIAL INTERVAL

PO AITPOKCUMAIIIO ACOIIIHOBAHUX I3 FPOYHIBCHKOIO CITKOIO
TOYKOBHUX MIP 3A JOIIOMOI'OIO METOAY APOBOBUX KPOKIB
TA JUCKPETHU3AIII IOYATKOBOI'O IHTEPBAJIY

We establish the rate of weak convergence in the fractional step method for the Arratia flow in terms of the Wasserstein
distance between the images of the Lebesque measure under the action of the flow. We introduce finite-dimensional densities
that describe sequences of collisions in the Arratia flow and derive an explicit expression for them. With the initial interval
discretized, we also discuss the convergence of the corresponding approximations of the point measure associated with the
Arratia flow in terms of such densities.

BcraHoBneHO MBUIKICTH ci1a0Koi 301KHOCTI B METOAI IPOOOBUX KPOKIB AJIS TOTOKY Apparhsl B TepMiHax BincTaHi Baccep-
mTeliHa Mixk oOpa3amu mipu Jlebera miz aiero motoky. BBeieHO CKiIHUEHHOBUMIPHI IIIIBHOCTI, 1110 OMUCYIOTh IOCITIIOBHOCTI
3ITKHEHb B MOTOLI Apparhs, Ta OTPUMAHO SBHHUW BUpa3 /Ui HUX. JociikeHO 301KHICTh BiIIOBIIHUX alpOKCHMAIIH TOY-
KOBUX Mip ISl TIOTOKY AppaThs MPHU JUCKPETU3ALlii II0YaTKOBOTO iHTEPBAIY.

1. Introduction. In this article, we consider point measures which are constructed from the Arratia
flow and its approximations [2, 3, 8, 9]. Two types of discrete measures can be associated with a
stochastic flow {X(u,t) |t >0, u € R} with coalescence on the real line: the first measure is the
image of the Lebesque measure under the action of the flow

Ht = Ao (X(ut))il )
and the second one is the counting measure defined by the rule
n(A) = |XR,t)NA|, AeBR).

Both measures are supported on the same locally finite countable set. The structure of such random
measures is studied in [5-7, 14, 15]. In the first part of the article the Arratia flow with drift is
considered. This flow consists of coalescing Brownian motions with diffusion 1 and drift a, where a
is a bounded Lipschitz continuous function. Such a stochastic flow was obtained in [2] by applying
the fractional step method [1, 10] to the Brownian web [8, 9] and an ordinary differential equation
driven by a. Here, the study of this approximation scheme is continued by discussing the speed of
convergence of the images of the Lebesque measure.

We start with recalling the fractional step method for the Brownian web proposed in [2]. Let
a be a bounded Lipschitz continuous function on the real line. Consider a sequence of partitions
{0 = tén) <. .. < t,(ln) = 1} of the interval [0; 1] with the mesh size d,, converging to 0. Define a
family of transformations of R
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1180 A. A. DOROGOVTSEYV, M. B. VOVCHANSKII

dAs (u) = a(As,t(u))dt,

Ass(u) =u, t>s.

Given a Brownian web {<I>S (u)|0<s<tuc R} [8, 9] one can consider {®; +}o<s<¢ as random

mappings of R into itself. Put Ag =t g ; g+1) j=0,n— 1, and define, for u € R, t € A( n),

") (u) = By 4 0 Ayt 4

i+l

1
(J (D 4 © Ay o ) (u )),

0 l+1 W1

The sign o stands for the composition of functions: f o g = f(g). The main result of [2] states that
given uy, ..., uyn € R
(@™ (u1), ..., @™ (up)) = (%u1),..., 2" (um)) (1.1)
n—oo

in the Skorokhod space (D([0;1]))", with {®%(u) | s > 0, u € R} being an Arratia flow with drift
a [3] (§7.3). It was proved in [2] (Proposition 1.5) that the sequence in the left-hand side of (1.1)
converges only weakly in contrast to the application of the fractional step method to ordinary SDEs
[1, 10].

Let A be the Lebesque measure on [0; 1]. One can define images of A under the mappings P,
CIDYL):

,ut:)\o(fbg)fl, ,uﬁn)—)\o(fbgn))fl, n € N.

Such random measures along with associated point processes are central objects of the present paper,
in the first part of which an estimate on the speed of the convergence of the laws of { ,ugn) }n>1 to
the law of p., for fixed ¢, is established in terms of an appropriate Wasserstein distance.

Our approach is based on ideas from [4]. Recall a definition of the Wasserstein distance between
two probability measures. Let X be a separable complete metric space with metric d and the

corresponding Borel o-field. The set M, (X)) of all probability measures 4 on X such that for some
(and, therefore, for an arbitrary) point « / d(u,v)?p (dv) < +o0o is a separable metric space [16]
X

(Theorem 6.18) w.r.t. the distance
1/p

Wyl pe) = | _inf [dwopstanan | . p=1
X2

where TI(j1, p2) is the set of all probability measures on X2 having marginals j; and .

The measures i, ugn), n € N, are random elements in M,,(R) for any p > 1. Let L; and Lgn)

be the laws of p; and uﬁ”) in My (MP(R)), respectively. For fixed p, the corresponding Wasserstein
distance between probability measures L', L” € M;(M,(R)) is defined via

Wi(L', L") = inf EW, (i, "),
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ON APPROXIMATIONS OF THE POINT MEASURES ASSOCIATED WITH THE BROWNIAN WEB . .. 1181

where the infinum is taken over the set of pairs of M,,(R)-valued random elements ./, p satisfying
Law(p') = L', Law(p”) = L”. To indicate a specific value of p being used, we write W, for the
distance on M (Mp(]R)). The main result of the second section is the following theorem (cf. [17]
(Theorem 1), [4] (Theorem 1.3)).

Theorem 1.1. Assume that the sequence {néy}, y is bounded. Then for every p > 2 there
exist a positive constant C' and a number N € N such that for all n > N

Wi, (L, L) < C(log 5, 1) 7.

Section 3 is devoted to the counting measure associated with the Arratia flow. We discuss the
speed of convergence of such measures when one approximates the segment of the real line by its
finite subsets. For that, we introduce the multidimensional densities which correspond to different
sequences of collisions in the n-point motion of the Arratia flow.

Given an Arratia flow {X(u,t) | t > 0,u € [0;1]} with zero drift put A, = {u; < ...

. < upt,n € N, and Xy = {X(u,t) | u € [0;1]}. The next definition is taken from [14]
(Appendix B) (see also [7, 15]) and is adjusted to reflect that the Arratia flow now starts from [0; 1]
instead of the whole real line.

Definition 1.1. The n-point density py is a measurable function such that for any bounded
nonnegative measurable f: R" — R

/f(x)pg(x) dr=E > flur,...,up). (1.2)
Bn

UL e Un EX
all distinct

Recall that given v = (u1,...,uy) the processes X (u1),..., X (uy,) are coalescing Brownian
motions. To describe all possible sequences of collisions in this system, the following notation is
used. Define X" € (C([0;1]))" by setting XP'(-) = X(uj,-), j = 1,n. Let k be the number of
distinct values in the set {X (u1,t),..., X (un,t)}. Supposing k < n let 71 be the moment of the
first collision on [0;¢]. Put j; = min {i | 3j # i X"(11) = X;‘(ﬁ)}. Define X"~ € (C([0; 1]))71_1
by excluding the j;th coordinate from X" . If there exists a moment 75 < t such that for some
ij € {1,...,n — 1} X" Yr) = Xj”_l(Tg) put jo to be equal to the smallest such number.
Repeating the procedure n — k times one obtains a random collection Jy(u) = (ji1,...,Jn—k),
ji € {1, R i}, i =1,n — k. In the case k = n we set J;(u) = & by definition. The set of all
possible such collections consisting of / numbers is denoted by 7, ;.

Definition 1.2. The random collection Ji;(u) defined via the recursive procedure described
above is called the coalescence scheme corresponding to the start points uy, ..., Uy.

Definition 1.3. Given © = (x1,...,x,) € A, the k-point density p;l’k(ac; -) corresponding to
the coalescence scheme J € [, n—1,k <1, and the start points x4, ..., xy is a measurable function
such that for any bounded nonnegative measurable f: RF — R

/p;]’k(x;y)f(y) dy =E > Jlug, o) x L(Ji(@) = J). (1)
RF u1,...,ukG{)gl(;?'l,?),u-,X(xnvt)}
all distinct
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1182 A. A. DOROGOVTSEYV, M. B. VOVCHANSKII

The integral representation is obtained for such densities (Theorem 3.1). The result on conver-
gence of the multidimensional densities given in Theorem 3.2 is motivated by the discrete approxi-
mations of Section 2.

Consider the vectors U™ = (ugn), e ,u;”)) € A", such that ugn) =0, u,(ln) =1, neN,

limsup max <u(n) —u(»n)> =0,
n—oo j=0n—1 i+l J

and
{ugn), R u,(ln)} C {ugnﬂ), e ,ugfll)}, n €N,
Define
prU™y=>" > pfw™;),  k=Tn, neN (1.4)
i=k JETn,n—i

Theorem 1.2. There exists an absolute positive constant C' such that

(“51)1 - U§")) ’

0 <p;(y) —pi(U™:y) <C max

j=I,n—1

for almost all y.
2. The Wasserstein distance between L; and L§”’. We approximate the measures ; and uin)
with point measures

m—1
(n)ym _ -1
KA DLV
=0
m—1
pit=m= ) dee(imy, momeEN
=0

We begin with L,-estimates on the divergence between two solutions of a one-dimensional SDE
in terms of the difference of the initial points and estimates of the same type for their approximations
via the fractional step method.

Let a be a bounded function satisfying the Lipschitz condition with constant C,. Put M, =
= supp |a|. Given a standard Brownian motion w and a point v € R the equation

dz(t) = a(x(t))dt + dw(t),

z(0) =u, te][0;1],

has the unique strong solution z. Consider, for ¢ € Ag."), j=0,n—-1,

(n)
i1

y M (t) = u+ / a(z(”)(s)) ds + w(t),
0 (2.1

2 () = u+ /a(z(")(s)) ds + w(tén)).
0
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ON APPROXIMATIONS OF THE POINT MEASURES ASSOCIATED WITH THE BROWNIAN WEB . .. 1183

We will encode such a relation between =, (™, 2(™) and w, u by writing 2 = D(w, u), (y™, 2() =
=5 (w, u). The next result is a straightforward generalization of [1] (Corollary 4.2).
Lemma 2.1. For any p > 1 there exists C > 0 such that

Esup|a(s) - y™(s)[” < con/?,
s<1

supE |z(s) — z(”)(s)‘p < C8P/2,
s<1

Lemma 2.2. Suppose ui,us € R, and wi, wo are independent Brownian motions. Let xj =
= D(wg,ug),k = 1,2. Then for any p > 1 there exists C > 0 such that

Esup |z1(s A 0) — x2(s A 0)‘1) < CO(Jur —ug| + Jur —u2P), p>2,
s<1

Esup |z1(s A 0) — z2(s AO)P < C(|ur — ug|P? + Juy — uslP), pe[1;2),
s<1

where 6 = inf {1;s | 21(s) = z2(s)}.
Proof. Denote Au = ug — uy, Ar = x5 — 1. Assume uo > uq. Consider the SDE

dn(t) = Can(t)dt + dws(t) — dw: (1),

1(0) = Au,
with the unique strong solution
t
n(t) = et Au + /2% / e~ % du(s), (2.2)
0
wo — w1
where w = We have
V2
t t
n(t) — Ax(t) = Ca/ (n(s) — ) ds +/ (Calz(s) — a(za(s)) + a(z1(s))) ds  as.,
0 0

therefore a.s.

n(t) — Ax(t) C“t/e Cas (Calz(s) — a(wa(s)) + a(z1(s))) ds >0, ¢t € [0;6]. (2.3)
0

Applying the Knight theorem [13] (Proposition 18.8) to the stochastic integral in (2.2), we get

t

77(75) _ eC“tAu+\/§eCat,8 /e—2Casd8 ’

0

where (3 is some Brownian motion. Then (2.3) implies
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1184 A. A. DOROGOVTSEYV, M. B. VOVCHANSKII

t

—Au
—2Cys

ad —

B 0/6 s NG

0 <x=inf{l;s|n(s) =0} =inf ¢ 1;s

Thus,

Esup |Az(t)|P < Esup [n(t)[P < 2P~ 1ePC AuP + 2%P/271ePCaE sup |B(1)]P,
t<0 t< t<x

t

since / e 2C3ds < t, t > 0. The same reason implies that the random moment s is a stopping
0

time w.r.t. the filtration generated by {3(¢) | ¢ € [0;1]}, therefore, by the Burkholder — Davis — Gundy

inequality,

Esup|B(t)|P < CpE%p/Q, p> 2,
t<sx

for positive constants C,. The distribution of s is given via

2 " 2 Ca’* (uz — 1)
Pl > 1) = /ey Py, a(t) = Zo U2 u)
T
0

(1— 6721‘,)1/2 ’

hence, for fixed p > 2,

1

1 a(t)
p_ 2 2 p _
B2 =L /tg ! \/> / eV 2y ldt < — [ a(®)t?>7dt < C(ug — u1) (2.4)
2 T V2 -
0 0 "o

for some C. To handle the case p € [1;2) one uses the Lyapunov inequality and the foregoing
estimates.
Lemma 2.2 is proved.

We consider a modification of (2.1): on every A;n), J=0,n—1,

)
J+1

() = uy + / a(27(s)) ds + w(t),
0

t
Z(n) (t) =, + /a(z(n)(s)) ds + ’w(tén)), t e A;n)7
0

where nonrandom wu, and wu. are not necessarily equal. The pair (3™, 2(") is denoted by
S(")(w,uy,uz).
Lemma 2.3. Assume that the sequence {ndn}, y is bounded. Let uy,, uy,, Uz, ., € R,
(n)

and let wy, we be independent standard Brownian motions. Put (yk 727,(:)) = 5 (W, Uy, Uz, ),

1
k =1,2. Then, for any p > 2 and for any € € <0; 2) there exist C > 0 and N € N such that for
alln > N
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ON APPROXIMATIONS OF THE POINT MEASURES ASSOCIATED WITH THE BROWNIAN WEB . .. 1185

n n n n p
Esup)yg )(s/\e( )) —yg )(s/\G( )) <

s<1

2

< C<611L/2_€ + Z (|u21 - uyz| + ‘uzz - uyz|p) + |uy2 = Uy, ’p + ’uyz - uyl‘>7
=1

where (") = inf {1;s | yén)(s) = ygn)(s)}.

Proof. 'We extend the proof of Lemma 2.2. Suppose u,, — uz, > 0, uy, — u,, > 0. Denote
Auy = Uy, — Uy,, Au, = Uz, — uz,, and let 7 be defined as in (2.2) with Au = Au,. Then, for
<o te Aén) for some j, and for Ay = y2 — y1,

t

Ay(t) - n(t) = C, / (Dy(s) - n(s)) ds-+

0

+/ (a(zén)(s)) —a("(s)) - CaAy(s)>ds+
0

(n)
tiv1

o\#

t 9
))ds + C,q / Z yl(n)(s)) ds + 26, M,,
0

N
Il
N

since 2™ > 2™ on [0;0()]. For s € A i < j,

) (") )_

4 j—1 2
Ay(t) —n(t) < Co / (By(s) () ds+Ca S [ S0 (k) — wi(s)) ds+
3 k=0 (n) =1
k
-1
20,0, Y / (1), — 5) ds + 28, M, +z|uzl ty .
k=0 =1
A(")
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1186 A. A. DOROGOVTSEYV, M. B. VOVCHANSKII

Since
j—1
20, M,y Y / (1), = ) ds < CuM,6,,
k=0
A(”)

the Gronwall — Bellman inequality implies

Ay(t) < n(t) + e* Mo (Co +2)8y, + Z |z — uy, | + e“ C max |§J|
=1

where
2 j-1
= ZZ / (g ( tl(c+)1) wy(s))ds, j=1,n.
=1 k=0
Ay
Thus,

E sup |Ay(s)? < 4P E sup ]n(s)|p+epC“Mé’(Ca+2)p5£—|—
s<O(n) s<0(m)

9 P
+ePCa (Z luz, — uyl\> + epc“C'é7 E max ‘§j|p> : (2.5)
=1

j=1ln

The random variables §;1—¢;, j = 1,n — 1, are independent centered Gaussian variables; Var(&,) <
< 2n62. Therefore, by the Levy inequality, there exists a constant C' such that

E max [¢" < 2B, [P < CnPoP (2.6)
J=Ln
and, for any z,, > 0,
1/25 _ z%
P<max|£k| = i”) <2P( [N 1) = — | < T re it 2.7)
k=Ln (Var(&.))"/ Tn
At the same time, proceeding exactly as in the proof of Lemma 2.2 we obtain
E sup |77(t)|p < 2p_1epC“Au§ + 23P/2=1epCa B(M))P/2, (2.8)
t<g(m)

However, at time 6™

2
n(0™) =~ Mo(Ca +2)8n = €7 Y |z, — uy, | = €7 Ca max [£(5)],
=1 J=hn

so, for fixed z,, > 0,

BOM)P < P (max o] > o, ) + B2

=1,n
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Tn :inf{l; s

Put K = supyey kdx. Reasoning leading to (2.4), when combined with (2.7), implies that

where

2
77(5) = _ecaMa(Ca + 2)571 - eCa Z |uZl - ’LLyl| - GCaCal‘n} .
=1

2 1/2 22
SR (ORRNS SFRSNIP o B
=1 "

_ 1
for the redefined constant C. Choosing z, = 6,11/ 2 ®, for any fixed ¢ € <O; 2), and substituting

(2.6), (2.8) and (2.9) into (2.5) finishes the proof.
Let us recall the definitions of the measures considered. For the random elements in M, (R)

_ 1 — _
p=Ae (@) = | S | o (@)
j=1

n n — n).m 1 Ui n —
= No (@M b — > Sm o (@), m,meN,
j=1

we consider their distributions as elements of M (M, (R)):
Ly = Law(p), LY = Law(u)"),
Lgn) = Law(ugn)), Lgn)’m = Law(ugn)’m), n,m € N.

Analogously to [4] (Theorem 2.1), we have the following lemma.
Lemma 2.4. For any p > 2 there exists C > 0 such that

Wl,p(Lta Lgn) < Cm_l/p,

and, if additionally {né,},, . is bounded,
Wi (L™, LM™) < O (m=" 4 6Y/2-5) /7.

Proof. Since the random measures (¢, 1f") is a coupling for the pair (L¢, Lj"), it follows from
the definition of the distance W1 ;, that

Wip(Le, L") < EWy (e, 1)
Therefore, by [16] (Theorem 2.18, Remark 2.19) and Lemma 2.2, for some C,
o GH/m e

Wip(Lot?) < [ S [ et - opumlay | <
j=0 .
j/m
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L, G+1)/m e
<o|X [ w-imdy| =cm
j=0 .
J/m

as, for x1, xo from Lemma 2.2,

{ (@00, (1), g, Gi/m)) | £ € (0311} £ { (2a(t A 0a), wa(t 1 02) | £ € [031]},

01,02 being he moments of meeting for the corresponding pairs of processes. Similarly, using
Lemma 2.3 with u,, = u,,, k =1,2,

L GH/m e

Wl’p(Lgn),Lgn),m) S C Z / (y - j/m) dy + 571/2—5 S C’(m_l + 5}/2_5)1/10
j=0 .
j/m
for some C.
Lemma 2.4 is proved.
Now we describe appropriate couplings for (ugn,u(”%m), n € N, given fixed m. Suppose
w1, ..., Wy, are independent standard Brownian motions. Denoting u; = j/m, j = 0, m, put

z; = D(wj, uj),

(y](n)’zj(n)) :S(n)(wj7uj)7 n €N,

~(n) (n) jln) _ )

and define 21 =1, y; =1y, , = ZYL . Proceeding recursively, put

6; = inf{l;s | 2;(s) = :fj,l(s)},
0§n) =inf {1;s | yjn)(s) = @yi)l(s)},

zi(t) = ()L (t < 0;) + 71 (1)L (t > 05),

7M@) =y <o) + i o1 > 6", j=2m.

Consider a random number k§n) such that 9](”) € Aﬁn) and put

Sy L) () n) () PN
F (1) = 2 @“G<QWH>+%*@1@ZQWH) tel0;1), j=2m.

Values at ¢t = 1 are taken to be equal to the corresponding left limits. The processes
(n)

wp = Wy, wy "~ = Wi,

w;(t) = w;i(t)L(t < 0;) + w1 ()L (L >6;),

@ () = w1 (t < 0) + @ (01> 60),  j=2m, neN,

can be checked to be Brownian motions.
The proofs of the next two lemmas are based on the repeated application of (2.1) and are thus
omitted.
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Lemma 2.5. Forn,m € N and j =1, m,
zj = D(wj, uy),

@ﬁ”), Eﬁn)) — g™ (2]7](»"), u;).

Lemma 2.6. For n,m € N,
d [~ ~
(P*(u1), ..., 2% um)) = (:Bl, R xm),

(80 ). 0 ) 2 G, )

)

in (D([0;1]))™.
Proof of Theorem 1.1. Repeating the reasoning of the proof of Lemma 2.4 and using Lemma 2.6,
we get

ey GH/m m—1
WL L) < 3 [ BE @ -7 0P de=m Y g0 - 100
=0 im 7=

By Lemma 2.1, for some positive C1,
Bl (5) = 17 (0] < Bsuplaa(s) — 9" )]" < Crot”.
Continuing, for j = 2,
E[#(t) - 357 (O = Bla:) - 57O x [1(62 67 607) +1(60” <t < 1)+
(0 <t <o) +1(t <0 A0y <
<E[7 @) - BV O 12 008 007) + B |za() - oS0 10 < 007 n01)+
1271 [[ao(t) = B (O] + [E () - 7@ 160 <t < 1)+
+27E @1 (1) - 1O + 7170 - O | 10 <t < 6") <
< P UB|E () — V)| + 20 BIF (1) — 2a(8) P10 <t < 0))+
+2r B () — o ()|P1(6) <t < 0) + E|za(t) — u5 ()]

By using Lemma 2.1 again, we obtain

E|Za2(t) — g5 (1) < (2 + )10 + 227 B sup  |Fa(s) — xals)[PL(04 < 1)+
0{™ <s<0,

+22E sup |7 (s) — S (s) [P (01 < 0. (2.10)
01 <s<o{™
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1190 A. A. DOROGOVTSEYV, M. B. VOVCHANSKII

Consider the last two summands in (2.10) separately. Note that 71 and x5 are independent and such
are yj; and y2, whence one can deduce, using the Markov property, that

P (2.11)

E sup |Z1(s) — 2(s)["1 (9571) <01) <E sup |ni(s) —n2(s)
o{™ <s<0, 0<s<m

where 1, = D(Bg, vx), k = 1,2, with 31, B2 being independent Brownian motions, also independent
of wi, ws (and, therefore, of x1, x3), and

v =3 (0"), v = (6),

T = inf{l;s | n(s) = 772(8)}.
Thus, by the first inequality of Lemma 2.1, for any ¢ > 1,

E ‘Ul _ ’Ugfq <E ‘%1 (ng)) _ zy{ln) (ggn))‘q LR ‘x2 (Hgn)) N yén) (Hgn)) < 2015;11/27

‘q
so after taking the conditional expectation in (2.11) and averaging over vi, vy one gets due to
Lemma 2.2

E sup |Ti(s) — ajg(s)}pll (9571) <) < Cy61/2 (2.12)
(™ <s<6,

for some Cs. Similarly,

p

)

E sup  [7(s) — 8" (5)[P1(6 < 68) <E sup |&1(s) — Eals)

61 <s<6\™ 0<s<ms

where gk = (S(n)(ﬁkﬂ]klavkﬂ))lv k=1,2, and
vl = @{171)(91), V12 = 5’{171) (61), Vg1 = yén)wl), Vg = Zén) (61),
Ty = inf{l;s | &1(s) = 52(3)}

Using both inequalities of Lemma 2.1, applying Lemma 2.3 with u,, = vi1, Uy, = v21, Uz, = V12,
Uy, = U2 and taking expectation one can show that, for some positive Cs,

E sup ‘yﬁn)(s) — yg(s)‘p]l (01 < Hgn)) < 03(571/2_8. (2.13)
61 <s<o{™

Substituting (2.12) and (2.13) into (2.11) gives, for some Cl,
E[Z2() - 55" (O] < Cagy/*,

starting from some N independent of m. Using such an estimate recursively for j = 3,...,m one
finally concludes that

m—1 m—1
SElE ) -1 < Y sk,
j=0 j=1

By Lemma 2.4 there exist positive C5 and a number N’ > N such that, for any n > N,
Wl,p(Lta Lgn)) < O (m—l + 5711/2—5)1/}7 + Cs (CZ‘&/Q—‘E) 1/19’

1 log 6!
therefore, choosing m = m(n) in such a way that m(n) = <4 — ;) log g
og Cy

concludes the proof.
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3. On counting measures associated with the Arratia flow. Recall that A, = {u; < ...

.<up},n €N, and {X(u,t) |t >0, ue[0;1]} is an Arratia flow with zero drift. Denote the

density of a standard m-dimensional Brownian motion killed upon exiting A,, by pg’,. This density
is given via the Karlin— McGregor determinant

p(T)r,Lt(x;y) = det Hgt(fpi - yj)”i,j:m’ T,y € A,

1 2
where g;(a) = ——e /%,
.gt( ) \/ﬁ
Any J = (j1,...,Jn—k) € Tnn—k can be associated with a partition of the set {1,...,n} by the
following procedure. Starting from the partition consisting of singletons, at each step i = 1,...,n—k

proceed by merging two subsequent blocks in the current partition with the numbers j; and j; + 1,
the blocks being listed in order of appearance w.r.t. the usual ordering of N. The resulting partition
will be denoted by 7(.J); the blocks of 7(J), by m1(J),...,m(J). Note that

{Jt( J} {V] €™ J) X('rjvt) = X('rminm(J)vt)a i = 17k}

Lemma 3.1. Forallt € [0;1], z € Ay, k € {1,...,n} and J = (j1,-- -, jn—m) € Tnn—ms:
m > k, the density pg’k(x; -) exists. Moreover, p;]’k(:v; ) < plg,t(aj; ) ae if m=k.

Proof. Suppose k = m. Let A be a Borel subset of Ag. Define a mapping 7': A,, — Ay by
the rule T'(w); = Uminr,(s), | = 1, k. Then

E 3 LaCur, - ug) < () = J) <
Uty ug E{X (21,t),.... X (Tn,t) }

<EL(T(X(21,),.., X(20,1)) € A) =

= /p’&t(x; y) dy.

A

The Radon—Nikodym theorem yields the claim of the lemma. The cases when A is not a subset of
Ay and m # k are treated similarly.

Lemma 3.1 is proved.

It is possible to derive an explicit expression for p;] * Denote the boundary of A, by 0A,,.
Additionally, define

aAnJ = {(ul,...,un) u < ... <U; =Ujp1 < ... <Un}, j=1,n—1.
Let w = (wy,...,w,) be a standard Brownian motion. Define A, (a) = {u1 < ... < u, < a},

n € N.
Theorem 3.1. Forall t € [0;1] and J = (j1,...,jn—k) € Tnn—k and x € A, a.e.

p (@ y) = / dty ... dt,_y, / m(dz) / m(dzs)... / m(dz,x)(—1)"27"x

An—k(t) aAnJl aA"va 8Ak+1,jn_k
0 0
X ——pp 4 (T, 21 Sz1,22) ..
8y21p0,t1( ) )81/ p0t2 tl( ) )
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0  h (sh+2

k k+1
o 8VZ k O’t”*kftn—kfl jn—k—lZn_k_l’ Zn_k)poiftn*k (Sjn—an_k7 y)7
n—

where m is the surface measure on U;L:

11 0A,, j, the operator is the outward normal derivative

0
Oy,
wrt. the a-variables, and the mapping S7" : OQp, j — A1 is given via

m . 1T - 1
STy e U W1, W2y ey Um) = (UL ey Uy Ujg2y - ooy Unn), j=1,m—-1, meN.

The proof is standard and follows the ideas from [11] (Section 3) (see also [12] (Section VIL.5)).

Recalling (1.4) note that each pf(U (n), -) satisfies (1.2) with X; replaced with XV ™ =
—{x @™, X (WP, 6)}, neN

Theorem 3.2. Forall k€ N pF(U™;.) A pF n — oo, ace.

Proof. The restrictions imposed on {U(™},~; imply that a.e.

pE(U™;) <pF(UTHY;) <pf, neN.

Put g(y) = lim, o pF(U™;y) a.e. Given a bounded continuous f the dominated convergence
theorem implies

[y = [ o050 dy =

Rk RE
n
ui,..., ukextU(”) 1=k JEjn,n_i
all distinct

=1lmE Y flur..u)t (X7 > k) =

n—00 ()
ul,...,ukGXtU "
all distinct

— / PE () () dy,

Rk

which proves the assertion.
Theorem 3.1 can be used to study the speed of convergence in Theorem 3.2.
Proof of Theorem 1.2. Let A, = [z;x + ¢] for some = € R and any € < 1. Consider

os/(p%<y>—p%(U<”>;y))dy=EZ Lo -E 5 1 (u).

A, ueXy ueXtU(n)

Using the reasoning of [14] (Appendix B) one shows the existence of a constant C' such that

E ) 1a.(u) - P(X;N A #2)| < CE%,
ue Xy
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E > 1a(w)-PxY"NA#02)| < Ce

:EEXtU(n)

Therefore,

limsupe ! / (p%(y) —p (U(n)§y)) dy =
e—0+

£

—limsupe~" (P(X; N 4. £ 2) — P(X[" N 4. £ 2)). (3.1)
e—0+

By using the notion of the dual Brownian web {)? (u,t) | w € R, t € [0;1]} running backwards in
time and the noncrossing property of it [15] (Section 2.2) one has:

P(X,NA. #2) - P(XUV" nA. #£2) = P<Vj =T X(u{,t) ¢ A, X,NA. # @) <

< P()?(m—i—e,t) #)?(x,t),ﬂj e{l,...,n—1}: (X(w,t);X(x—i—a,t)) - (ugn),ugi)l)) <

<E1l <X(x +e,t) — X(x,t) < max (ugi)l — ugn))> 1(Jy(z,z +e)=02) =
j T

= /]1 <y2 -y < max . (Uﬁ)l - u§"))> P2 (22 + €); (y1,92)) dya dya, (3.2)

since X and X have the same distribution. Here,

2 1 Ja—b)? —(bo—b )@ —a
pz? (a;b):pg,t(a;b)zfﬂ_te 2t (1*6 (b2—b1)(az 1))

( (n)

Thus, there exists C' > 0 such that if (y1,y2) € Aa, y2 —y1 < dp,, Where §,, = max =T (W1 —

J
— ugn)), then
P72 (52 + )5 (Y1, 92)) < Cgelx — y1) X €6,

Substituting the last estimate into (3.2) and returning to (3.1) we have

y1+5n
limgtipe‘l / (p%(y) —ptl(U(");y)> dy < C/dy1 /dyzgt(ﬂs — 1), < 052
e—
Ac R Y1

for new C. The application of the Lebesque differentiation theorem completes the proof.
4. Acknowledgments. The authors are very grateful to V. Konarovskyi for valuable comments
and suggestions.
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