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ON A BROWNIAN MOTION CONDITIONED TO STAY IN AN OPEN SET

PO YMOBHMI PO3IIOALT BPOYHIBCBKOI'O PYXY,
[0 HE BUXOJUTH 3 BIIIKPUTOI MHOXXUHHA

Distribution of a Brownian motion conditioned to start from the boundary of an open set G and to stay in GG for a finite
period of time is studied. Characterizations of such distributions in terms of certain singular stochastic differential equations
are obtained. Results are applied to the study of boundaries of clusters in some coalescing stochastic flows on R.

JlocTimKy€eThest pO3NO/IiI OPOYHIBCHKOTO PYXY, L0 CTApTYBaB i3 TPaHUYHOI TOUKH BiAKPUTOI MHOXKUHU G 1 3a/UIIA€ThCS B
G mpoTAroM CKiHYEHHOTO iHTepBay yacy. OTpUMaHO XapaKTepU3alilo TaKUX PO3MOALIIB y TepMiHaX IIEBHUX CHHTYIISIPHHUX
CTOXacTUYHUX IuepeHuiaTbHuX piBHAHb. OTpUMaHi pe3ylbTaT 3aCTOCOBAHO [0 BHUBYCHHS MEX KIIACTEPIB y AESIKHX
CTOXaCTUYHMX MOTOKAX 3i CkietoBaHHsIM Ha R.

1. Introduction. Let B = {B(t)};c(o,r) be a standard R¢-valued Brownian motion. Given an open
set G C RY denote by 7¢ = inf{t > 0: B(t) ¢ G} the first exit time of B from the set G. In this
paper we study the distribution of B conditioned on the event {7 > T'}, where T > 0 is a fixed
positive time. Denote this distribution by v, 7(-; G), where B(0) = = is the starting point. Let C$
be the space of continuous functions w: [0,7] — R? endowed with the sup-norm and a Borelian
o-field B(C%). Then

ver(AG)=P(BeA|B00)=x, 7¢>T), AcB(CH).

The measure v, 7 is not well-defined when = ¢ G, as the event {B(0) = z, 7¢ > T’} can be of
probability zero. However, if the set G is sufficiently regular and x is a boundary point of G, the
measure v, 7 is well-defined as a weak limit [1] (Theorem 4.1)

vpr(-;G) = lim v, p(-;G).

y—z,yeG
In the paper, we characterize the measure v, (- ; G) in terms of a singular SDE. Precisely, introduce
the function
6t y) =P(re >t | B(0)=y), t>0, yegq, (1.1)

and consider the following problem:

dY (t) = Vylogya (T — t,Y (t))dt + dW (),

Y (0) = =z, (1.2)

Y(t)e G foraa. te(0,7),

where W is a standard Brownian motion in R?. The main result of the paper is the following
theorem.

Theorem 1.1. Let G C R? be an open convex set, x € G, and the boundary of G is C? in
the neighborhood of x. Then the problem (1.2) has a unique strong solution. The distribution of this

solution coincides with v, (-, G).
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ON A BROWNIAN MOTION CONDITIONED TO STAY IN AN OPEN SET 1287

The result was motivated by the study of coalescing stochastic flows on the real line. By a
coalescing stochastic flow on the real line we understand a family {¢s+: —00 < s <t < oo} of
measurable random mappings of R such that:

1) forallr <s<t,zeR, weN

’(/}S,t (w7 QpT,s(wv fE)) = wr,t(wv x)
and ¢, s(w, z) = z;
2) forall t; <...<ty, z1,...,2m € R random vectors
(wtl,tz (.’131), ey ¢t1,t2 (‘r’m))7 ceey (wtn_l,tn (:1:1)7 o 7¢tn_1,tn (xm))

are independent;
3) forall s <t, h e R, x1,...,x, € R random vectors

(¢S,t($l)7 <o ﬂps,t($m)) and (¢s+h,t+h(xl)a s 7¢S+h,t+h(l‘m))

are equally distributed;
4) forall s,z € R, w € 2, functions

tﬁws,t(xﬂ"))a tZ S,

are continuous;
5) there exist x # y such that

P(3t > 0: 1o ¢(x) = hos(y)) > 0.

With a stochastic flow i) we associate the family of o-fields
f;ft :U({wuw(w): s<u<wv<t, z¢€ R}), s < t.

For general properties of stochastis flows we refer to [2]. In our previous works [3 — 5] properties of
clusters in certain coalescing stochastic flows were investigated. To illustrate the results and related
questions, let us consider the Arratia flow on R. A stochastic flow {t¢s+: —00 < s <t < oo} is
called the Arratia flow, if forall s € R, n > 1 and « = (z1,...,x,) € R™ processes

Wj(t) :ws,ert(-Tj), t>0, 1<j753<n,

are (F, j’ s1+¢)t>0-Brownian motions with joint quadratic variation given by

(Wi, Wi)(t) = (t — 7ij)+» iy = inf {t > 0: W;(t) = W;(t)}.

Informally, the Arratia flow describes the joint motion of a continuum family of stochastic processes
that start at every moment of time from every point of the real line, each process is a standard
Brownian motion, every two trajectories move independently before they meet each other, at the
meeting time trajectories coalesce into one Brownian motion. For the existence of the Arratia flow
and its properties we refer to [2, 3, 6-8]. For fixed s < ¢ consider the random mapping s ; :
R x Q — R from the Arratia flow. With probability 1 it is an increasing piecewise constant function
[6]. The distribution of its range s (R) as a point process on the real line was described in [9].
Consider a point ¢ € ¥ 7(R). At every time t € [0, 7] there exists a segment of points that have
coalesced into ( at time 7'
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1288 G. V. RIABOV

K(t)={zeR: ¢pyr(x)=(}, 0<t<T.

We refer to the set K¢ = Usejo ({1 — t} x K¢(t)) as to the cluster with the vertex (. For fixed
t € [0,T7] the family {K(t): ¢ € ¥, r(R)} is a partition of R. Given a segment [a, b] let Ny(a,b)
denote the number of nonempty intersections K¢(t) N [a, b]. The distribution of N;(a,b) was found
in [10]. We are interested in the distribution of boundary processes

a¢(t) = inf K¢ (1), Be(t) = sup K¢(t).

In different terms, (ac(t),B¢(t)) is the largest open interval, where 17—, 7(z) = (. Hence the
distribution of boundary processes is needed in order to describe the distribution of a random mapping
ths+ completely. Our method allows to characterize the distribution of the pair (o, 8¢) as is given
in the end of Subsection 4.1.

The conditional distribution of boundary processes needs to be defined rigorously, as the event
{¢ = x} is of probability zero. This is done in Section 4 using duality theory for the Arratia flow.
Also in Section 4, we consider Arratia flows with drift. Let a: R — R be a Lipschitz function.
The Arratia flow with drift @ is a stochastic flow ¢ such that each trajectory ¢t — v ;(x) is a weak
solution of the SDE

dws,t(l') = a(ws,t(z))dt + dws,x(t)’

every two trajectories move independently before they meet each other, at the meeting time tra-
jectories coalesce (see Subsection 4.2 for the precise definition). In [5] it was proved that if
a'(x) < —X\ < 0 a.s., then there exists a unique stationary process {7 };cr such that, for all s < ¢,
s +(ns) = m4. At every moment ¢ > 0 there exists an interval of points that have coalesced into 7
at time O:

Ko(t) ={z e R:¢_so(x) =m0}, t>0.

The set Ko = U0 ({—t} X Ko(t)) will be called the infinite cluster with the vertex 7y. The
Theorem 4.2 (Subsection 4.2) describes the conditional distribution of processes ag(t) = inf Ky(t),
Bo(t) = sup Ko(t) conditioned on the event {ny = z}.

The paper is organized as follows. Our approach is based on a carefull analysis of a Brownian
meander — a particular case of Theorem 1.1, that corresponds to d = 1, G = (0,00), = = 0. As
a corollary, we recover the result of [11] on the mutual equivalence between the distribution of the
Brownian meander and the distribution of the three-dimensional Bessel process. In Section 3, we
prove Theorem 1.1 in full generality, by adapting the approach of [1]. Finally, in Section 4, we apply
the result to the distribution of boundaries of clusters in the Arratia flow, and obtain analogous results
for an unbounded cluster in the Arratia flow with drift [5].

2. Brownian meander. Let P, be the Wiener measure on C:lp7 i.e., the distribution of an
R-valued Brownian motion B = {B(t)},c[0,7] conditioned to start from x € R. Expectation with
respect to the measure P, will be denoted by F,. Denote R; = (0, 00). By the distribution of the
Brownian meander we understand the measure v 7(-, R4 ). Informally, it is the restriction of the
Wiener measure Py to the set of trajectories

A={weCr:wt) >0, 0<t<T}

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 9



ON A BROWNIAN MOTION CONDITIONED TO STAY IN AN OPEN SET 1289

As it was mentioned in the Introduction, vy 7(-,Ry) is rigorously defined as a weak limit [12]
(Theorem 2.1)

vor(,Ry) = yl_i>1(1]1+ vyr(,Ry),

P,(ANA)

. Introduce the function
Py(A)

where now v, 7(A,R;) =
7R+(t,y):Py< m[g)rhw(s)>0), t>0, y>0.
s€l0,

Precisely,

%
2 _Z2
TRy (t,y) = \/;/e 7 dz. (2.1)
0
Consider the following problem:

dY (t) = dylogyr, (T —t,Y (t))dt + dW (t),
Y (0) =0, (2.2)
Y(t)>0 foraa. te(0,7),

where W is a standard R-valued Brownian motion.
Theorem 2.1. The problem (2.2) has a unique strong solution. The distribution of this solution
coincides with the distribution of the Brownian meander vy 7(-, Ry).
Proof. For a fixed y > 0 the measure v, r(-,Ry) is absolutely continuous with respect to the
Wiener measure P,. The corresponding Radon—Nikodym density is
dl/%T(',]R_i_) . 1mint6[0,T] w(t)>0

dP, Y, (T, y)

We will apply the Girsanov theorem to the measure v, 7(-,R;). Let (ft)te[o,T] be the canonical
filtration on the space C%. We introduce the martingale associated with the Radon — Nikodym density

dVy,T('a R-F) .
ﬁ>

dP,
Py(minse[oﬂ w(s) >0 ’ Ft) B 1min5€[07t] w(s)>0TR4 (T —t, w<t))

_ dVy7T(”R+)
pr =Ly < B,

By the Markov property,

Pt = = P,-as.
‘ TRy (Tv y) TRy (Ta y) Y
The Clark representation for the density equals [13] (Lemma 1)
r Ay (T — t,w(t))
o y'VJR+ —L,w
pr =1+ 0/ Liin, ¢ (0.4 w(s)>0 S dw(t) Py-as. (2.3)

Since similar results will be used several times in the paper, we give a proof of (2.3).
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1290 G. V. RIABOV

Recall that the function yr_ (¢,y) satisfies the heat equation

1
Oz, (t.9) = 500w, (6,0), £y > 0.
Let o = inf{t > 0: w(t) = 0}. Applying the It6 formula to the process
t—=m, (T —tAo,w(tAho)), t>0,

we get

TNho
Yo, (T =T ANo,w(T Ao)) =yr, (T,y) + / Iyvr, (T — t,w(t))dw(t).
0

Observe that

7R+(T —o,w(o)) =0, o<T,
Yo, (T =T No,w(T Ao)) =
e (0, w(T) =1, o>T.

Consequently,

TAo

1minse[07T] w(s)>0 — 1z7>T = TR+ (T, y) + / 8y’YR+ (T —t, w(t))dw(t)'
0

Dividing by vr, (T, y) we recover (2.3).
Oy VR, (T —t,w(t)

TR (T, y)
Girsanov theorem [14] (Theorem 1.12, Ch. VIII) under the measure v, (-, R;) the process

T
Let us denote h; = 1minse[o 4 w(s)>0 ) , so that pp =1 —|—/ hi dw(t). By the
’ 0

t
hs

By(t) =w(t)— | —ds, 0<t<T,
Ps

is a Brownian motion. Observe that 1,;,
Hence,

o w(s)>0 = 1 a.s. with respect to the measure vy (-, Ry).

hs Oy ym, (T — s,w(s))
5 =9,lo T —s,w(s vy (-, Ri)-as.,
Ps 7R+(T — S,U)(S)) Y ngJr( ( )) y,T( +)

and under the measure v, (-, R;) the process

t
By(t) = w(t) — /8y log e, (T —s,w(s))ds, 0<t<T,
0

is a Brownian motion. Redenoting w with Y, we can reformulate the conclusion as follows: for
every y > 0 on some probability space there is a pair of processes (Y}, By, ) such that
{By(t)}icjo,m is a Brownian motion with the starting point By (0) = y;
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ON A BROWNIAN MOTION CONDITIONED TO STAY IN AN OPEN SET 1291

the distribution of {Yy (%) }icpo,7) is vy1 (-, Ry );
forall ¢t € (0,77, Yy, (t) > 0;
for all ¢ € [0, 7],

t
Yy, (t) = / Oylogyr, (T — s,Yy(s)) ds + By(t). (2.4)
0

By [12] (Theorem 2.1) Y, LN vo,r(-, R4 ). Hence, the family of processes { (Y, By): y € (0,1]}
is weakly relatively compact. Applying the Skorokhod theorem [15] (Theorem 4.30) we can construct
a sequence ¥y, — 0 and copies of processes {(Yyn,Byn) in > 1} defined on the same probability
space such that

(Yy.,By,) = (Yo, By) as.in Cr(R?).
We will check that
Oylogyr, (T — 8,Yy,(s)) = 0ylogyr, (T — s,Yo(s))ds in LY(Q x [0,T]).

To prove this convergence we will use Scheffé’s lemma [16]. The lemma can be applied since
dylogyr, (t,y) > 0 for ¢,y > 0. Thus, it is enough to show

T T
nli_)rgoE/ay log e, (T — s,Yy,(s))ds = E/ﬁy logvr, (T — s,Yy(s))ds < oc. (2.5)
0 0

Next two results allow to control the behavior of integrals in (2.5) near boundaries.
Lemma 2.1. For each t € (0,T),

t

. .2
nh_}ngoE/ay log v, (T — 8,Yy,(s))ds = \/T/yQVR+ (T —t, ﬁy)e v 2qy.
0 0

Expression on the right-hand side is a continuous function of t € [0, T].
Proof. We make use of the relation (2.4):

¢
E / ylogr, (T — s,Yy,(s))ds = EY,, (t) — EBy, (t) = EY), (t) — yn.
0

Further,

EB,, (t)1m; B
min By, (s) > 0> - v () mingefo, 7} Byn (5)>0
s€[0,7T TR, (T, yn)

]EByn (t) 1minse[0,t] By" (S)>0’YR+ (T - t’ Byn (t))

EY,, (1) = E (Byn 0

TR (T7 yn)
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1292 G. V. RIABOV

0 1 _(y—wn)? _ 2yyn
yr, (T — tw)\ﬁe 2 (1—e ¢ )dy
o /OO 1 e_(y;@}n) ( _ 6_%%) -
o V2rT Y
2yyn
o0 1 w21 —e "t
T —1t, e 2t ——
/ YR, ( Y) ore 2 W

2yyn

/oo 1 Cw-w)?1l—e T
e T —————dy
0 27T 2yn

Hence, by the Dominated Convergence Theorem, we have

o0 2
/ y e, (T —ty)t =32 5 dy
lim EY,, (t) = 22

n—oo e y2
/ yT73/267ﬁdy
0

R 2
= \/T/y2m+(T—t, \/iy)ef%dy.
0

Lemma 2.1 is proved.
Applying Dini’s theorem, we deduce the corollary from the Lemma 2.1.

t
Corollary2.1. Functions fy(t) = IE/ Oylogyr, (T — 5,Yy,(s))ds, 0 < t < T, are equicon-
0

tinuous on [0, T]. In particular,

T
lim sup E/By logvr, (T — s,Yy,(s))ds+E [ Oylogyr, (T —s,Y,,(s))ds | =0.
0 T-5

Now we return to the proof of the Theorem 2.1. By Corollary 2.1 it is enough to check the
convergence

~
éh
~

—6

lim E / Oylogvr, (T — ,Yy,(s))ds =E [ Oylogyr, (T —s,Yo(s))ds

S

for any ¢ € (0,7). This in turn will follow from the uniform integrability condition [15] (Ch. 4)

S

—0

sup E (ay log vr, (T — s, Yyn(s)))3/2 ds < 0. (2.6)

n>1

Cn<~_____§

In order to verify (2.6) we make use of the estimate

Oy logyr, (t,y) =

We get following inequalities:
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ON A BROWNIAN MOTION CONDITIONED TO STAY IN AN OPEN SET 1293

T-6 T—6
E / (ay log TR+ (T -5 Yyn(s)))3/2 ds < / ]E(Yyn (S))_3/2d8 =
4 1
T—5 372 B
o / E(‘Byn (S)) 1minT€[0’S] Byn (7‘)>07R+ (T -, Yn (S)) dS o
s TR+ (Ta yn)
> 1 —yn)? yn
T—5/ Y (T = s.y)—m—e 3 (1 — e ™) dy
_ 0 2ms d
- 0 s <
/ / 1 o (y 2@;7)2 (1_672y1gn)d
b o V21T Y
/ 12¢~ 2(T 5> (1—e — 2 )dy
(T —26) \/ o - .
y— yn (1 _ 67%)dy n—oo

o0 2
—— (T — 20) <> R -
0

n—oo 0
This proves (2.6). Passing to the limit in (2.4), we get the relation

t) :/Oylog7R+(T—S,Y()(s))ds—i—BU(t).

The weak existence for the problem (2.2) is proved. We prove the existence and uniqueness of the
strong solution using the Yamada-— Watanabe theorem [14] (Theorem 1.7, Ch. IX). Let Y and Y
solve (2.2). Then, for almost all ¢ € (0, 7)),

SO (D) = V(1) = (Y1)~ V(1)) (0 lowm. (T — £, Y1) — 8y log e, (T — 1,V (1))) <0,

since the function y — g (T — t,y) is log-concave. It follows that Y (t) = Y (t) for all t € [0, T].
The pathwise uniqueness of the problem (2.2) is proved.

Theorem 2.1 is proved.

Next we derive two corollaries of the theorem. The first one is a straightforward generalization
to the multidimensional case.

Corollary2.2. Let x € R? be arbitrary, e € R? be a unit vector, and H = {y cR%: (y—zx)-e >
> 0}. The statement of the Theorem 1.1 holds for G = H and .

In the next corollary we give a new proof of the known theorem on the equivalence between the
distribution v 7(-,R4) of the Brownian meander and the distribution () of the three-dimensional
Bessel process We recall that the three-dimensional Bessel process is defined as the process ¢t —
— /Bi(t) + B3(t) + B3(t), where B;, Ba, Bs are independent R-valued Brownian motions
started at zero. Consider the problem
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_ L
Z(t)
Z(0) =0,
Z(t) >0, t>0,

dZ(t) dt + dW (),

2.7)

where W is a standard R-valued Brownian motion. This problem has a unique strong solution [17],
and its distribution coincides with . By Q1 we denote the distribution of the process {Z (%) }.(0,1
in Cilp.

Corollary 2.3 [11]. The measure v (-, Ry) is equivalent to the distribution Qr of the three-
dimensional Bessel process started at 0. The Radon— Nikodym density is given by

dVO,T('>R+) (Z) = \/ﬁ
dQ; - V22(T)

Proof. The idea of the proof is to change the underlying probability measure ()7 in order to
convert the problem (2.7) to the problem (2.2). A natural candidate for the density is given by the
Girsanov theorem:

p =P O/T <<9y log e, (T — s, Z(s)) — ng)> AW (s)—
_;/T (ay log g, (T'— s, Z(s)) — Zzs)y ds

0

Because of singularities as s — 0 and s — T’ it is not obvious that p is well-defined and is a density.
From (2.1), we have

Oylogyr, (s,y) =

Elementary inequalities

imply that the process

1
X(t) = 9ylogr, (T —t, Z(t)) — gy 0st<T,

(t)
satisfies
2
ﬂe_ 2?;‘/—)15)
1 T—1
XO)| == |1- <

Z(t) AL 2

e 2 du
0
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gztt)min<1,2(ZT(t_>2t)> <max (Lt ) 0Se<T,

In particular, there is no singularity as s — 0 in the definition of p. To deal with the singularity as
s — T we consider the process

pt = exp O/t <8y logvr, (T —8,Z(s)) — Z23>> dW (s)—

;O/t (% log v, (T — s, Z(s)) — z@)zds

Since Novikov’s condition [14] (Proposition 1.15, Ch. VIII) holds for the process X, the process
(pt)o<t<T is a martingale. Let us show that (p;)o<¢<7 is a uniformly integrable martingale, with

VT

lim py = ———

t—T \/iZ(T) '

To this end consider the function

Yy
VT —t

=
b(t,y) = log /e_2du —log(y).
0

It has the following limit values:

lim  b(t,y) = —log VT, lim  b(t,y) = log \/; — log z, (2.8)
t—0,y—0 t—Ty—z 2
where z > 0 is arbitrary. Further, we have
_2(%7275)
e -
atb(tv y) = Y Y 9

2
ayb(ta y) = - Y - 2 + -

By the It6 formula, we obtain
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21 Z(t)?
t 2(T—1)
db (t, Z(t)) (t)e - dt+
3 T—t _u?
2(T - t) 2 e 2 au
Z ()2
N e 2T-D) 1 ( dt -+ dW (1)
Z() - Z(t) |\ Z(1)
= 2
T—1t vt e 2du
0
_zZw? Z(1)?
Z(t)e (T 1) e T- 1 g —
2 2 . 2 A OH K
(T —1)2 e zdu (T —1t) e T du
0 0
2
f(t)Q) ) _ f(t)g) .
e 2(T—t e 2(T—t
= — dW (t) — = — dt.
% . Z(t) (*) 2 ¢Tﬁ B Z(t)
T—t e 2 du \/T—t/ e 2 du
0 0
By (2.8),
lim b (t, Z(t)) = —log VT,  limb(t, Z(t)) = log \f log Z(T).
t—0 t—T 2
Hence,
VT
pt:exp<b( ())+1ogf) aza 0T

By the Girsanov theorem, under the measure pdQr the process

W(t):W(t)—/<8y10g7R+(T—s,Z(s))—Zzs)> ds, 0<t<T,
0

is a Brownian motion. Hence, under the measure pdQr, the process {Z(t)}o<t<7 is a solution of
the SDE

dZ(t) = Ztt)dt AW () + <ay log e, (T — t, Z()) — %) dt =

= dylogyr, (T —t,Z(t))dt + dW (t),

and, thus, is a Brownian meander.
Corollary 2.3 is proved.
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3. Proof of Theorem 1.1. Given an open set A C R% and a continuous function f € Cf,é we
will denote by 74(f) the first exit time

Ta(f) =inf {t > 0: f(t) & A}.

We recall that the set G is assumed to be convex with a C? boundary in the neighborhood of its
boundary point z. Let us choose a unit vector e € R? and r > 0 such that B(z + re,r) C G.
Consider the half-space

H={yeR’: (y—x)-e>0},
so that
B(z +re,7) C G C H.

Consider an auxiliary measure v, 7(-; H) (see Corollary 2.3). The corresponding process can be
described as follows. Choose an orthonormal basis {el, .. .,ed} in R%, such that e; = e. Let

{Y1(t)}o<t<r be a Brownian meander, and {(Wa(t),..., Wy(t be a R%~!-valued Brownian

))}ogth
motion independent from Y;. Then v, 7(-; H) is the distribution of the process {x +Yi(t)er +

d ~
+ 2122 Wi(t)ei}ogth'

By the Corollary 2.2 v, 7(-; H) is the distribution of the solution of the problem
dY (t) = Vylogyu (T — t,Y (t))dt + dW (),
Y (0) =z, (3.1)
Y(t)e H foraa. te(0,7),

where W is an R%-valued Brownian motion. By Corollary 2.3 the measure vy (-3 H) is equiva-

- d - -
lent to the distribution of the process {:B + Zi(t)er + g Ly Wi(t)ei}(K o where {Z1(t) }+>0 is
i= t =

a three-dimensional Bessel process independent from {(Wa(t), ..., Wa(t) Yocrer- Applying [18]
(Theorem 3.4), we deduce o

Vg, T (TB(Z+T6,T) (Y) > 0; H) =1L
Consequently,
ver({76(Y) > T} H) >0,

and we can represent the measure v, 7(-; G) via the density with respect to the measure v, (- ; H)
(see [1] for the details):

dvy (- G) _ La(v)>T
de,T(' ,H) I/I7T({T0(Y) > T}, H) '

Let us apply the Girsanov theorem to this density. Introduce the function

va(T —t,y)

0lt,y) =P(Wr € [1.T] Y(r) € G| Y (1) =y) = 22—,

yelG, 0<t<T.
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As in the proof of Theorem 2.1, an application of the It6 formula implies the Clark representation

T
1Tg(Y)>T = G(OV(U) + / 17’@(Y)>s (Vye(sa Y(S))a dW(S))
0

By the Markov property, we have

E[lTG(Y)>T ‘ fs] = 17@(Y)>50(87Y(8))'

Repeating arguments of the Theorem 2.1, under the measure v, 7(-; G) the process
t
W(t)=W(t) — /Vy log0(s,Y(s))ds, 0<t<T,
0

is a Brownian motion. From (3.1), we deduce that under the measure v, (- ; G) the process Y satisfies
the equation

dY (t) = Vylogyu (T — t,Y (t))dt + V, log 0(t, Y (t))dt + dW (t) =
= Vyloga(T —¢,Y(t))dt + W(t).

It remains to check pathwise uniqueness for the problem (1.2). Let Y and Y solve (1.2). Then
1 - - -
LY () = VO = (Y () = V(2), Vyloga(T — .Y (1)) = ¥y logra(T ~ 1,V (1)) <0,

where the last inequality follows from log-concavity of the function y — vo(T — t,y) [19].

Theorem 1.1 is proved.

4. Clusters in coalescing stochastic flows. 4.1. Arratia flow. In this section, we will use
duality theory for coalescing stochastic flows on the real line developed in [4]. By a backward
stochastic flow we will understand a family {¢t7s: -0 < s<t< oo} of measurable random
mappings of R, such that the family {qgs,t =¢_s5_t:—00<s<t< oo} is a stochastic flow. Let
P = {w&t: —0<s<t< oo} be the Arratia flow. A dual flow 1; = {J]t,s: —0<s<t< oo}
is defined as a backward stochastic flow whose trajectories do not cross trajectories of the flow 1,
ie, forall s <t,z,y € Rand w € N

(Ysa(w. ) = y) (& = ds(w,y)) = 0.

For the needed properties of the Arratia flow as well as for existence and properties of its dual we
refer to [3, 4]. In particular, we recall that the dual 1/; of the Arratia flow v is itself the Arratia flow
(with time reversed). As it was mentioned in the Introduction, the image o 7(R) is a locally finite
subset of R unbounded from below and from above. Let us fix w for a while. With every point
¢ € Yo, 1r(w,R) we associate a cluster

K:= Ute[O,T]{(T —t,x): wT_t’T(w, x) = C}

By a¢ and 3 we denote the lower and the upper boundaries of the cluster K:
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ac(t) =inf {z e R: (T —t,z) € K¢}, Be(t) =sup{z e R: (T —t,z) € K¢}.

This natural definition of ¢, B¢ is not a rigorous definition of a stochastic processes, as the choice
of the random quantity ¢ is not specified. In the following lemma we overcome this issue and
simultaneously define the conditional distribution of boundary processes conditioned on the event

{¢=a}.
Lemma 4.1. With probability 1, for all ¢ € ¢ r(R),

1i brr—i(z) — Be(t)] =0
xi}?ﬂ:[%%} WT,T t(z) — Be( )}

and

lim sup }1/;T7T_t(x) — ac(t)] = 0.
T—=C=¢e[0,T)

Proof. For continuity of a¢, 5 we refer to [4]. Let z > ( and ¢ € [0, T]. If Yrr_i(x) < Be(t),
then there exists y > 1 r_¢(z) such that
wT—t,T(y) = C <z,
which contradicts duality. So, for all z > ¢ and all ¢ € [0, T,
Be(t) < drr—i(x).
It remains to check that, for all ¢ € [0, T7,

;I>1f< brri() = Be(t).

Assume that inf, . Yrr_i(z) > Be(t) and let y € (Be(t),infys¢ 1/;T7T_t(a:)). For every x > (
duality implies that ¢r_; 7(y) < x. Hence, ¥r_,7(y) < (. But the latter contradicts y > S¢(t).
The proof for a¢ is similar.

Lemma 4.1 is proved.

Observe the equality of events

{(u,v) NYor(R) # 2} = {¥ro(uw) < ¥ro(v)},

the latter event being the event that two independent R-valued Brownian motions started at « and
v and haven’t met during the time 7'. Combining this consideration with results of Lemma 4.1 and
Theorem 1.1, we get the following corollary.

Corollary 4.1. Conditional distribution of the process

{ (IZJT,T—t(U)v &T,Tft(”)) }te[o,T]

conditionally on the event {(u,v) NYor(R) # @} weakly converge as u — x—, v — x+ to the
solution of the problem

dY (t) = Vylogyu (T — t,Y (t))dt + dW (),

Y(0) = (2, 2),

Y(t)e H foraa te(0,7T),
where H = {y eER?:y < yg}, W is a standard R?-valued Brownian motion, and g is defined
in (1.1).
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: o 2 . (y2—uy
Direct computation gives t,y) = +/—F

p gives yu(t,y) - < Tt
quently, we can identify the conditional law of boundaries (a¢,3¢) given that {( = x} via the

problem

xX u2
), where E(z) = / e~ 2 du. Conse-
0

(B —ac®)?

I(T—1)
dac(t) = — ¢ dt + dWi (¢),
- Be(t) — Oéc(t))
V2(T t)E( T35
_ (Be@®—ac(1)?
dBe(t) = c v dt + dWa(t),

Be(t) — ac(t)
(A

ac(0) = B¢(0) = =,
ac(t) < pe(t) foraa. te (0,7).

4.2. Arratia flow with drift. In this section the developed approach is adapted to the unbounded
cluster in the Arratia flow with drift. Let a: R — R be a Lipschitz function. Consider the SDE

dX (t) = a(X(t))dt + dw(t), (4.1)

where w is a Wiener process. Informally, the Arratia flow with drift describes the joint motion of
solutions of the equation (4.1) that start from all points of the real line at every moment of time,
move independently before the meeting time and coalesce at the meeting time. Precisely, we say that
a coalescing stochastic flow ¥ = {%,t oo <s<t< oo} is the Arratia flow with drift a, if the
following condition is satisfied:

Forany n > 1and 21 <... <y let {(Xy(t),...,Xn(t))},-, be the solution of the problem
dXi(t) = a(X;(t))dt + dW;(t),
1<1<n,
where Wy, ..., W, are independent standard R-valued Brownian motions. Denote o = inf {t >0:
i # 5 Xi(t) = Xj(t)}. Further, let {(¢575+t(:c1), .. .,¢S7S+t(1:n))}t>0 be the n-point motion of
the flow started at time s from points 1, ...,xz,. Denote 7 = inf {t > 0:3i # j s spe(xi) =
= 1/]5’54'_15(:1:‘7‘)}. Then R"™-valued processes
[t (¢s,s+t/\r($1)a e ,¢s,s+mf($n))

and
t—= (Xi(tAo),..., Xn(tA0))

are identically distributed.

For the existence of the Arratia flow with drift we refer to [3]. When the drift a is strictly
monotone, an infinite cluster arises in the flow .
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Theorem 4.1 [S5]. Let ¢ be the Arratia flow with drift a. Assume that the drift a is Lipschitz
and for some X\ > 0 and all x,y € R one has

(a(z) — a(y))(x —y) < Az —y)*.

Then there exists a unique stationary process (1)ier such that for all s <t and all w

1/]s,t (wa Ns (w)) = nt(w)'

Further, we assume that the drift o satisfies assumptions of the Theorem 4.1. The process (7:)¢>0
represents the motion of a stationary point in the flow. In particular, the one-dimensional distribution
of (m+)¢>0 is given by the stationary distribution of the equation (4.1):

]P(nt € A) = 0/62 Jo aly)dy dz,
A

00 —1

where C' = < / e?Jo aly)dy dm) . An infinite cluster can be associated with 7. Namely, at
—0o0

every moment ¢ > 0 there exists an interval of points that have coalesced into 7g at time 0:

Ko(t) ={z e R:¢_¢o(x) =m0}, t>0.

The set Ky = Utzo({—t} X Ko(t)) will be called the cluster with the vertex 7. Let us introduce
boundary processes

ag(t) =inf Ko(t),  Bo(t) = sup Ko(t).

The Theorem 4.2 describes the conditional distribution of processes (c(t), 5o(t)) conditioned on
the event {ny = x}. The following analogue of the Lemma 4.1 follows from properties of the dual
flow {1@,8: —00 < 5 <t < oo} obtained in [4].

Lemma 4.2. With probability 1, for all T > 0,

li bo —1(x) — Bo(t)] =0
oI Sy Vo) = 0

and

lim sup ‘7[10,—16(1') - 060(75)‘ =0.
T ¢e[0,T)

In [5] it was proved that with probability 1

tllgloﬁo(t) - tllglo @o(t) = —o0.

Hence, the following equality of events holds:
fu<no < v} ={ lim do,_o(w) = =00, lim dho,_4(v) = o0 }.

Let

Y2
0(y1,y2) = IP)(770 € (y1,y2)) = /W(x) dx.

Y1
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Theorem 4.2. Conditional distribution of the process

{ (%Z)o,ft(u)a @Z’O,ft(v)) }tzo

conditionally on the event {u < ng < v}, weakly converge as u — r—, v — x+ to the solution of
the problem

0logO(Y1(t), Ya(t))
oy

N O0log§(Y1(t),Ya(t))

Y2

Y (t) = (—a(Yl(t)) + ) dt + dWi(t),

AV (t) = <a<Y2<t>>

Y1(0) = Y5(0) = =,
Yi(t) < Ya(t) foraa t>0,

) dt + dWa(t), “2)

where W is a standard R?-valued Brownian motion.
Proof. The dual process ¢ is the Arratia flow with drift —a, see [4, 5]. Let {(Yl(t), Yg(t))}t>0
be a solution of the SDE -

dYi(t) = —a(Yi(t)) dt + dWi (1),
dYs(t) = —a(Ya(t)) dt + dWs(t),
)/1(0) =u, }/2(0) =,

where W is a standard R?-valued Brownian motion. The law of the process

{ (@0,—::(“)7 150,—15(“)) }tZO

conditioned on the event {u < 79 < v} coincides with the law of the process Y conditioned on the
event

A= {Vt >0 Yi(t) < Ya(t), lim Yi(t) = —o0, Jim Ya(t) = oo}.

Let o = inf {t > 0:Y1(t) = Ya(t)}. Applying arguments from the proof of Theorem 2.1 to the
process

t—=0(Yi(tAo),Ya(t Ao)),

we get the Clark representation
14 =0(u,v) + / (VO(Y (5)),dW (s)).
0

By the Markov property,

E[la]Y(s),s <t] =150(Y(¢)).
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The Girsanov theorem implies that with respect to the law of Y conditioned on the event A, the
process

W) = Wit) - /woge(Y(s)) ds, >0,
0

is a Brownian motion. This implies equations (4.2) for the distribution of the process {(15074(1&),
1o,—+(v)) },-, conditioned on the event {u < no < v}.
Theorem 4.2 is proved.
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