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ON TIME INHOMOGENEOUS STOCHASTIC ITO EQUATIONS
WITH DRIFT IN L4

PO HEOJIHOPIJTHI 3A YACOM CTOXACTHUYHI PIBHSIHHSA ITO
3 MIEPEHOCOM B Ly,

We prove the solvability of It6 stochastic equations with uniformly nondegenerate bounded measurable diffusion and drift
in Ly 1 (R*1). Actually, the powers of summability of the drift in  and ¢ could be different. Our results seem to be new
even if the diffusion is constant. The method of proving the solvability belongs to A. V. Skorokhod. Weak uniqueness of
solutions is an open problem even if the diffusion is constant.

JloBezieHO PO3B’SA3HICTh CTOXACTUYHMX PiBHAHB ITO 3 PIBHOMIPHO HEBHUPOIKEHOIO Ta OOMEXKEHOI0 MaTpuiero audysii i 3
nepesocoM B Lgy1 (RYT!). Crpasri, nokasHuky iHTerpoBHOCTI 110 & i ¢ MOXYTb BigpisHaTucs. Lleil pe3ynbrar € HOBUM
HaBiTh Konu audysis crama. MeTon, sKuii MU BUKOPHUCTOBYeMO, HaexuTs A. B. Cxopoxony. [Turanus npo ciabky eanHIiCTh
€ BIZIKDUTHUM HaBiTh Koiu qudys3ist crana.

1. Introduction. Let R? be a Euclidean space of points © = (a:l, L 7xd)7 d > 2. We fix some
P, q € [1,00] such that
d 1
o=l (1.1)
P q

with further restrictions on them to be specified later. The goal of this article is to study the solvability
of [t0’s stochastic equations of the form

t t
T = 2O 4 /0 (t(o) + S,SES) dws + /b (t(o) + s, 1:5) ds, (1.2)
0 0

where w; is a d-dimensional Wiener process, o is a uniformly nondegenerate, bounded, Borel
function with values in the set of symmetric (d x d)-matrices, b is a Borel measurable R%- valued

function given on (—o0, 00) x R? such that

qa/p
/ /|b(t, z)|P dx dt < oo (1.3)
R \Rd
if p>gqor
p/q
/ /|b(t,m)|th dr < oo
Rd \R

if p<gq.If p=o00 or ¢ =00 we interpret this conditions in a natural way. Observe that the case
p = q =d+ 1 is not excluded and in this case the condition becomes b € Ly, 1(R%*!). Under this

condition the solvability of (1.2) was proved in [17].
We are talking, of course, about weak solutions and prove their existence in Theorem 3.1. In
Theorem 6.1 we prove the existence of strong Markov processes corresponding to diffusion ¢ and
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ON TIME INHOMOGENEOUS STOCHASTIC ITO EQUATIONS WITH DRIFT IN Ly, 1233

drift b with the above properties. If b is bounded, as we know from [16], there exist strong Markov
and strong Feller processes with diffusion ¢ and drift b for which the Harnack inequality holds and
the caloric functions are Holder continuous. We are far from proving such fine properties.

The main technical tools are collected in Section 4 where we prove new mixed norms estimates
for the distributions of semimartingales. The treatment there, actually, follows very closely the work
by A. I. Nazarov [11] written in terms of PDEs.

There is a vast literature about stochastic equations with irregular drift. Probably one of the
first authors starting this area was N. I. Portenko, see his book [12], where he constructed diffusion
processes with sufficiently regular o and b € Lp(]Rd“), p > d + 2. This condition on b was later
refined in many articles with various ambitious goals in them to the requirement that b be such
that (1.3) holds not under condition (1.1) but rather

2

+2< (1.4)
q

d
p
We refer the reader to the recent articles [2, 10, 15] and the references therein for the discussion
of many powerful results obtained under condition (1.4), when the case of equality is treated as
“critical”. It could be critical in some respects but not for obtaining our results, that seem to be the
first ones about the existence of solutions and Markov processes with our condition on the drift. Still
it is worth emphasizing that our condition is different if p > ¢ (and, hence, p > d + 1) or p < q,
whereas there is no such distinction attached to (1.4).
We assume that d > 2 and denote

0 0

BR:{xERd: |:U|<R}, Di:%7 Dy; = D;D;, 3t=§.

For p,q € [1, 0c], we introduce the space L, , as the space of Borel functions on R%*! such that

q/p
17154 :=/ /!f(t,x)\pd:c dt < 0o
R R4
if p>qor
P/q
1£115.q ::/ /\f(t,w)lth dr < oo
R4 R

if p < ¢ with natural interpretation of these definitions if p = oo or ¢ = oo. To better memorize these
formulas observe that p is associated with integration with respect to x, ¢ with that with respect to
t and the interior integral is always elevated to the power < 1. In case p = ¢ = d + 1 we abbreviate

Lav1,a+1 = Lav1, ||+ [lavr,ar1 = || - lasa-
2. An example of nonexistence.
Example2.1. Suppose that numbers o and 3 satisfy
0<a<p<l, a+p=1, (2.1)

and set
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1 =z
tefz]P [a]
Observe that if d/p+1/q =1+¢, € > 0, one can take 5 = d/(p + pe), a = 1/(q + g¢) and then

b(t,x) = Tocjz)<1<1-

a/p 1 p/q

1
/ / bt )P dx | dt < oo, / /\b(t,:v)]th dz < oo,
0

0 \Jz|<1 lz|<1

Also note that if p < qd (say p = q), condition (2.1) is satisfied.
However, it turns out that no matter which «, 5 we take satisfying (2.1) there is no solutions of
the equation dx; = dw; + b(t, x;) dt starting at zero, where w; is a d-dimensional Wiener process.
To prove this assume the contrary. Namely, assume the there is a stopping time 7 such that
P(r > 0) > 0 and for ¢t < 7 there is x; such that

t

xt—wt—i-/bsxs

0
We may assume that 7 < 1 and before 7 the process is in B;. Then, for t < 7,

1 Tt

dpy = ———
FT o] [

Izﬁgo dt + dwy,
(2.2)

||
d|f13t’2 — _2t0‘|§6t|6 dt + ddt + 233,5 dwt.

We will be interested in |z *7 = §§1+5)/2, where & = |2;|?. By It6’s formula for any € > 0
we have

2 _
d(& +e)1FP)/2 = +5 (& 4e) P2 gg, +ﬁ 1(§t+5><ﬁ—3>/24\mt12dt:

= Ii(e) dt + Jy(e) dt + (1 + B) (& + )P~V 2z, dwy, (2.3)

where
1(e) = ~(1+ A& + o)

_ 148

Jt(6) B

[d+ (8= 1) (& + &) Ha] (& + ) P12

Since (& + €)7Y/2|z4|* 1 I, 20 as € . 0, by the dominated convergence theorem

t

¢
/IS )ds — — 1+5/ms;«é0
0

0

which is finite.
Furthermore, since |z~ is bounded on each trajectory, by the dominated convergence the-
orem
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ds — 0,

t
2
[ (& + 02, —
0

and we conclude from (2.3) that for t < 7

t t

|xt\1+ﬁz—(1+ﬂ)/ Jtjgs,,gods—l—hm/g]s Yds+ (1 +3) /|x5|'8 Telp 20 dws
0 0

and the above limit exists and is finite. Since 2.J,(g) > (& + €)P~D/2 it follows that

/|w e 1ds—hm/£s—|—5 D72 gs

and the left-hand side is finite. In particular,

T

/Ixszo ds = 0.

0
Now by the dominated convergence theorem (2.4) implies that

t

1
o8 = —(14 ) [ dst
0

t

t
1+8) /d+ﬂ—1 V] P 1ds+<1+ﬁ>/|xs|5—1xsdws.
0 0

Next, use a < 8 and Hoélder’s inequality to conclude that

1235

24

(2.5)

al/B sy (B—a)/B

t t
1
/]%] O‘ds—/ O‘Q/Bds < /ds /30‘2/(5“) ds
50‘|x5|ﬁ 5%|z|?
0 0 0

Since 02/(f — a) + 1= (o + 1 — 20)/(8 — a) = B2/ (6 — a1,
t a/B

t
1
/xs_o‘dsgN /ds tP,
s%|z|P
0 0

where N = N(«, ) (which is trivial if « = /3). Thus,
¢ a/B

1 J—
e+ et? < Ny /st t6+(1+ﬁ)/|x3|5 Lz dws,
S
0

where ¢ > 0 is a constant. For equation (2.2) to make sense we should have
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r
1

/W ds < (a. S.).

0

Therefore,
a/B

vy:=7AInf ¢t >0: Ny >c/2,,

“Ifc sela?

is a stopping time such that P(y > 0) (7 > 0). It follows that for any ¢t > 0

/Is<7|xs|’3_ s dwg > 0,
0

which is only possible if Is-|zs|*~zs = 0 for almost all (w,s). Then x5 = 0 for s < y and (2.5)
is only possible if P(t =0) = 1.

3. An existence theorem. In this section, we state a result saying that in a wide class of cases
there exists a probability space and a Wiener process on this space such that a stochastic equation
having measurable coefficients as well as this Wiener process is solvable. In other words, according
to conventional terminology, we are talking here about “weak” solutions of a stochastic equation.
The main difference between “weak” solutions and usual (“strong”) solutions consists in the fact that
the latter can be constructed on any a priori given probability space on the basis of any given Wiener
process.

Let o(t,x) be Borel d x d symmetric matrix valued, b(¢, ) be Borel R%-valued functions given
on R := (—00,00) x RY. We assume that the eigenvalues of o(t,z) are between § and 6!,
where ¢ € (0,1) is a fixed number. The set of such matrices we denote by Sj.

Next, fix numbers p,q € (1,00), ||b]| € (0,00) and let b"(¢,z), n = 1,2,..., be R%-valued
Borel functions on Riﬂ and suppose that

d 1
16"%p.g < lIBll, n=1,2,..., -+ - =1,
P.g g
and b" — b as n — oo in L, ,. Let 0" (¢,z), n = 1,2, ..., be Borel functions on R? with values in

Ss such that 6™ — o as n — oo (R%H1-ae.).

Theorem 3.1. Take (1°,2°) € R, (i) There exists a probability space (2, F, P), a filtration
of o-fields F, C F, t > 0, a process wy, t > 0, which is a d-dimensional Wiener process relative
to {Fi}, and an Fi-adapted process x; such that (a.s.) for all t > 0 equation (1.2) holds.

(ii) Furthermore, let (t*,x") € R4Y n = 1,2,..., and let (t*,2") — (1°,2°) as n — oo.
Assume that for each n = 1,2, ... there exists a probability space (2", F", P"), a filtration of
o-fields F' C F"*, t > 0, a process wi', t > 0, which is a d-dimensional Wiener process relative to
{F'}, and an F*-adapted process x} such that (a.s.) for all t > 0

t t
xy =a" + /U"(t" + s,27) dwy + /b"(t” + s,27) ds.
0 0

Then the finite dimensional distributions of a subsequence of "' converge weakly to the corre-
sponding distributions of one of the solutions of (1.2) described in (i). Moreover, if p > q, the set of
distributions of z™ on C([0,00), RY) is tight.
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The proof of this theorem, following a similar proof by A.V. Skorokhod, is given in Section 5,
after we make a crucial step in the next section where we prove, in particular, that for solutions
of (1.2), any Borel f > 0, and T € (0, 00)

T
E / f(t,z) dt < N fllpg,
0

where N is independent of f and (%, 2°).

It is worth saying that deciding whether the solutions of (1.2) are weakly unique or not under our
conditions is a very challenging open problem even if ¢ = §%.

Remark3.1. Theorem 3.1 is also true if d/p + 1/q < 1. This can be seen from its proof which
becomes somewhat more technical in that case because of the form of our main estimate (4.9). Also
the main interest in Theorem 3.1 is, of course, the lowest local integrability of b, when the condition
d/p+1/q =1 is weaker than d/p + 1/q < 1 due to Holder’s inequality.

4. Estimates of the distributions of semimartingales. Here we first prove a version of
Lemma 5.1 of [6]. The proof given in [6] uses somewhat advanced knowledge of very powerful
results from the theory of fully nonlinear parabolic equations. We give a proof based on a simpler
fact which in turn was one of the cornerstones of that theory.

Let (2, F, P) be a complete probability space, let F;,¢ > 0, be an increasing family of complete
o-fields F; C F, t > 0, let m; be an R?%-valued continuous local martingale relative to F;, let A,
be a continuous F;-adapted nondecreasing process, let B; be a continuous R%-valued F;-adapted
process which has finite variation (a.e.) on each finite time interval. Assume that

Ay =0, mo = By =0, d{m); < dAy

and that we are also given progressively measurable relative to F; nonnegative processes r; and c;.
Finally, take an F; measurable R%-valued z and introduce

¢ ¢ o
Ty = xo + My + By, Tt:/T‘sdAs, gﬁt:/chAs, aij = EM
2 dA
0 0
Lemma 4.1. Let v be an F;-stopping time and set
ol v
A= E/6_¢ttras dAy, B = E/e_d’* |dBy|.
0 0
Then, for any Borel f(t,z) > 0, we have
v
E/e_@ (redet ap) /Y f (7, 2,) dA; < N(d)(B® + A)YCH2|| fl gy (4.1)
0

Proof. Without losing generality we may assume that A < oo and B < oo. Furthermore, just
stopping the processes A;, m, and B; at time =y, we reduce the general case to the one in which
~v = oo. In that case we also observe that, as usual, it suffices to prove (4.1) for f € Cgo(RdH).

After these reductions we use Theorem 2.2.4 of [8] according to which, for any A > 0 on R4+1,
there exists a nonnegative function v(¢, ) such that
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1238 N. V. KRYLOV

(i) all Sobolev derivatives 0;v, D;v, D;jv exist and are bounded on R and v < Ne /N
for all ¢, x and a constant IV;
(ii) for any nonnegative symmetric (d X d)-matrix o and r > 0,

ropv + ozijDijv —Ar+tra)v+ Wrdeta f <0,
v — I <0, (\dij — Dijv) >0, |Dv|<Vav (ae); (4.2)

(iii) for any y € R?, t € (—00, 00), we have

1

v(t,y)e ™ < M Ckvyerm)

Iy, (4.3)

where

It = /ds/e)‘(dH)(HS)fd“(t—i—s,x) dx.
0 Rd

Take a nonnegative ¢ € C§°(R¥*1) with unit integral, for € > 0 denote
Co(t,x) = e~ D¢ (et ex)

and use the notation u(®) = u % (.. Then v(®) is infinitely differentiable and in light of (4.2), for any
nonnegative symmetric (d X d)-matrix « and r > 0,

190 4 o Dy — A 4 tra)p® + Virdeta f) <0,
(4.4)
dv® — xl) <o, ()\U(E)(Sij - D,-jv(g)) >0, |DU(€)‘ <V,

Next, by [t6’s formula the process

t
0 (7, ) e P AT — /€_¢5_>‘TSDW(E)<T&%) B+
0

¢
+ / e~ PeTATs (()\7"8 + ¢5)v®) — 80 — aijDijv(5)> (Ts,xs) dAs
0

is a local martingale. Here owing to (4.4)
(()\7‘5 + CS)U(E) - 7“58,51)(5) - aijDijv(E)) dAg — Div(e) dBi, >
> (rsdet as)l/(dﬂ)f(a) dAs — Mragv'® dA; — Vaw® |dBs|.
Therefore, for

M= sup vO(tz)e ™,
t>0,0cR4

the process
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t
kS = 0 (1y, ) e P 4 /6_(755_/\7—5 (rs det ag)/ D &) (7, 2.) dA—
0

t
/e /\trasdA +V\|dB, ])
0

is a local supermartingale. In addition, it is bounded from below by a summable quantity (A, B <
< 00). Hence, it is a supermartingale and by Fatou’s lemma

Ev)(0,20) = &5 / s (ry det a) VY £ 7y 2y) dA, — ME(AA + VAB).
0
By sending ¢ | 0 and using (4.3) and Fatou’s lemma once more we obtain

E [ e (ry det ag) V@D f (7, 24) dA; < N(d) + A+ \FAB) Io

71 1
\d/(2d+2) (

We replace here e f by f and arrive at

(14 A4+ VAB) [ fllas1.

E/e t(ry det ay) 1/(d+1)f(7t,$t)df4t < N(d)m
0

Now we use the arbitrariness of . If A < B2, then for A\ = B~2 we have

W (1 + A+ \FAB) < 3B+ < 3(B2 4 A)¥/(2d+2),

If A> B? and A > 0, then for A\ = A~! the above inequality between the extreme terms still holds.
Finally, if A = B = 0, then the left-hand side of (4.1) is zero.

The lemma is proved.

Lemma 4.2. [n the notation of Lemma 4.1 for any Borel f(x) > 0 we have

y
E/e¢t (det ap)Y9f(x) dA; < N(d)(B? + A)l/QHfHLd(Rd). (4.5)
0

Proof. We follow a probabilistic version of an argument in [11]. We again may concentrate on
the case of A4+ B < 00, v =00, and f € CgO(Rd). In that case observe that by Theorem 2.2.3 of
[8] there exists a nonnegative function v(xz) defined on R? such that

(@ v <N e 1ZI/N for all z and a constant N; the generalized derivatives D;v and D;;v,
i,j=1,...,d, are bounded on R%;

(b) for any nonnegative symmetric (d x d)-matrix « (a.e.)

—\vtr a+ oD+ Vdetaf <0, |Dv| <V,

()\U(Sij — Dij’U) Z 0; (46)
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(c) for any z € R?
v(@) < N@A I 1 ra. (4.7)

Then we closely follow the proof of Lemma 4.1. Take a nonnegative ¢ € Cgo(Rd) with unit
integral, for ¢ > 0 denote (. (2) = e~%C(ex) and use the notation u(®) = ux(.. Then v(*) is infinitely
differentiable and in light of (4.6), for any nonnegative symmetric (d x d)-matrix «,

aijDijv( ) — Atrav® + Vdeta £ <0,
(4.8)
< A©)s; — Diﬂ,(a)) >0, |Dv®)| < VAl

Next, by Itd’s formula the process
t t
0 (2y)e™? — /e_‘ﬁsDiv(E) (z5) dB: —|—/e_¢s_’\TS (csv(a) — a?Dijv(E))(xS) dAs
0 0

is a local martingale. Here owing to (4.8)

(csv(g) — aijDijv(E)> dA, — D;v'¥) dB! >

> (det as)l/df(a) dAs — Mragw® dA; — V) |dBs].

Therefore, for
M¢ = sup v (2)
zERY

the process
t ¢
Ky = v (xt)efd’t + /ed’sf(E) (xs)dAs — /e¢5 ()\tr asdAg — ﬁ|st\) M
0 0

is a local supermartingale. In addition, it is bounded from below by a summable quantity (A, B <
< 00). Hence, it is a supermartingale and by Fatou’s lemma

Ev®)(z0) = k5 > E / e~ (det ag)"/?f ) (z,) dA, — ME(AA + VAB).
0

By sending ¢ | 0 and using (4.7) and Fatou’s lemma once more, we obtain

E/ ‘(detar) [ (ar) dAy < N(d) 5375 (1 A4+ VAB) ] gz,

1
2\1/2
Now we use the arbitrariness of \. If A < B2, then for A\ = B~2 we have

)\11/2 (1 A+ fB) < 3BY2 < 3(B2 + A)V/2.

If A> B? and A > 0, then for A = A~! the above inequality between the extreme terms still holds.

Finally, if A = B = 0, then the left-hand side of (4.5) is zero.
The lemma is proved.
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Theorem 4.1. Assume the notation of Lemma 4.1 and let p,q € [1,00] be such that

d 1

f:=1—-——-—2>0,
p 9
then, for any Borel f(t,x) > 0, we have
v
I(p,q.f) :=E / ¢ ke (e, @) dAr < N(d)(A+ BV £, (4.9)
0

where Ky = rtl/q(det a))YPc? and for any o > 0 we set o =1 (say, if § = 0).
Proof. By Holder’s inequality, if 6 > 0,

Ip..£) < (1001~ 0).9(1 — 6). 7/0-)) """

It follows that it suffices to concentrate on = 0. Then we observe that if ¢ = co, then p = d and
115 = [ sup 7t.) do.
>0
Rd

In that case (4.12) follows from Lemma 4.2. If p = oo, then ¢ = 1, and

v vy o]
I(p,q,f) = E/th(ﬁ,xt) dA, < E/supf(n,x) dr < /Supf(t,x) dt = | fllp.q-
0 0 0

In the third simple situation when ¢ = p = d+ 1 estimate (4.12) follows from Lemma 4.1. We prove
the lemma in the remaining cases by interpolating between the above ones.

If p > ¢ (and hence p > d + 1) we take a nonnegative function h(t) such that (hf)/h = f
(0/0 := 0) and use

rtl/q(det at)l/pf = (rtl/q_l/phfl) ((7’ det at)l/pfh>

along with Holder’s inequality. By performing simple manipulations we find

I(pvq’f) S 1J =
—d—1 d+1
— (I(OO, 1, hfp/@*d*l)))(p i (I(d F1,d+1, (hf)P/W“)))( i (4.10)
Here
00 (p—d-1)/p
I< /h—p/(p—d—l)(t) dt
0
Also
(d+1
7 < N@)(B + 4 |gyp/ o] 07
+
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[e'e) l/p
— N(d)(B? + A/ ( / ( / 2t 2) dx) he(t) dt) |
0

Rd

We now choose & so that

hp/(pdl) (/fptxdx)hp()

Then both quantities become

(/fp(t,x)d:x> , J < N(d)(B2+A)d/(2p)\|f||g(§, I< |’f"g§g—d—1)/p
d

and coming back to (4.10) we get (4.9).
In the remaining case ¢ > p (and ¢ > d + 1) we use

r/9(det ag) VP f = <(det at)l/Pfl/qifl) ((r det at)l/th).
This time for A = h(x)
I(p.q, ) < 1J:=
- (I(d, 00, h—q/<q—d—1))> /e (I(d +1,d+1, (hf)q/(d+1))) PR T)
Here

(g—d—1)/(gd)
I < N(d)(B? + A)\/p=d/a)(1/2) (/hqd/(qdl)(x) da:) 7

R4

o0 1/’1
J < N(d)(B? 4+ A)%(a) ( h(z) ( Fat, z) dt) dx) :
ol

We choose A so that
hqd/(qdl (/fth )

and then easily come to (4.12).
The theorem is proved.
Corollary4.1. Introduce a measure (Green’s measure) on Borel subsets T' of R*1 by the formula

~
E/ _d)tl{,tlr Tt,xt) dAt
0
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Assume that A, B < oo and set p' =p/(p—1),q¢ = q/(q—1). Then G(T') is absolutely continuous
and its density G(t,x) is such that, if p > q,

0o q /v /4
/ /Gp/(t,x) dx dt
0 R4
and, if p < q,
0o p/d /4
/ / G (t,z) dt dx
Rd \O

is dominated by
N(d)(B? 4 A)1=0)d/2p)

Theorem 4.2. Under the assumptions of Theorem 4.1 let py € [1,00] and qp € [1,00) be such

that

1
90::1—i——20.
bo q0

Also assume that d|By| < dA; and there exists a Borel h(t,x) such that (P(dw) x dA;-a.e.)
|be| < PR (T, @0),

where by = dB;/dA; and k) = rtl/qo(det ag) /P %0 Then for any Borel f(t,x) > 0 we have

.
I(pa q, f) = E/€_¢t/€tf(7t,$t) dAt < N(dap07QO)C||f||p,qv (412)
0
where
1/q 1/p .0 2po/(po—d) 4/(2p)
ke =1 " (detay) ' Pef, C = (A—i— [T e >

and for any number o > 0 we set o® = 1 (say, if = 0).

Proof. Observe that py > d since gy < oo. Then, we may assume that A < oo and ||hl[p,,q <
< 00. Using stopping times we easily reduce the general situation to the one in which B < oco. After
that, in light of Theorem 4.1, we need only prove that

B < N(d, po, q0) (AW i Hhupo/(m*@). (4.13)

Po»q0

By Theorem 4.1

T

b= E/ e~ (dBy| < I(po, g0, h) < N(d)(A + BV OB,
0

Here if B? < A, estimate (4.13) holds. If A < B2, then the above inequality yields
B < N(d)BY"|[hllpyq0,  BP D7 < N(d)|[Al|po,a0

and we obtain (4.13) again.
The theorem is proved.
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Remark4.1. In the case of ¢ = oco,p = d an estimate of B in terms of ||A||,, is given in
Theorem 5.2 of [6] if ~ is the first exit time of x; from a ball and in Theorem 2.17 of [9] if A; = ¢
and ¢; = Atra;, where A > 0 is a number (and v = o0).

Remark4.2. As in [11] we note that estimate (4.12) also, obviously, holds if

n
|be] < Z K h(Te, 1),
k=1

where kF = rtl/q’“(det a)) P pp e [1,00],qx € [1,00), O =1 —d/pr — 1/qi > 0, and hy, are
nonnegative Borel functions. In that case the constant C' depends only on d, p, q, pk, gk, ||Pk|lps.qs
k=1,...,n, in a somewhat complicated way.

Remark4.3. The main case of applications of Theorem 4.2 in this article is when p = pg <
< 00,g=qp < 00,0 =0y =0, vy="1T, where T is a fixed number, r; =1, ¢; =0, A; =t AT,

1b¢| < (det az)/Ph(t, z¢) L<7.

In that case 2p/(p — d) = 2q and estimate (4.12) becomes

T

d/(2
B / (det a)) 7 f(t, 2)dt < N(d,p) (T + 5T o0 12) Y | flpa-
0

We finish the section with somewhat unrelated result which we use later in Section 6 and which
would be a simple consequence of Theorem 4.5.1 of [14] if we assumed that b is bounded.

Lemma 4.3. Let x;, t > 0, be an R%-valued process on a probability space (2, F, P). Define
Fi as the completion of the o-field generated by x5, s < t. Let o, be an Ss-valued and b be an
RY-valued processes which are progressively measurable with respect to {F;}. Suppose that for any
T € (0,00)

T

/\bt\dt <oo (a.s)

0

and for any C§°(R¥1)—function u(t, x) the process

t
u(t, ) —/Lsu(s,xs)ds (4.14)
0

is a local martingale with respect to {F;}, where for a = o

1 . ,
Liu(t,z) = Opu(t, x) + §a?Diju(t, x) + biDu(t, x).

Then there exists a d-dimensional Wiener process (wy, Ft), t > 0, such that

t t
xt:x0+/05dws+/bsd5.
0 0
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Proof. First observe that by using cut-off functions one easily shows that (4.14) is a local martin-
gale for any twice continuously differentiable function w. Then, we claim that the following processes

are local martingales:
t
X =2 — / bs ds,
0

¢
B, = xxy — / (as + bszs + l‘sb:) ds,
0

t
At = XtX;( —/as ds.
0

Indeed, the first two processes are obtained from (4.14) for u = x, xx*. Concerning the last one
introduce v as the minimum of 75 = inf {¢ > 0: |24| > R} and

inf<t>0: /|b5ds—|—|Bt|2R

Also let .

(bt = /bs‘[5<’YR ds.
0
Observe that X;,,, and ®; are bounded and simple manipulations yield

t
At/\’yR /‘XS/\’)/R dq) Xt/\'YR / 8/\"/R - QtXt*/\’YR + BtA'VR’
0

which by the Lemma from Appendix 2 of [5] shows that A;,., is a martingale.
By the above claim the quadratic variation process of the local martingale X; is

t
/as ds.
0

After that our assertion follows directly from Theorem II1.10.8 of [7].
The lemma is proved.
5. Proof of Theorem 3.1. Introduce
B(t) = |[bI

—OO,t) ”qu'

Lemma 5.1. Suppose that p > q and let x; be a solution of (1.2). Then, for 0 < s <t < s+1 <
<ocoandn=1,2,..., we have

Elzy — as|" < N(t — s+ BX(to +t) — B2(to + 5))" ¥ ), (5.1)
where N = N (n,d, d,p, ||b]).
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Proof. We may assume that ¢ty = 0. Then observe that for any integer n = 1,2, ...
t n+1
Int1:=F /b(u,:):u) du =
s
¢
=(n+1)FE / b(ur, Ty, ) ... 0(un, Ty, ) E /b(u, xy) du | Fuy, | dug ... duy,
s<u1<...<un Un

where the conditional expectation we can estimate by using Remark 4.3.
Then we get

d/(2p)
Livt S Nn+ DI (t = s+ b lZ) " bl

where N depends only on d, p, and §. Here
2q 2 2 2
161012, = (B() = B(s)) < B (t) = B(s).

Therefore,
9 9 d/(2p)
Inst < N(n+ 1)1, (t _ s+ BXt)- B (s)) 15]].q-
The induction on n yields

nd/

L, < Nl (t — s + B2(t) — B2(s))"/ ™ |2,

Also, as is well-known,
t n

E /U(u,xu)dwu < N(n,8)(t —s)™2.

It follows that the left-hand side of (5.1) is less than a constant N times

9

(t—s)"" + <t — s+ B(t) - Bz(s))”d/@p)

which less than twice the factor of IV in (5.1) because p > d and t — s < 1.
The lemma is proved.
Lemma 5.2. Under the assumptions in Theorem 3.1(ii) the set of distributions of =" on
C([O, oo),]Rd) is tight if p > q.
Proof. Define
Bn(t) = anl(foo,t"th)H;q

and let ¢"(s) be the inverse function of 1" (¢) := t" +t + B2(t" + t). By Lemma 5.1 and Kol-
mogorov’s criteria the set of distributions of y" := Tign () on C ([0, 00), Rd) is tight.

Observe that, as n — oo, ¥"(t) converges to to + t + B?(to + t) which is continuous and
monotone. By Polya’s theorem the convergence is uniform on any finite time interval, and hence, the
functions " (t) are equicontinuous on any finite time interval. Now define

®(s) = inf ¢"(s)

n>1
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and take S € (0,00). By tightness, for any £ > 0 there is a compact set K. in C([0, S],R?) such
that P"({yll,s < S} € K.) > 1 — ¢ for all n. Due to the uniform continuity of ¢ and of the
elements of K., the elements of

K. = {{f(z/z“(t)),t <®(S)}: {f(s),s< S} e Keyn= 1,2,...}

are uniformly continuous and, of course, uniformly bounded, so that KE is a compact set in
C([0,2(S)],R?) and

P({nt SO(S)} €R) =1~

It only remains to observe that y;,,) = 2, S is arbitrary, and ®(S) = 00 as S — oc.

The lemma is proved.

This takes care of part of assertion (ii) of Theorem 3.1. To deal with the rest we rely on the
following results due to A. V. Skorokhod (see Ch. 1, §6 and Ch. 2, §3 in [13]).

Lemma 5.3. Suppose that d-dimensional random processes &' (t > 0, n = 1,2,...) are
defined on some probability spaces. Assume that for each T' > 0 and € > 0

lim supsup P"(|&}'] > ¢) =0, (5.2)
C—00 p tST
limsup sup P”(|§t"1 =&l > 5) =0. (5.3)
hl0 n g to<T
[t1—t2|<h

Then one can choose a sequence of numbers n' — oo, a probability space, and random processes
&, §f/ defined on this probability space such that all finite-dimensional distributions of §f/ coincide
with the corresponding finite-dimensional distributions of ff/ and

P(\gt—gtn/’) —0

asn' — oo forany € > 0 and t > 0.

Lemma 5.4. Suppose the assumptions of Lemma 5.3 are satisfied and &' are defined on the
same probability space. Also, suppose that dy-dimensional Wiener processes (wy', F") are defined
on this probability space. Assume that the functions &'(w) are bounded on [0, 00) x Q uniformly in
n and that the stochastic integrals

¢
I = /52 dw?
0
are defined for t > 0. Finally, let
& =&, w o) (54)

in probability as n — oo for each t > 0. Then I} — I? in probability as n — oo for each t > 0.

Remark5.1. As it follows from the proof of Lemma 5.4 given in [13] we need conditions (5.2),
(5.3), and (5.4) to hold only for ¢, ¢;, to restricted to a set of full measure in order for the assertion
of the lemma to be true.
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Lemma 5.5. Let R**-valued processes (xt,wi), t > 0, i = 1,2, defined on perhaps different
probability spaces have the same finite-dimensional distributions. Define F} as the completion of
o(xl,wi: s < t) and assume that w} is a Wiener process with respect to F;. Also suppose that
(a.s.) forallt >0

t
g;% = /a(ij;) dw; +/b(3,x£)ds. (5.5)
0

Then x2, w? have modifications (called again x?,w?) such that w? is a Wiener process with respect
to F? and (a.s.) for all t > 0

¢ ¢
= /a(s,x?)dw?—i—/b(s,xi)ds. (5.6)
0 0

Proof. Fix T € (0,00) and € € (0,1). Since the trajectories of (x},w;) are continuous, there
exists a compact set K C C([0, 7], R??) such that

P((x,l/\T,w,l/\T) S K) Z 1—e.

Hence, there is a constant N and a continuous function w(t), ¢ € [0,T7], such that w(0) = 0 and
with probability larger than 1 — ¢ for any s,¢ € [0, 7]

}(ajé’w;)‘ SN’ ‘(x;’w;)_(xl})wtl)‘ Sw(\t—s|). (5-7)

It follows that (5.7) holds for rational s,¢ if we replace (z',w') with (22, w?). Then by conti-
nuity (z7,w?) is extended to all ¢ € [0, T]. The extensions coincide with the original ones (a.s.) for
any ¢ because of the stochastic continuity of the original (?,w?). This is done on events whose pro-
babilities tend to one. Because of the arbitrariness of 7' we may assume that (z7,w?) is continuous
in ¢ with probability one.

By Remark 4.3 and by the coincidence of finite dimensional distributions (and by the measura-

bility of 27 due to its continuity) for any 7' € [0, c0), Borel f(t,z) > 0,

T
E / Ft a2y dt < N fom g (5.8)
0

where NV is independent of f.
Furthermore, if «(¢,x) is a continuous d x d symmetric matrix-valued, (¢, z) is a continuous
R%-valued, then the distributions of

t ¢
xi,/a(s,mi) dwi,/ﬂ(s,xi) ds |, i=1,2,
0 0
coincide, because the integrals can be approximated by integral sums. This coincidence also holds
for « = o and § = b due to (5.8) and the possibility of approximation. Hence for each ¢ with
probability one (5.6) holds due to (5.5). But then with probability one it holds for all ¢, because both

sides of (5.6) are continuous.
The lemma is proved.
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Proof of Theorem 3.1. Due to the possibility to use mollifiers we see that assertion (ii) implies
(i). In the proof of (ii), thanks to Lemma 5.2, we need only prove the assertion concerning the
convergence of finite dimensional distributions.

Having in mind Lemma 5.3 define for M > 0

t t
& = / P s, al)ds, M = / B 4 5,27 T om0y <21 5.
0 0

Since the derivative of &M is bounded, both conditions (5.2) and (5.3) are satisfied for &M,
Furthermore,

T
Pt /Ib"(t” + 8,20 Lo (e s,amyzmr ds > € | < €T INIO gy llpugs
0

where N is independent of n and e. Since V™ — b in the || - ||, 4-norm, the latter quantity can be
made as small as we like on the account of choosing M large enough. Therefore, Lemma 5.3 is
applicable to &'. It is, obviously, also applicable to

t
Ny =a" + /U”(t” + s, 27) dw}.
0

Hence, there is a subsequence, which by common abuse of notation we identify with the original one,
a probability space and random R??-valued processes (7}, w}), (Z9,%?) defined on this probability
space such that all finite-dimensional distributions of (Z}', w}') coincide with the corresponding finite-
dimensional distributions of (z}', w}') and

P(|(z}, wf) — (&7, @) > ) =0 (5.9)

as n — oo for any ¢ > 0 and ¢ > 0. Furthermore, for any 7" € (0, 00) there exists a continuous
function w(t), ¢t € [0, T, such that w(0) = 0 and for all n > 0, s,t < T,

Elp(Ef) — o(20)| < w(]t — s]), (5.10)

where ¢(z) =z /(1 + |z|).

For n > 0 introduce F}* as the completion of o (Z7,%",s < t). It is easy to see, using Kol-
mogorov’s continuity criterion, that @ admits a continuous modification %9 such that {w?, F0} is
a Wiener process.

By Lemma 5.5, for each n > 1, the process (Z}',w;") admits a continuous modification denoted
by (&7,47) such that (@}, F7*) is a Wiener process and (a.s.) for all ¢ > 0

t t
Y =1, + /o'n(tn + s, 27) dwy + /b”(tn + s, 2y) ds. (5.11)
0 0

In light of (5.9) and (5.10) we have
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P(|(@p,0p) — (22, w)] > €) =0 (5.12)
asn —ooforany e >0and, ¢ >0and foralln > 1, s,t < T,
Elo(z7) — o(23)] < w(]t - s)). (5.13)

Now the fact that #) may be not measurable in ¢ causes some problems. However, observe
that, owing to (5.12), ¢(z}') form a Cauchy sequence in L;(€2 x [0,7]) and, hence, converges in
that space to ¢(2?), where 2 is measurable with respect to (w,t). By Fubini’s theorem there is
aset S C [0,00) of full measure such that, for any t € S, ) = 79 (a.s.). Without losing the
above properties we set 29 = 0 for t ¢ S and then, for any s,t > 0, W) Ls Y is indepenent of
(29, 09),r < t.

Now we note that (5.13) remains valid for n = 0 and (5.12) remains valid if we replace (Y, wY)
by (29,4?) and restrict the ranges of ¢,s to t,s € S. This is done to accommodate Remark 5.1.

Then, by Lemma 5.4 for any ¢ > 0 and continuous d x d symmetric matrix-valued «(¢,x), we have

t
O/Ozszn ) dw? —>/ (5.14)

as n — oo in probability. We want to use this to pass to the limit in the stochastic term in (5.11).
But first observe that by Remark 4.3 for any 7" € [0, 00), Borel f(¢,z) > 0, and n > 1

T

B [ $.37)dt < NI f o)l (519

0

where N is independent of f and n. The convergence in probability implies that (5.15) holds for
n = 0 as well with the same constant N, first for nonnegative f € C5°(R9*1) and then, due to
general measure-theoretic arguments, for any Borel nonnegative f.

We claim that on the account of (5.15), if Borel functions g" converge to g in the || - ||, 4-norm,
then

E/|g (t,&7) — g(t,27)| dt — 0. (5.16)

To prove (5.16) take € > 0 and g. € C§°(RY!) such that

19 = gellp.g <&

For g. in place of g, (5.16) follows from the convergence in probability of £} to 2 for t € S. After
that it only remains to observe that the limit of the error of the substitution in (5.16) is less than 2Ne
owing to (5.15). It follows, in particular, that in probability

sup /b”(tn +5,27)ds — /b(to +5,2%0)ds| — 0. (5.17)
t<T

Coming back to the stochastic part note that for any ¢ > 0 and ¢ € (0, c0)
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2

SNsup/ (|z2 >c)d5+N hm H (tn+-,7) — a(‘a‘))I[o,t]ch -
0
t
= Nsup [ P(a3] > ) ds + V| (ot + ) = ol Toapen
0

where the constants [V are independent of ¢ and c. The last quantity also dominates

2

t t
/ (to + 5,29 du? /a(s,ﬁzg)dwg
0 0

This and (5.14) show how, for any given £, > 0, to choose ¢ and a continuous « in order to have

that
t

t
lim P /a”(tn—ks,ﬁ:?)dw?—/a(tn—i—s,ig)dwg >e| <o
0 0

n—oo

Upon combining this with (5.17) and coming back to (5.11) we conclude that for any ¢ (a.s.)
¢ t
?:xo—i-/ato—i-s,x ) dib +/bto+sx ds =: ys.
0 0

In particular, this means that 7 admits a continuous modification y;. In turn, it allows us to replace
in the above equation £ with y;, because for any s € S, 20 = 20 = y, (a.s.) and therefore 20 = y
for almost all (w, s).

The theorem is proved.

6. Markov processes corresponding to o, b. We are going to use the results in [4] applied in
the case when the semicompactum E is Rt!, that is when the t-variable is considered just as one
of coordinates of points (t,r) € R+,

Let © be the set of R%*!-valued continuous function (to -+, ), to € R, defined for ¢ € [0, 00).
For w = {(to + t,x¢),t > 0}, define t¢(w) = to + t, z4(w) = x4, and set Ny = o((ts, x5),s < 1),
N = N. Denote by T the set of stopping times relative to {/;}. In the following theorem we use
the terminology from [3].

Theorem 6.1. On Rt there exists a strong Markov process

X = {(ts, z1),00,Nt, Py}
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such that the process
Xl - {(tt) xt)a OO,M+7 Pt,z}

is Markov and for any (t,z) € R™! there exists a d-dimensional Wiener process wy, t > 0, which
is a Wiener process relative to Ny, where N is the completion of N with respect to P, .., and such
that with P; ,-probability one, for all s > 0, ts =t + s and

S S

T ::1:—|—/U(t+u, Ty) dwu+/b(t+u,aju)du. (6.1)
0 0

Proof. Define a = 02,
1 .. :
Lu(t,x) = dyu(t, z) + §aUDiju(t, x) + b'Dju(t, x)

and introduce II; , as the set of probability measures on (€2, ') such that P((to,zo) = (¢,)) = 1,

T
E/ bty @) dt < 00 VT < oo, 6.2)
0

and the process
t

ne(u) = u(ty, x) — /Lu(ts, xs)ds
0

is a martingal relative to {N;} for all u € C§°(R4*1).

According to Lemma 4.3, if P, € II; ,, then the assertion of the theorem regarding (6.1) holds
and (6.2) is true. Therefore, by Theorem 2 of [4] to prove the present theorem, it suffices to show
that II; , # @ and {II;,} is a Markov system relative to (T, N;) and ([0, 00), Niy).

That II; , # @ follows from Theorem 3.1(i). Let us prove that {II; . } is a B-system. To achieve
this, as it follows from [4], it suffices to show that if (¢,,,z,) — (¢,z) and P™ € II;, ., , then there
exists a subsequence n(k) — oo and PY € II;, such that for any f € C§°(R9+2)

oo o0

E™F) exp /etf(t,tt,xt)dt — E%exp /etf(t,tt,mt)dt ,
0 0

where E™*%) EO are the expectation signs with respect to P™*), PO respectively. The reader will
easily derive this property from Theorem 3.1 (ii) by using Taylor’s series and observing that

. n
E /e_tf(t,tt,:ct)dt =
0
co oo
:E/.../e_tlf(tl,ttl,xtl)...e_t"f(tn,ttn,xtn)dtl...dtn.
0 0
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What remains is to prove that for (T, A;) and (][0, 00), N;+) the conditions 2 and 3 are satisfied

of the definition of Markov system in [4]. This is done by almost literally repeating the corresponding
part of the proof of Theorem 3 of [4]. One need only replace there z; with (t;, z).

The theorem is proved.
Acknowledgment. The author is sincerely grateful to A. I. Nazarov, who pointed out an error

in the first version of the article, to Hongjie Dong and Doyoon Kim for spotting several misprints
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