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STICKY-REFLECTED STOCHASTIC HEAT EQUATION
DRIVEN BY COLORED NOISE

CTOXACTHUYHE PIBHSAHHS TEIJIOITPOBITHOCTI
3 JIMITKUM BIABUTTAM, KEPOBAHE KOJIBOPOBUM IIYMOM

We prove the existence of a sticky-reflected solution to the heat equation on the spatial interval [0, 1] driven by colored
noise. The process can be interpreted as an infinite-dimensional analog of the sticky-reflected Brownian motion on the real
line, but now the solution obeys the usual stochastic heat equation except for points where it reaches zero. The solution
has no noise at zero and a drift pushes it to stay positive. The proof is based on a new approach that can also be applied to
other types of SPDEs with discontinuous coefficients.

JloBeieHo iCHYBaHHsI pO3B’SI3Ky CTOXaCTHIHOTO PiBHSAHHS TEILIONPOBIAHOCTI Ha Biapisky [0, 1] 3 IumkuM BiIOHTTSIM, Kepo-
BaHOTO KOJILOPOBUM ITyMoM. JlaHuii mporiec Moxke OyTH IHTEPIPETOBAHUHN K HECKIHUCHHOBUMIPHHI aHAJIOT OpOYHiBCHKOTO
PyXy Ha AilicHIN NpsAMil i3 JTUIIKUM BIIOUTTSM, ajie Terep po3B’sI30K MiANOPSIKOBYETHCS 3BUMAHHOMY CTOXaCTHYHOMY piB-
HSHHIO TETUIONIPOBIJHOCTI 32 BUHATKOM TOYOK, B SIKHX BiH J0csATae HylIs. B Hyni mIym He BIIMBae Ha po3B’SI30K, a IEPEHOC
HITOBXA€ HOro Tak, 00 PO3B’S30K 3aiUINABCS M0AaTHUM. JIOBENCHHS IPYHTYEThCS HA HOBOMY MIAXO[i, KU MOxe Oy-
TH 3aCTOCOBAaHMH 0 IHIIMX THUIIIB CTOXaCTHYHUX TU(PEPCHIIANFHUX PIBHSHb 3 YaCTHHHUMH IOXiTHHMH i3 PO3PHBHUMH
KoedilieHTaMHu.

1. Introduction. In this paper, we study the existence of a continuous function X : [0, 1] x [0, 00) —
— [0, 00) that is a weak solution to the SPDE

O 0 Moy + 150 + Loy QW 1
with Neumann
X;0)=X;(1)=0, t>0, (1.2)
or Dirichlet
X:(0) =X, (1) =0, t=>0, (1.3)

boundary conditions and the initial condition
Xo(u) =g(u), wue]l0,1], (1.4)

where W is a space-time white noise, the functions g € C[0,1] and A € Ly := L[0, 1] are non-
negative, f is a continuous function from [0, 00) to [0, 00) which has a linear growth and f(0) = 0,
and @ is a nonnegative definite self-adjoint Hilbert—Schmidt operator on Lo. We will also assume
that in the case of the Dirichlet boundary conditions ¢g(0) = g(1) = 0.

The equation appears as a sticky-reflected counterpart of the reflected SPDE introduced in [14,
22]. We assume that a solution obeys the stochastic heat equation being strictly positive, but reaching
zero, its diffusion vanishes and an additional drift at zero pushes the process to be positive. The form
of equation (1.1) is similar to the form of the SDE for a sticky-reflected Brownian motion on the real
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1196 V. KONAROVSKYI
line

dl’(t) = )\H{x(t)zo}dt + ]I{x(t)>0}adw(t), (1.5)

and we expect that the local behavior of X at zero is very similar to the behavior of the sticky-
reflected Brownian motion x. Remark that SDE (1.5) admits only a weak unique solution because
of its discontinuous coefficients, see, e.g., [4, 7, 19]. The approaches which are applicable to sticky
processes in finite-dimensional spaces can not be used for solving of SPDE (1.1). For instance,
Engelbert and Peskir in [7] showed that equation (1.5) admits a weak (unique) solution, where their
approach was based on the time change for a reflected Brownian motion. This method is very
restrictive and can be applied only for the sticky dynamics in a one-dimensional state space. An
equation for sticky-reflected dynamics for higher (finite) dimensions was considered by Grothaus and
co-authors in [8, 12, 13], where they used the Dirichlet form approach [10, 21]. This approach was
based on a priori knowledge of the invariant measure. Since the space is infinite-dimensional in our
case, finding of the invariant measure seems a very complicated problem (see, e.g., [9, 24] for the
form of invariant measure for the reflected stochastic heat equation driven by the white noise).

In this paper, we propose a new method for the proof of existence of weak solutions to equations
describing sticky-reflected behavior. This approach is a modification of the method proposed by the
author in [18], and is based on a property of quadratic variation of semimartingales.

The paper leaves a couple of important open problems. The first problem is the uniqueness of a
solution to SPDE (1.1)—(1.4). Similarly to the one-dimensional SDE for sticky-reflected Brownian
motion (1.5), where the strong uniqueness is failed [4, 7], we do not expect the strong uniqueness for
the SPDE considered here. However, we believe that the weak uniqueness holds.

Another interesting question is the existence of solutions to a similar sticky-reflected heat equation
driven by the white-noise. It seems that the method proposed here can be adapted to the case of such
an SPDE. For this we need a similar statement to Theorem 3.1, that remains an open problem.

1.1. Definition of solution and main result. For convenience of notation we introduce a
parameter cig which equals to 1 in the case of the Neumann boundary conditions (1.2) and 0 in the
case of Dirichlet boundary conditions (1.3). Let us also introduce for & > 1 the space C*[0,1] of
k-times continuously differentiable functions on (0, 1) which together with their derivatives up to the
order k can be extended to continuous functions on [0, 1]. We will write ¢ € C¥ [0, 1] if additionally
(@) (0) = p(@0)(1) = 0, where ¢(©) = ¢ and 1) = /.

Denote the inner product in the space Lo by (-, -) and the corresponding norm by || - ||. Let us
give a definition of a weak solution to SPDE (1.1).

Definition 1.1. We say that a continuous function X : [0,1] x [0,00) — [0,00) is a (weak)
solution to SPDE (1.1)~(1.4), if Xo = g and for every ¢ € C2 [0, 1] the process

t
/ "M ds—
0

t t
- / (L;x. -0y @)ds — / (F(X)@)ds, ¢0,
0 0
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STICKY-REFLECTED STOCHASTIC HEAT EQUATION ... 1197

is an (F7X)-martingale with quadratic variation

t
[M¥?], = / HQ(H{XS>0}90)H2dS, t>0.
0

Hereinafter {ey, k£ > 1} will denote the basis in Lo consisting of eigenvectors of the nonnegative
definite self-adjoint operator (). Let {uy, k > 1} be the corresponding family of eigenvalues of Q).
o0
We note that E et ui < 00, since () is a Hilbert— Schmidt operator. Introduce the function

[e.e]
X* =) iek, (1.6)
k=1

where the series trivially converges in L1[0, 1] and a.e. The main result of this paper is the following
theorem.
Theorem 1.1 (Existence of solutions). If

AH{x>O} =\ a.e., (1.7)

then SPDE (1.1)—(1.4) admits a weak solution.

Remark1.1. Condition (1.7) means that the drift A has to be equal to zero for those u for which
the noise vanishes.

Remark1.2. The equation can admit a solution even if condition (1.7) does not hold. The reason
is that the existence can be failed if X;(u) = 0 for u € [0, 1] such that A\(u) > 0 and x(u) = 0
because of the term Al{y,—o} and the absence of the noise for such u. However, if the initial
condition is strictly positive for such u, then the solution could stay always strictly positive for such
u, by the comparison principle for the classical heat equation. Therefore, the solution will exist.
Take, for example, () = 0 and f = 0. Then a weak solution to the heat equation

ox,_ 15X,
ot 2 ou?

considered with corresponding boundary and initial conditions is a solution to SPDE (1.1)—(1.4) if
Xi(u) >0, t >0, u e (0,1). But the strong positivity of X is valid, e.g., under the assumption
the strong positivity of the initial condition. Hence, SPDE (1.1)—(1.4) has a weak solution even if
A>0for,eg, @ =0, f=0and g > 0.

We will construct a solution to equation (1.1) as a limit of polygonal approximation similarly to
the approach done in [11]. The main difficulty here is that coefficients are discontinuous. So, we
cannot pass to the limit directly. In the next section, we will explain the key idea which allows to
overcome this difficulty.

1.2. Key idea of passing to the limit. We demonstrate our idea of passing to the limit in the case
of discontinuous coefficients using the equation for a sticky-reflected Brownian motion in R

dz(t) = )\]I{m(t)zo}dt + H{m(t)>0}adw(t)> t >0,

(1.8)
z(0) = zY,
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1198 V. KONAROVSKYI

where w is a standard Brownian motion in R and )\, o, ¥ are positive constants. It is known that
this equation has only a unique weak solution (see, e.g., [7]).

Let us show that a solution to SDE (1.8) can be constructed as a weak limit of solutions to
equations with “good” coefficients. The first three steps proposed here are rather standard and the
last step shows how one can overcome the problem of the discontinuity of the coefficients.

Step 1. Approximating sequence. Consider a nondecreasing continuously differentiable function
k : R — R such that k(s) =0, s <0, and x(s) = 1, s > 1. Denote k.(s) := k (f) , s €R, and
consider the SDE c

dre(t) =X (1 - /-ig(z:g(t))) dt + ke(ze(t))odw(t), t >0,
(1.9)

z:(0) = 2°.

This SDE has a unique strong solution for every € > 0.
Step 11. Tightness in an appropriate space. Consider the processes

a.(t) A/(l—ng(mg(s)))ds, £>0,
0

ne(t) : = / oo (2o(5))dw(s), ¢ >0,
0

and
t

el = / o2k2(xo(s))ds, 1> 0,
0

where [1.] is the quadratic variation of the martingale 7).

By the uniform boundedness of the coefficients of SDE (1.9), one can show that the family
{(x, ae,ne, [n]), € > 0} is tight in (C[0,00))*. By Prokhorov’s theorem, one can choose a sub-
sequence (T, Am, Nm, [Mm)) = (Te,,s Qepns Ne s Men]), m > 1, which converges to (z,a,n, p) in
(C[0, 00))* in distribution as m — oo. By the Skorokhod representation theorem, we may assume
that (Zy,, Gm, m, [Mm]) — (2, a,m, p) a.s. as m — oo.

Step 111. Properties of the limit process. One can see that for every T' > 0 there exist a random
element p in L2[0, 7] and a subsequence N such that

02k2 (zm) — p  in the weak topology of L[0, T (1.10)

along N, for every t € [0, 7],

2(t) = 20+ a(t) + n(),  p(t) = /p(s)ds, a(t) = A <t - ;Qp(t)) , (1.11)
0

and 7 is a continuous square-integrable martingale with quadratic variation p. We may assume that
N =N.
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STICKY-REFLECTED STOCHASTIC HEAT EQUATION ... 1199

Step 1V. Identification of quadratic variation and drift. Because of the discontinuity of the

t
coefficients of equation (1.8), we cannot conclude directly that p(t) = / 0'2]1{$(8)>0}d8 and a(t) =
0

t
= )\/ [{z(s)=0yds, t € [0,T], which would imply that = is a weak solution to SDE (1.8). We
0

propose to overcome this problem as follows. Let us use the following facts:
a) if z(t), t > 0, is a continuous nonnegative semimartingale with quadratic variation

[x]; = /UQ(S)dS, t>0,
0

then a.s.

t
]t = /02(3)H{x(s)>0}d37 t>0;
0

b) if 5, — s in R, then &2, ($m)L(0,+00)(5) = L(0,400)(5) in R as m — co.
So, using (1.10), a), b) and the dominated convergence theorem, we get a.s.

plt) = [ pls)ds = [ p()aioapds =
0 0

¢ ¢
= lim 02/{gl(a:m(s))]l{x(s)>0}ds = /U2H{x(s)>0}d8, te[0,7).

m—00
0 0

Hence, (1.11) implies

Consequently,
t
.%'(t) = 1'0 + /\/]I{x(s)zo}ds + n(t), t > 0,
0

where 7 is a continuous square-integrable martingale with quadratic variation

t

[n]e = /02]1{93(3)>o}d8, t>0,
0

that means that x is a weak solution to (1.8).
Content of the paper. To show the existence of a weak solution to SPDE (1.1)-(1.4), we will
follow the argument above. Step I will be done in Subsection 2.1. More precisely, we will construct

'See also Lemma A.1.
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1200 V. KONAROVSKYI

a family of processes which will approximate a solution to SPDE (1.1)-(1.4). The approximating
sequence is similar to one considered in [11]. Subsection 2.2 is devoted to the tightness that is
Step II of our argument. Step III is done in Subsection 3.1, where we show that the limit process
satisfies equalities similar to (1.11) (see Proposition 3.1 there). An analog of property a) above is
stated for some infinite-dimensional semimartingales in Theorem 3.1 in Subsection 3.2. The proof of
the existence theorem is given in Subsection 3.3, where we use the approach described in Step IV.
Auxiliary statements are proved in the appendix.

1.3. Preliminaries. We will denote the inner product and the corresponding norm in a Hilbert
space H by (-,-)m and || - ||z, respectively.

For an essentially bounded function ¢ € L, we define the multiplication operator [¢)-] on Lo as
follows:

([]h) (u) = Y(w)h(u), wel0,1], he L.

Let A be an operator on Ly and ¢4, ..., ¢, € Ly such that the product ¢ . .., belongs to Lo.
To ease notation, we will always write Ap; ..., for A(p1...0).

Denote the space of Hilbert — Schmidt operators on Lo by £o. Remark that Lo furnished with the
inner product

oo
= (Ae,Ber), A, B€ Ly,
k=1

is a Hilbert space, where the norm does not depend on the choice of basis in L. The family of
operators {ey ® e;, k,I > 1} form a basis in Lo. Here, for every ¢, € La, ¢ ® 1) denotes the
operator on Lo defined as (p ® 9)g = (g,v¥)¢, ¢ € Lo.

We will consider the set R™*" of all (n x n)-matrices with real enters as a Hilbert space with

the Hilbert— Schmidt inner product (A, B)gnxn = Z: - Ay B

The indicator function will be defined as usually

() 1, if ze€S§
xr) =
s 0, if z¢&S5.

If ¢ : E1 — Es is a function and S is a subset of F5, then Trgesy will denote the function
x +— Lg(¢(x)) from E; to Es.
Given a Hilbert space H, we write H” := Lo ([0,T], H) for the class of all Bochner integrable
functions ®: [0,7] — H with
3

1@ = / |@ul3ds | < oo.

One can show that the space H” equipped with the inner product
T
/ ®,, U, \yds, ®,VeHT,
0

is a Hilbert space.
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STICKY-REFLECTED STOCHASTIC HEAT EQUATION ... 1201

Considering a sequence {Z"},>1 in HT, we will say that Z" — Z ae. as n — oo, if
Lebr{t € [0,T): Z}* / Z; in H, n — oo} = 0, where Leby denotes the Lebesgue measure on
[0, T7.

Let L € £T, Z € LI, and S be a Borel measurable subset of R. It is easily seen that
Ly []I{ Z,€ 5}-] , t €0, T], where L, [H{ Z,€ S}‘] is the composition of two operators, is well-defined
and belongs to L € £3. We will denote such a function shortly by L. [ cg}-] -

Let I be equal to [0, 77, [0,00) or [0, 7] x [0, 1]. The space of all continuous functions from I to
a Polish space E with the topology of uniform convergence on compact sets is denoted by C (1, E) .
If I =[0,7] or [0,00), and F = R, then we simply write C[0, 7] or C[0, c0) instead of C (I,R).

We will denote the right continuous complete filtration generated by continuous processes &;(t),
tel, ..., &(t),tel, by (.7-"51""’5”),561. Remark that such a filtration exists by Lemma 7.8 [17].

2. Finite sticky reflected particle system. In this section, we construct a sequence of random
processes which will be used for the approximation of a solution to SPDE (1.1)—(1.4).

Let n > 1 be fixed. We set 7} = H[%7%), ke [n]:={1,...,n}. Let Wy, t > 0, be a
cylindrical Wiener process in Ly. Define the Wiener processes on R as follows:

t
wm:ﬁ/wnmmt>akam
0

and note that their joint quadratic variation is
[wi, wi'ly = n(Q@my, @mp')t = qpyt, = 0.

Let also A} := ”<)"7Tg>1[{qgk>0}2 and g7 :=n(g,7}), k€ n].
Consider the SDE ’

da(t) = %A”xﬁ(t)dt v
+f(x(t))dt + \/ﬁﬂ{xg(t»o}dwmﬂ? k € [n], (2.1
satisfying the initial condition
2g(0) =g, k€ lnl, (22)
where A"z}l = (A"z™), = n? (¢}, +a}_ — 22}) and
£§(t) = gz} (1), @iy (1) = agali(t), >0, 23)

We will construct a solution to SPDE (1.1)—(1.4) as a weak limit in C ([0, c0), C[0, 1]) of pro-
cesses

XMu) = (un — k + 1)z (t) + (k —nu)a?_(t), te[0,T], uwenl, keln]. (2.4)

*We add the indicator I {q" S 0} into the definition of A, because we need the additional condition that A\;; = 0 if
k,k

qx ;. = 0 for the existence of solution to SDE (2.1).
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1202 V. KONAROVSKYI

Remark that equation (2.1) has discontinuous coefficients. So the classical theory of SDE cannot
be applied in our case. The existence of the solution will follow from Theorem 2.1 which we state
below.

2.1. SDE for sticky-reflected particle system. The aim of this section is to prove the existence of
solutions to (2.1), (2.2). We will formulate the problem in slightly general form. So, let n € N and
gk, Ak, k € [n], be nonnegative numbers. We also consider a family of Brownian motions w(t),
t >0, k € [n] (with respect to the same filtration), with joint quadratic variation

[wy, wi)e = qrat, t>0.

Let as before f:[0,00) — [0,00) be a continuous function with linear growth and f(0) = 0.
Consider the SDE

1
dyu, (t) = §A"yk (t)dt + )\k]l{yk(t)zo}dt—l-

+f(yx(t))dt + H{yk (t)>0}dwk (t), ke [n], (2.5)

with initial condition

ye(0) = gr, k€ [n], (2.6)

and the boundary conditions

yo(t) = aoyi(t),  yns1(t) = aoyn(t), t=>0. (2.7)

Theorem 2.1. Let gy, ;, = 0 imply A\, = 0 for every k € [n]. Then there exists a family of non-
negative (real-valued) continuous processes yy(t), t > 0, k € [n], in R which is a weak (martingale)
solution to (2.1), (2.2), that is, yy.(0) = gx, for each k € [n],

t

Ni®)i= uelt) = 91— 5 [ A"un(s)ds-
0

t t

_)\k/]l{yk(s)ZO}dS_/f(yk(s))d57 t>0,
0

0
is an (F})-martingale, and the joint quadratic variation of Ny, and Ny, k,l € [n], equals

t

N, Nily = g / Ly (s)>03 Ly (s)>0pds, 2 0.
0

We are going to construct a solution to the SDE approximating the coefficients by Lipschitz
continuous functions and using the method described in Subsection 1.2.
Let us take a nondecreasing function £ € C'(R) such that x(x) = 0 for < 0, and x(x) = 1 for

+o0
x > 1. Let also # € C}(R) be a nonnegative function with supp § € [—1, 1] and / O(x)dx = 1.
—00
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STICKY-REFLECTED STOCHASTIC HEAT EQUATION ... 1203

1
For every ¢ > 0 we introduce the functions x.(x) = & <§> , x € R, and 0. (z) = EH (%) , x €R.
+o0
Setting f.(z) = / 0-(z —y)f(y)dy, x € R, we consider the SDE
0
1
dyi(t) = A yE ()t + A (1= s2(yE (1)) dt+
+fe (@) dt + re(yi(t))dwy (), (2.8)

Ye(0) = gk, k€ [n].

Since equation (2.1) has locally Lipschitz continuous coefficients with linear growth, it has a unique
strong solution.

Our goal is to to show that the sequence {y* = (y})j—; }.- has a subsequence which converges
in distribution to a week solution to (2.1). We denote for every k € [n]

=\ 1—/<c ))ds, t>0,

o\N

and

ni(t) = [ ke(yi(s))dwi(s), t>0.

o .

Set a® = (af)}_, and n° = (n})}_;-
The quadratic variation [°],, ¢ > 0, of the R™-valued martingale 7° takes values in the space
of nonnegative definite (n x n)-matrices with entries

t
i), = [ ofals)ds,
0

where o (s) = e (Y5 (s)) ke (Y7 (5))qr,-
Remark2.1. According to the choice of the approximating sequence for a, the equality

1
mwA%w%ﬂm) £>0,

holds for every k € [n] satisfying g > 0.

Consider the following metric space Wgn := (C ([0, 00), R™))? x C ([0, 00), R™*").

Lemma 2.1. The family {(y*™,a®™,n°™, [n°™]), m > 1} is tight in Wgn, where £p,, m > 1,
is any sequence convergent to zero.

Proof. In order to prove the statement, it is sufficient to show that each family of coordinate
processes of (y=™,a®™,n®™ [n°m™]), m > 1, is tight in the corresponding space. We will only show
the tightness for {y°™, m > 1} . The tightness for other families can be obtained similarly.

According to the Aldous tightness criterion [2] (Theorem 1), it is enough to show that for every
T > 0, any family of stopping times 7,,, m > 1, bounded by 7" and any sequence §,, decreasing to
Zero
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1204 V. KONAROVSKYI

Y (T + 0m) — y™™ (7n) — 0 in probability as m — oo,
and {y*"(t), m > 1} is tight in R™ for each ¢ € [0, 7.

The conditions above trivially follow from the convergence

E [Hyem(Tm +6m) — yem(Tm)Hﬁn} —0 asm — oo,

and the uniform boundedness of E [Hysm (t) H%n} in m > 1 for every ¢ € [0,T].

Using the fact that there exists a constant C' > 0 such that |f.  (z)| < C(1+|z|), z € R, m > 1,
the inequality

n—1

(™ (0), Ay () = = > (Wi (1) — i (D)=
k=1

—ao(y1™ (1) + " (1) < 2emaq

for all ¢ € [0,T7, the It formula and Gronwall’s lemma, one can check that for every p > 1 there
exists a constant C), 1,,, depending on p, 1" and n, such that

E|ly™ O] < Cpry te0.7). 2.9)

Next, by the 1t6 formula and the optional sampling Theorem 7.12 [17], we have
Tm~+0m
By (i + 8) ~ 4 () ] SE | [ (500, 8" (o | +

Tm+0m
2R / WA (1= K2, (y.(7))zndr | +

R / SOk (e () edr (2.10)

Tm

for all m > 1. Using Holder’s inequality, and estimate (2.9) one can conclude that
E | ly*™ (Tm + 0m) — ysm(Tm)H]an] —0 as m — oo.

Lemma 2.1 is proved.

By Lemma 2.1 and Prokhorov’s theorem, there exists a sequence {e;,},>1 converging to zero
such that the sequence y*™ := (y*™,a™,n°m, [n°]), m > 1, converges to a random element
y := (y,a,n, p) in Wgn in distriburion. By the Skorokhod representation Theorem 3.1.8 [6], one
can choose a probability space (Q, F, If") and determine there a family of random elements y, y°*,
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m > 1, taking values in Wgn such that Lawy = Lawy, Lawy*™ = Lawy®*", m > 1, and
y°™ — y in Wgn a.s. So, without loss of generality, we will assume that y*™ — y in Wgn a.s.
as m — oo. Since the sequence {e,, }n,,>1 Will be fixed to the end of this section, we will write m
instead of ¢,,, in order to simplify the notation.

Let y = (yk)p1,a = (a)f_1,n = ()1, 0 = (1)} 1=1-
Lemma 2.2. (i) The coordinate processes yi(t), t > 0, k € [n], of y are nonnegative and

t t
1
yk(t):9k+2/A k(s)ds + ag(t +/f s))ds +mi(t), t>0, ke ln].
0 0

(if) For every k € [n] such that qi 1 > 0 one has

1
ap = A (t - Pk,k) .
k. k

(iii) For every k € [n| and T > 0O there exists a random element ay, in Lo([0,T],R) such that
a.s.

ar(s)ds, tel0,7T].

Il
o _

(iv) For every k,l € [n] and T > 0 there exists a random element py,; in Ly ([0,T],R) such
that a.s.

pri(t) = [ pra(s)ds, tel0,T].

o .

(V) For every k € [n] the process mi(t), t > 0, is a continuous square-integrable (F')-
martingale, and the joint quadratic variation of ny and n;, k,l € [n], equals

(M6 M)y = pra(t), ¢>0.
Proof. 'We remark that for every k € [n]
PVE>0 frlyr (1) — f(ye(t)) as m — oo] =1,

and for every m > 1 and k € [n] a.s.

t t
) =gt 5 [ AR)s a0+ [ Fa (o)ds + (0, e 0
0 0

Passing to the limit and using the dominated convergence theorem, we obtain the equality (i).

The equality in (ii) follows from Remark 2.1 and the convergence in distribution of (a}’, [n;*])
to (a, prx) in (C([0,+00),R))>.

We next prove (iii). Let 7 > 0 be fixed. Denote the ball in Ly ([0,7],R) with center 0 and
radius » > 0 by B! and furnish it with the weak topology of the space Lo ([0,7],R), i.e., a
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1206 V. KONAROVSKYI

sequence {hy, }m>1 converges to h in BL if (b, b)rr — (h,b)r 1 forall b € Bl. By Alaoglu’s
Theorem V.4.2 [5] and Theorem V.5.1 ibid, B! is a compact metric space.
We fix k € [n] and take r := A\pv/T,

G () = A (1— R2,G0 (), te[0,T).

Then ;' is a random element in BT for every m > 1. By the compactness of B!, the family
{a*, m > 1} is tight in BT'. Consequently, Prokhorov’s theorem implies the existance of a subse-
quence N C N such that 4" — a in B! in distribution along N. In particular, for every family
ti,...,t; € [0,T] and numbers cy,...,c; € R,

in R in distribution along N. Since the family of functions
!
{x = h (Z cia:i> , &= (x;)!_; € Rl: h is continuous and bounded on R}
=1

strongly separates points®, Theorem 3.4.5 [6] yields that

t1 t t1 t
/d?(s)ds, .. ,/d?(s)ds — /dk(s)ds, el / ax(s)ds
0 0 0 0

in R! in distribution along N. From the other hand side,

t1 t

/d?(s)ds,...,/d?(s)ds — (ag(t1),...,ax(t))

0 0

in R! a.s. along N. This implies that

Law ay, = Law/&k(s)ds. (2.11)
0

Let us show that there exists a random element @ in Ly ([0, 7], R) such that a = / ax(s)ds
0
a.s. We define the map ®: Ly ([0,7],R) — C[0, T

®(h)(¢) :/h(s)ds, te[0,7).
0

3See the definition in [6, p. 113].
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Remark that @ is a bijective map from Lo ([0, 7], R) to its image
Im® ={P(h): he Ly ([0,T],R)}.

By the Kuratowski Theorem A.10.5 [6], the set Im ® is Borel measurable in C[0,7] and the map
®~! is Borel measurable. By (2.11), ax € Im® a.s. Thus, we can define a, = ® !(ay). This
completes the proof of (iii).

Similarly, one can prove (iv).

Statement (v) follows from the fact that the limit of local martingales is a local martingale and

the uniform boundedness of E [(n,ﬁ”(t))ﬂ in m. Indeed, for every k,l € [n] the processes n;*

and n;'n™ — [0, 0" are (ffm)—martingales for all m > 1, and (9™, [0""], ni*n" — [}, 0"]) —
— (n, p, Mk — pr,) a.8. as m — oo. Proposition IX.1.17 [16] implies that 7, and n;n — pg,; are
(ff”’p ))-local martingales. Note that, by the Fisk approximation Theorem 17.17 [17], .7-}(7"9 ) = F
t > 0. Using the uniform boundedness of E [(n?(t))ﬂ in m and Fatou’s lemma, one can see that
ny is a square-integrable (F,’)-martingale.

Lemma 2.2 is proved.

Proposition 2.1. Let y(t) = (y(t),a(t),n(t), p(t)), t > 0, be as in Lemma 2.2. Let additionally
e =0ifqgrr =0, k € [n]. Then

1) for every k,l € [n] a.s.

t

Pr(t) = Qi /H{yk(5)>0}]1{yz(5)>0}d57 t > 0;
0

2) for every k € [n] a.s.

t

ag(t) = A /]I{yk(s)o}ds, t > 0.
0

Proof.  We take the sequence {y,'},~; as in the proof of Lemma 2.2. Again without loss of
generality we may assume that it converges to y a.s. We first show that a.s.

t

Pra(t) = ai,l / Lyi(s)>01 [y (s)>01ds; 12> 0.
0

Recall that a.s.

t
[%Mﬁh=/d%@w,t2&
0

where 077(s) = qrrm (Y (8))Em(y;"(s)), and for each T > 0, k,l € [n] there exist random
elements py; in Ly ([0, 7], R) such that a.s.

t
pmwz/%mﬂatEMﬂ,
0
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1208 V. KONAROVSKYI

by Lemma 2.2.

Let T > 0, k,l € [n] be fixed. By the convergence of the sequence [n;",n"], m > 1, to
pi, in C[0,T] a.s., the uniform boundedness of oy, and the density of span {H[o,t], t €0, T]} in
Ly ([0,T],R), one has that

P [U,Z?l — Py, in the weak topology of Lo ([0, T],R) as m — oo] =1. (2.12)

By Lemma 2.2, y; and y; are nonnegative continuous semimartingales with quadratic variation

t
[k, yi)e = pra(t) = [ pri(s)ds, t € [0,T). Thus, Lemma A.1 implies that a.s.
0

t t
/p'k,l(s)ds = /pk,l(S)H{yk(s)>0}]l{yl(s)>0}d87 t e [O,T].
0 0

The latter equality and (2.12) yield that for every ¢ € [0, 7] a.s.

t

t
pri(t) = /ﬁk,l(s)ds = //)k,z(S)H{yk(s)>0}]1{yl(s)>0}d8 =
0 0

m—00

t
= lim /Uﬁﬂ{yk(sbo}ﬂ{yz(S)>0}d8_
0

t

= lim /Qk,lﬁm(y?(s))ﬁm(ylm(s))H{yk(s)>0}ﬂ{yl(s)>0}d5:

m—00
0

t

= / A Ly (5)>0 Ly, ()01 45,
0

where we have used the convergence r(Zm)L(0,400)(7) = L0 400)(Z) a8 Zm — 2 in R and the
dominated convergence theorem. Hence, a.s.

t
Pr(t) = / e Ly (5) >0} Iy (s)>01ds, T =0,
0

and, consequently, according to Lemma 2.2 (ii), a.s.

t

1
a(t) = Ak <1 - qkkpk,k(t)) =\ /H{yk(s)—ﬁ}dsa t>0,
' 0

for all k& € [n] such that g, # 0. If gy = 0, then A\;, = 0 by the assumption of Proposition 2.1.
Therefore, aj* = 0 implies that a;, = 0.

Proposition 2.1 is proved.
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Proof of Theorem 2.1. The statement of the theorem directly follows from Lemma 2.2 and
Proposition 2.1.

2.2. Tightness. Let a family of nonnegative continuous processes {x}(t), t > 0, k € [n]} be
a weak solution to SDE (2.1)—(2.3), which exists according to Theorem 2.1. Let the continuous
process X', t > 0, taking values in C[0, 1] be defined by (2.4). We note that X}*(u) > 0 for all
uwel0,1], t>0and n > 1.

The aim of this section is to prove the tightness of the family {f(", n > 1} in C (]0, 00), C[0,1]) .

The similar problem was considered in [11] (Section 2), where the author study the existence of
solutions to an SPDE with Lipschitz continuous coefficients. The tightness argument there is based
on properties of fundamental solution to the discrete analog of the heat equation and the fact that
coefficients of the equation have at most linear growth. The Lipschitz continuity was not needed for
the proof of the tightness. Since the proof in our case repeats the proof from [11], we will point out
only its main steps. The main statement of this sections reads as follows.

Proposition 2.2. The family of processes {X”, n > 1} is tight in C (]0,00),CJ[0,1]).

For the proof of the proposition it is enough to show that the family {f( "n> 1} is tight in
C([0,T],C[0,1]) = C([0,T] x [0,1],R) for every T" > 0. So, we fix T" > 0, and use Corol-
lary 16.9 [17] which yields the tightness if {f( "n> 0} satisfies the following conditions:

1) {X’g(()), n > 1} is tight in R;

2) there exist constants «, 3, C' > 0 such that

E {\X?(u) - Xg(v)\a] <C <\t — s gy — v|2+ﬁ>

forall t,s € [0,T], u,v € [0,1], and n > 1.
The family {X "n> 1} trivially satisfies the first condition because XQ(O) = g7 is uniformly

bounded in » > 1. In order to check the second condition, we first write equation (2.1) in the
integral form. Let {p},(t), t > 0, k,l € [n]} be the fundamental solution of the system of ordinary
differential equations*

d 1

%p’;;‘,l(t) =5 (Prit), t>0, kl€n]

with the initial condition
PZ,Z(O) = n]l{k:l}v k;)l € [n]a

and the boundary conditions
o, () = copyy(t),  pri1(t) = aopp(t), 20, 1€ [n,

where the operator Ay = A™ is applied to the vector (pra(t))p_, for every | € [n]. Noting that

{(Wr, /nr)y, t >0, k € [n]} is a family of standard Brownian motions, it is easily seen that X"
has the same distribution as the solution to the integral equation

*For more details about properties of the fundamental solution to the discrete analog of the heat equation see, e.g., [11]
(Appendix II).
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1210 V. KONAROVSKYI

1 t o1
= u)—/p"(t,u,v)g(v)dv—i—//p (t —s,u,v)A" (v )H{Xn ([o])= O}dsdv—i-
0 00
to1
—s,u,0)f (X™([v])) dsdv
S

t 1
+//p — S, U,V H{Xn (o)) >0}QdW du, t>0, wue€l0,1], (2.13)
00
where

P (8,0) = (1= n([u] = w)pf g (O + ([u] = wpfupg s (0, €0,

A"(v) = A(v)I € [0,1],

{qnm wr >0}

l -

and [v] = [v]™ := — for v € 7", | € [n]. We will denote by X;"*(u) the ith term of the right-hand
n

side of equation (2.13).

Lemma 2.3. For every v > 0 and T' > 0 there exists a constant C' > 0 such that
~ ¥
s[(srtm)) <€

Jorallt € [0,T], uwe[0,1] and n > 1.
Lemma 2.4. For each v € N and T > 0 there exists a constant C' > 0 such that

o1, n,% 2y X o
E|[X5 () - Xpin)| | <0 (1te = 6lF + Juz — w3

Sor every ti,ty € [0,T], ui,ug € [0,1], n > 1 and i € [4].

To prove Lemmas 2.3 and 2.4, one needs to repeat the proofs of Lemmas 2.1 and 2.2 from [11]
which are based on properties of the fundamental solution p" (¢, u,v), t € [0,T], u,v € [0,T], and

the fact that the coefficients of the equation has at most linear growth. We omit the proof of those
lemmas here.

Proposition 2.2 follows from Lemma 2.4.
Remark2.2. Let X;, t > 0, be a limit point of the sequence {f(”, n > 1} in C ([0, 00), C[0, 1]),

i.e., X is a limit in distribution of a subsequence of {X", n > 1} . Then the map (t,u) — X, (u)

is a.s. locally Holder continuous with exponent o € (0,1/4), according to Lemma 2.4 and Corol-
lary 16.9 [17]. Moreover, Lemma 2.3 and Lemma 4.11 [17] imply that for every v > 0 and 7" > 0
there exists a constant C' = C(T,y) such that

Emegqgc,temﬂ uel0,1].
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3. Passing to the limit. The goal of the present section is to show that there exists a solution

to SPDE (1.1)—(1.4). The solution will be constructed as a limit point of the family of processes
X" n > 1} from Proposition 2.2, which exists by Prokhorov’s theorem. Since the coefficients of
the equation are discontinuous, we cannot pass to the limit directly. In the next section, we will show
that there exists a subsequence of {f( "on > 1} whose weak limit in C ([0, 00), C[0,1]) is a heat

semimartingale®. After that we will prove an analog of the It6 formula and state a property similar to
one for usual R-valued semimartingales, stated in Lemma A.1, for such heat semimartingales. Then,
using the argument described in Subsection 1.2, we show that X solves equation (1.1)—(1.4). In this
section, T > 0 will be fixed.

3.1. Martingale problem for limit points of the discrete approximation. We start from the
introduction of a new metric space where we will consider the convergence. Denote

ro == (L4 A+ 1Qll,) VT,

and consider the following balls:
B(Lo): = {f € LF: |fl,r <o}
B(Ly): = {Le L] |ILlgyr <rof

in the Hilbert spaces L2T and L% respectively. We furniture those sets with the induced weak
topologies. By Theorem V.5.1 [5], those topological spaces are metrizable. Moreover, by Alaoglu’s
Theorem V.4.2 [5], they are compact metric spaces.

For every n > 1 we take the family of processes {z}(t), t € [0,7T], k € [n]} that is a solution
to SDE (2.1)—(2.3). Let X}, t € [0, 7], be the continuous process in C[0, 1] defined by (2.4), that
is,

XMu) = (un — k + 1)z (t) + (k — nw)z}_(t), wel0,1], tel0,T],

k :
< wu < —. Let us also introduce the process

and k € [n] such that
n n

n
XP = ap(t)mg, te[0,T],
k=1

where 71'2I = H{[b E)} Set

n ’'n

)\TL

n
Z n()\, 7T]?>]I{qgk>0}ﬂ';? € Lo,
k=1 '

L? = Q |:]I{Xt”>0}:| prn’ le [OaT]a

and
Iy = (L)' I = o1 [Txpaoy | @2 [ixpsoy | 17, t€ (0,71,

We can trivially estimate || A" || < ||A|| and

SWe call continuous processes in Lo satisfying (3.9) below a heat semimartingales.

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 9



1212 V. KONAROVSKYI

2
I7lles < @ [Topsoy | e[, < QIE,. e l0.7)

The latter inequality follows from Lemma A.3. Hence A"I{xn_gy and I'" are random elements in
LI and L7, respectively. Let us consider the random element

X" (X”,X”,)\”]I{ano},]l{xn>0},f‘”) o>, 3.1)
in the complete separable metric space
Wi, = C([0,T],C[0,1]) x C([0,T], L) x B (L2)* x B(L2).

The following statement is the main result of this section.

Proposition 3.1. There exists a subsequence of {X",n>1} which converges to
X= (f(, X, a,o0, F) in W, in distribution. Moreover, the limit X satisfies the following properties:

() X;=X;in Ly forall t €[0,T) as. and a = \(1 — o) in LT a.s.;

(i) there exists a random element L in L3 such that

P [LQ =T and L is self-adjoint a.e.] =1

and

T
E /HLtH%th < +o0; (3.2)
0

(iii) there exists a continuous square-integrable (]-'tX ’M)-martingale My, t € [0,T), in Ly such
that for every ¢ € C,[0,1]

t

t
/ (X, ") ds + / (as @) dst
0

0

N

(Xt,0) = (g, 9) +

+ / (F(Xa), @)ds + (Mo o), 1 € (0,71, (3.3)
0

and

(), = [ ILel?ds, te 0]
0

t
Remark3.1. Due to equality (3.3) and Theorem 1.2 [23], the process / asds, t € [0,T7], is
0

(F;*M)-adapted.

Proof. We first remark that the families {)\"]I{ano}, n > 1} , {I[{Xn>0}, n > 1} and {I'"",n >
> 1} are tight due to the compactness of the spaces where they are defined. Consequently, by
Proposition 2.2 and Proposition 3.2.4 [6], the family {(X", )\”I[{ano},]l{xn>0},F”> ,n> 1} is
also tight. By the Prokhorov theorem, there exists a subsequence N C N such that

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 9



STICKY-REFLECTED STOCHASTIC HEAT EQUATION ... 1213
(Xn, )\nH{XnZO}, ]I{Xn>0}, Fn> — (X, a,o, F)

in distribution along N. Without loss of generality, let us assume that N = N.
Since

= max max }mZ(t) - mz_l(t)|2 <

nl12
H te[0,T] ke[n]

iy IXE =X

< max su max | X"(u) — X"/
= og(sgl \u—u’|§§‘ i (u) i (u)

2

)

it is easily to see that max;c(o 1) HX'[‘ — thH2 LN 0, by Skorokhod representation Theorem 3.1.8 [6]
and the uniform convergence of X" to X. Hence, maxye(o,7) HX{‘ — Xt"H2 — 0 in probability as
n — 0o. Using Corollary 3.3.3 [6] and the fact that X™, n > 1, also converges to X in C ([0, 7], L)
in distribution, we have that X" % X =: X in C ([0,T],La).

We next note that

By Lemma A.2, (\" — A\)[{xn_gy — 0 in B (L2) a.s. as n — oc. Thus, (3.4) yields A"l xn_g) A

L (1 —-0)in B(Lg), n — oo. This implies the equality a = A\ (1 — o) a.s.

The existence of a convergent subsequence of {X"} ., and statement (i) are proved.

The statement (ii) directly follows from Lemma A.5.

In order to prove statement (iii) of the proposition, we first define the following Ly-valued
martingale:

ot
M = Z/\/ﬁﬂ{xg(s»o}dwﬂs)ﬂl? =

t t
0 0
Set for ¢ € Lo

Ao :=n? Z Aoy, (3.5)
k=1

where ¢! = (p, ), ©§ = aop} and ¢ | = app;,. Since X" = Z:_l xpmy, and the family
{z}, k € [n]} solves SDE (2.1)—(2.3), we get for every ¢ € Ly

(M, ) = (M, pr" ¢) =
t
1 ~
= (X{",pr" ) — (9", pr" ) — 2/<A”X?,pr”so> ds—
0
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t

t
/<A I xn—o}, Pr" @) / ), pr" @) ds =
0

0

t
— (XT, ) — (g ;/ (X7.A%) ds-
0
t t
- [ Wy ey ds = [ XD ) ds, te0.1) (3.6)
0 0

and the quadratic variation of the (F;*")-martingale (M™, ) equals
2
[(M", @)], = / HQ]I{X;L>O} pr"<pH ds, te]l0,T).
0

Let &1(u) = 1, u € [0,1], and é,(u) = v2cos7(k — )u, u € [0,1], k > 2, if apg = 1,
and é;,(u) = V2sintku, u € [0,1], k > 1, if ag = 0. Then &, € Cio[(), 1] for all £ > 1, and
{€k, k > 1} form an orthonormal basis in L. Since HQ]I{thw} pr” ékHQ < QI t € [0,77,
kE > 1, the families {(M",éx), n > 1} and {[(M",éx)],n > 1} are tight in C[0,T] for every
k > 1, by the Aldous tightness criterion. According to the tightness of {X",n > 1}, we also have
that {(X",é;), n > 1} is tight in C[0, T for each k > 1. Using Proposition 2.4 [6] and Prokhorov’s
theorem, we can choose a subsequence N C N such that

(<Xn7 ék) ) <M-n7 ék> ) [<Mn7 ék>])k21 — (Xk7 Mk? Vk)k21 (3-7)

n ((C[o, T])3)N in distribution along N. In particular, we have that (M™, &,)* —[(M",&)], n > 1,
is a sequence of martingales which converges to M? — Vj, in C[0, 7] in distribution along N for all
k> 1.

We fix m > 1 and let (F;" X, M.V, m)te[O 7] be the complete right continuous filtration generated

by (X, My, Vi), k € [m]. By Proposition IX.1.17 [16], we can conclude that M}, and M? — Vj, are

XMVm)

continuous local (F; -martingales for all k € [m]. Since

T
B[ e’ = [ B [l@lucesgan’] ds < QP
0

we have that E [M lf(T)] < +00 by Lemma 4.11 [17]. Hence MM, l? is a continuous square-integrable
(ﬁX’M’V’m)—martingale with quadratic variation [Mk] =V, k € [m]. From Theorem 17.17 [17],
we can conclude that FV MV — EXMM 4 o 0 T, where (ff’M’m)te[ovT] is the complete
right contmuous filtration generated by (Xk,Mk.), k € [m]. Since for every t € [0,7] the o-
algebra .7-" 1ncreases to .7-" as m — oo, Theorem 1.6 [20] yields that M, is a continuous

square-integrable (F; " )-martingale with quadratic variation [M},] = Vj, for each k > 1.
Next, we recall that
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(X", X", Aoy, F”) = (X, X,a,T)

in C([0,T7],C[0,1]) x C(]0,T],L2) x B(La) x B(L2) in distribution as n — co. By Skorokhod
representation Theorem 3.1.8 [6], we may assume that this sequence converges a.s. Therefore, for
every t € [0,7] and k > 1

<th’ ék> - <Xta ék> =: Xk(t)v <gn7 ék> - <gv ék> )

o _

(F(X™), &) ds — / (F(X0), &) ds,

o —

(M, &), / IL7 2 ds — / |Loil? ds =: Vi(t)

a.s. as n — oo. Using Taylor’s formula and the fact that €, € Cio [0,1], & > 1, it is easy to see that
for every ¢t € [0,7] and k > 1

¢
/ X" A"ek ds — /<X5,é/k’ ds as. as n — o0o.
0
Consequently, for every ¢ € [0, 7] the sequence (M}, éx), n > 1, converges to

t
. 1 -
Mk(t) = <Xt7ek> g7 ek 2/ X, ”> ds—
0

—/t(as,ék>d3—j<f(Xs> éx) ds
0 0

a.s. as n — oo. Thus, for every m € N and ¢; € [0, T, i € [m],

k>1 k>1

n (R?’m)N a.s. as n — oo. This and convergence (3.7) imply that
Law {(Xk, Mka Vk)kzl} = Law { (Xka Mk‘v Vk)k21}

N
in ((C[O, 1])3> . Consequently, for every k > 1 the process M}, is a continuous square-integrable

(.733( M) _martingale with quadratic variation
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M, / |Lél2ds, te[0,T],

where (ftX ’M)te[o,T] is the complete right continuous filtration generated by Xy, My, k > 1.
Now we introduce the following process in Ly:

My =" My(t)éy, te[0,T]. (3.8)
k=1

Remark that M;, t € [0, T, is a well-defined continuous process in Lo. Indeed, by the Burkholder -
Davis—Gundy inequality, Lemma A.4, (3.2) and the dominated convergence theorem, for every
n,m > 1,

n n+m 2 n+m
E| max M (t)e, — M (t)e max M
e > Mi(t)éy ; k(t)ék e k_ZH K ( ] <
T n+m
< /E Z <Lt6k7Lt€l> dt =

T o0

= /E Z (Lipr™" ey, Lipt™ ) | dt =
0 Lki=t

T
— /E [HLtﬁr”’"erHiJ dt — 0
0

as n, m — oo, where pr"" 1" is the orthogonal projection in Lo onto span{éy, k =n+1,...,n+

+ m}. This implies the convergence of series (3.8) and the continuity of M;, ¢ € [0, 7], in Ly.
Since ;M = FXM ¢ € [0,T), and (M, &) = My(t), t € [0,T), for all k > 1, it is casily
seen that M is a continuous square-integrable (F; ’M)—martingale in Ly with quadratic variation

t t
(M], = /Lgds = /I‘Sds, t €0, 7).
0 0

This implies statement (iii).

Proposition 3.1 is proved.

3.2. A property of quadratic variation of heat semimartingales. In this section, we will
assume that (2, F, (F¢)¢>0,P) is a filtered complete probability space, where the filtration (F):>0
is complete and right continuous. Let 7" > 0 be fixed. Consider a continuous (F;)-adapted Lo-valued
process Zy, t € [0,T], such that there exist random elements a and L in Lg and EQT, respectively,

t ¢
such that for every ¢ € CZ [0,1] the processes / (as,)ds, t € [0,T], and | Ls||?ds, t €
0 0
€ [0, T, are (F;)-adapted, and
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e

is a local (F;)-martingale with quadratic variation

M%(t) = <Zt7 > ZOa (/3 <asa()0>dsv te [OvTL (39)

[\D\)—‘

o\“

ME), = / |LoglPds, te0,T].

t
Note that the assumptions on L implies that the continuous process / HLSH%2 ds, t € [0,T], is
0

well-defined and (F;)-adapted.

We will further consider the case of the Neumann boundary conditions, where ag = 1. All
conclusions of this section will be the same for the Dirichlet boundary conditions, where ag = 0. Let
{€k, k > 1} be the family of the eigenfunctions of A on [0, 1] with Neumann boundary conditions.
We recall that &;(u) = 1, u € [0, 1], and &(u) = V2cosm(k — 1)u, u € [0,1], k > 2. Denote the
orthogonal projection in Lo onto span{éy, k € [n]} by pr".

Let Z]' = pr"Z;, t > 0, and a} = pr'as, t € [0,T]. We also introduce

n

Zl = (Zi,é)é,, te[0,T], n>1,
k=1

and note that Z", n > 1, is a sequence of random elements in Lg.
Lemma 3.1. (i) The equality

P [Z", n > 1, converges in LY and a.e. as n — oo] =1

holds.
(ii) Set . .
Z = lim Z",

n—o0

where the limit is taken a.e. Then Z is a random element in LT and for every t € [0, T]
t t
/ |1 Z7%ds — / | Zs||%ds  a.s. as n — oo.

Proof. Set z(t) := (Z;,éx), t € [0,T], k > 1. Then, by the definition of Z, for every k > 1
the process

t

72k — 1)2 /
&k(t) := 2z (t) — 21(0) + ———— [ zx(s)ds — [ ar(s)ds, t€0,T],
2 fa

0

is a continuous local (F;)-martingale with quadratic variation
t
&= [ Ial®ds, te 1)
0
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1218 V. KONAROVSKYI

where ay(s) := (as, €;). Denote 0%71(0 = (L€, L€;), t € [0,T], and remark that

n

Zi = sz(t)ék and ;' = Zak(t)éka te0,7T], n>1
k=1 -

By the It6 formula and the polarisation equality, we get

t
12y = \|Zgr2—/rzsw|2ds+2/ M) ds+
0

+/HLsﬁr”\|%2ds+M"(t), t € 0,7], (3.10)
0

where M™(t), t € [0,T7], is a continuous local (F;)-martingale defined as

n t
:22/ s)dé,(s), te[0,T].
0

k=1

A simple computation gives that
M™], = 4/ |LsZ2|*ds, t € [0,T).

Trivially, || Z}*]|? — ||Z:]|* a.s. as n — oo for all ¢+ € [0,T]. Using the dominated convergence

t
theorem, we can conclude that / (a%,Z7) ds — / (as, Zs) ds a.s. as n — oo. Next, by Lemma A.4
0

t
and the dominated convergence theorem, / | Lspr™|| £2d3 — / ||L5||%2 ds a.s. as n — 00. Next,

0
we will show that M™(¢) converges in probability. Since M" is a local martingale, we need to
choose a localization sequence of (F;)-stopping times defined as follows:

=inf{te0,7]: /HLSH%?dszk AT.

Then the processes M"™(t A 1), t € [0,T], n > 1, are square-integrable (F;)-martingales for
every k > 1, and 7, T 1T as k — oo. By the Burkholder — Davis — Gundy inequality (see, e.g., [15],
Theorem II1.3.1), for every k,n,m > 1, n < m,

Tk
E| s [M7(0A ) - Mmmm\z] <168 | [ Lz as|
tel0,T

where pr'™ is the orthogonal projection in Lo onto span{é;, k =n+1,...,m}. Hence, by the
dominated convergence theorem,
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E n?a}(]]M"(t/\Tk) MPEAT)P| =0 as n— oco.
telo

This implies that there exists a continuous square-integrable (F;)-martingale My(t), t € [0, 7], such
that

H[I(E)ﬁﬂg] | M™(t A7) — My(t)| — 0 in probability as n — oc.
te

By Lemma B.11 [3],
tATE

(My], =4 / |LsZs||*ds, tel0,T].

Furthermore, for every £ > 1 My = My1(- A 1) a.s. We define M(t) := My(t) for t < 7,
k > 1. Trivially, M is a continuous local (F;)-martingale with quadratic variation

t
—4/HLSZSH?ds, te0,T].
0

Using Lemma 4.2 [17], M"(t) — M(t) in probability as n — oo for every ¢ € [0, 7).
t
We have obtained that every term, except / HZgszs, of equality (3.10) converges in proba-
0

t
bility. Hence, / | Z7||?ds also converges in probability. Moreover, this sequence is monotone. By

0
Lemma 4.2 [17], it converges almost surely. By Fatou’s lemma,
T
/ lim || Z7]%ds < co a.s. (3.11)
n—oo
0

This implies the convergence of {Zg(w)} N in Ly for almost all s and w. Hence Z", n > 1,
n>1

converges to Z ae. as.as n — oco. The equality in the second part of the lemma follows from the
monotone convergence theorem and (3.11). In particular, || Z" ||, 7 — ||Z||L,.z- Thus, Z" — Z in
Lg a.s., according to Proposition 2.12 [17].

Proposition 3.2. Let F € C? (R) has a bounded second derivative and h € C*[0,1]. Then

t

0/ Z> ds + / (F'(Zs)h,as) ds+

0

(F(Zt),h) = (F(

l\D\H

t

1

+2/ [F"(Zs)h-], LS>£2ds+MF,h(t), t €[0,77, (3.12)
0

where Mg p(t), t € [0,T], is a continuous local (F;)-martingale with quadratic variation
t
2
Mg, = / |LsF'(Zs)h||" ds, te[0,T,

and (F'(Z)h) := F"(Zs) Zsh + F'(Zs)W € Ly.
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Proof. As in the proof of Lemma 3.1, we can compute for every n > 1

t

2

(F(Z]'),h) = (F(Z}),h) — / (F'(Z})h,ér) zi(s)ds+
n t n t

+ /<F' ")h, ek> ak(s ds+ / F” Z) hek,el> akl s)ds+

n

t
+ / F/ Z"hek dfk() tE[O,T].
k=17

Consequently,
. t t
(F(Z),h) = (F(Zy),h) — 2/<(F’(Z§) ds+/ F'(ZMh,a? d3+
0 0
t
+/ Lopt" [F"(Z)h-] , Lpt™) ,_ds + M, (1), te€[0,T],
0
where

n

t
/ (F'(Z0)h, &) dén(s),
0

=1

and (F'(Z)h),, = Z::1 (F'(Z})h, éy) €. The process My, (t), t € [0,T], is a continuous local
(F:)-martingale with quadratic variation

) = 3 [ (P ) s -

k=17
:/HLsﬁr”F’(Zg)hHst, t €10,7).

By the boundedness of the second derivative of F' we have that there exists a constant C' > 0 such
that |F'(z)| < C(1+ |z|) and |F(x)| < C(1 + |z|?). Therefore, (F(Z}"),h) — (F(Z;),h) a.s
n — oo, and F'(Z")h — F'(Zy)h and F"(Z]*)h — F"(Z;)h in Ly a.s.as n — oo forall ¢t € [0, 7).
By the dominated convergence theorem and Lemma A.4,

t
/ (F'(Z})h,a? ds—>/<F’(Zs)h,as>ds a.s.
0

and
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t
/(Lsﬁrn [F"(Z})h-] , Lepr™) ds—>/ [F"(Zs)l]  Ls), ds  as.
0

as m — oo. Using the localization sequence, one can show that, for every ¢ € [0,T], M%,(t) —
— M, (t) in probability as in the proof of the previous lemma.
In order to finish the proof of the proposition, we only need to show the convergence

t
/ <(F’(Zg)h); , Z§> ds to the corresponding term. By Lemma 3.1, it is enough to show that
0

(F"(Z™Mh)! — (F'(Z)h) = F"(Z)Z.h + F'(Z)h' ae. as. as n — oo. But this easily follows
from the integration by parts formula.

Theorem 3.1. Let the process Z;, t € [0,T], and the random element L € Eg be as above.
Assume that Z; > 0 a.e., t € [0,T]. Then the equality

L Lz =L in L3

holds.
Proof. In order to prove the theorem, we will use Proposition 3.2. We fix a function ¢ € C (R)

such that suppy C [—1,1], 0 < ¢(z) < 1, x € R, and ¥(0) = 1. Define . (z) := ¢ (g) , ¢ €R,

and Y
F.(z) ::/ /dJE(T)dT dy, x€R.

Then 0 < F(z) < 2¢, x € R, and F/(2) — I (z) as € — 0+ for all z € R.
Let a nonnegative function h € C'[0, 1] be fixed. By Proposition 3.2,

t t
/ d8+/ s)h, as d5+
0 0

t
/ [F/(Zs)h], Ls) , ds + Mg p(t), te€l0,T],
0

(F=(Z1), h) = (Fz

l\?\H

+

N =

and the quadratic variation of the local (F;)-martingale Mg, j, equals

[(ME. 1], /HL Fl(Z)h|*ds, te[0,T).

Making £ — 0+, we can immediately conclude that for every ¢ € [0, 7]
(FL(Z0), h) = (F=(Zo), W] < 2¢]1Z — Zol[1]] = 0 as.
and

t t
/<F;(Zs)h,as>ds §25|h\|/|]a3||ds—>0 as.
0 0
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Similarly to the proof of Lemma 3.1, using the localization sequence, one can show that Mp,_p(t) —
— 0 in probability. By the dominated convergence theorem and Lemma A .4,

t

t
/(Ls [FI(Zs)h], Ls), ds — /(Ls Liz=oyh] s Ls),, ds as.

0 0

Again, by the dominated convergence theorem and Lemma A.6, we have

]<(F;(ZS) ] F"(Z5)Zsh, Z, >ds+
0 0

t

+ / (F'(Z)W, 2,) ds /t 10z, 2V ds =0 as
0

0

We have for every ¢ € [0, 7]

t
/ s [Lz,=oyh-] . L >£2d5:0 a.s.
0

Then taking h = 1 and applying Lemma A.3, it is easy to see that

/ HLS [H{Z_S:O}'] HZ ds = 0.

Theorem 3.1 is proved.
3.3. Proof of the existence theorem. In this section, we will consider the random element X"
defined in Subsection 3.1. According to Proposition 3.1, there exists a subsequence N C N such that

X" = (Xn,Xn,An]I{ano},H{Xn>0},Fn) — (X,X,a,a, F) in WL2

in distribution along NN. As before, without loss of generality, we may assume that N = N. By the
Skorokhod representation theorem, we can assume that this sequence converges a.s. Since X" X

in C([0,77],C[0,1]) a.s., and a.s. for all ¢ € [0, T] the quality X; = X; in Ly holds, the inequality
ax || X? — X|| < max s ax | XP(u) — X (o
e | X7 - X7|| < max o, s | X7 () - X7 ()
implies that
PVt € [0,T], X" — X, ae]=1. (3.13)

I. We will first show that I' = []I{X.>0}-] Q? []I{X.>0}-] a.s
Using Proposition 3.1 (ii), there exists a random element L in £ such that I' = L? a.s. Next,
by Proposition 3.1 and Theorem 3.1, L.I;x oy = L as. Therefore, using the convergence of
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I = pr" I xns01 Q% x>0y pr' to I' in B(Ly) a.s., we obtain that for every ¢ € [0,7] N Q and
k,l>1 as.

t t
/ Ds,ex ©e)r,ds = | (Tsey,ex) / (Lgey, Lgey)
0 0

<:>\W

t
:/<L5]I{Xs>0}eluLSH{XS>0}€k> ds =
0

t
= / (Tslx,soyer Iix,sopex) ds =
0

t

= nh_)IIolo (Do, >oy€r Iix, >o1ek) ds =
0

t

= lim [ (QLxnsoypr" (Ix,>03€1) , Qlxns0y r" (Ix,>0y€k)) ds =

n—00
0

t

= lim [ (Qpr" (Iixnsolx,>03€r) , @Pr" (Iixrsoylix,>01ex)) ds =

n—00
0

t
:/<QH{X3>0}617QH{XS>0}€k> ds =
0

= / (Iix,>0y Qx>0 €k @ €z>£2 ds.
0

In the last equality, we have used the fact that Iy ;) (75)L(0 400) (%) = L0 400)(7) as T, — @ in
R, convergence (3.13) and the dominated convergence theorem. Since the family {]I[07t}ek ®e,t e
€ [0,T]NQ, k,1 > 1} is countable and its linear span is dense in £, we trivially get that

I =Ix 0@ x>0 as. (3.14)
II. Let x? be defined by (1.6). We next want to show that
Iivs010 = Ipsoplxsoy in L3 as. (3.15)

But this will directly follow from the following lemma.
Lemma 3.2. Let Z}', t € [0,T], n > 1, be a sequence of La-valued measurable functions such
that Z]' > 0 for all t € [0,T] and n > 1, and

Lebr @ Leby {(¢,u) € [0,T] x [0,1]: Z]*(u) 4 Z¢(u)} = 0.
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If
pr” (L zns0y] Q7 [Iiznsoy] pr" = [Liz501-] @ [Tz 50y°] (3.16)

in B(L2) and Ijznsoy — o in B(L2) as n — oo, then

Lixs010 = L0l z>03- (3.17)
We postpone the proof of the lemma to the end of this section.

II1. Using equality (3.15), Proposition 3.1 (i) and assumption (1.7) of Theorem 1.1, we get
a = )\(1 — 0) = )‘]I{x>0} (1 — a) =
= Alpsop (1= Lxsop) = Mpysoplpx=op = Alpx=o}- (3.18)

Hence, using Proposition 3.1 (iii) and equalities (3.14), (3.18), we have that for every ¢ €
€ C2 10,1] as.

t t
1
<Xta 90> = <gv(10> + 5 / <XS, (10”> ds + / <)\H{Xs:0},(,0> ds+
0 0

t
+ / (X)) @) ds + (Myg), ¢ e[0T, (3.19)
0

and (M, @), t € [0,T], is a continuous square-integrable (]-"tX M) _martingale with quadratic varia-
tion

t
(M., )], = / 1QLix.sope|®ds, < [0,7).
0

In particular, (3.19) yields that ]-"tX M — FX, te[0,T).
Theorem 1.1 is proved.
Proof of Lemma 3.2. 1t is easily seen that convergence (3.16) is equivalent to the convergence

Lizrs0y] @ [Lizrso0y] = [Liz>0y7] Q% iz >01-] in B(L2)

as n — oo. So, for every ¢ € L we have
T
/ HQH{Z{L>0}%H2dt = <[H{Z,">0}'} Q? []I{Z,">0}'] 0. © 90.>£2’T —
0
> ([Mz>0p] @ [z >0y ] 0 ©0), =
T
~ [N@tzmnel d
0
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as n — oo, where ¢. © . is defined as ; © ¢, t € [0,7]. Replacing ¢ by exly;_q, for every
k > 1, we obtain that

T T
/HQH{zgt>o}H{Zt=0}€k||2dt—>/HQH{zt>o}H{zt:o}€kH2dt=0 (3.20)
0 0

as n — oo. We set 17" := Iizr>0yl{z,=0}, t € [0,T]. Then (3.20) and the equality

T ) 0o T )
[t at =3 [ ut (Brewen) ar
0 =17

imply
T

- 2
/<H?ek,ek> dt -0, n— oo,
0
for every k > 1 such that u; > 0. So, by the Holder inequality,

2 T

T 1

- - 2
//H?(u)ei(u)dtdu ST/<]I?ek,ek> dt -0, n— oo.
00

0
. . . I I 2
Taking into account the equality I} = (H?) , t € [0,T], we can conclude that

I"e, — 0 in LT, n— oo, (3.21)

for every k > 1 such that p; > 0.
We claim that xI", n > 1, converges to 0 in LI as n — oo. Indeed, by convergence (3.21) and
the dominated convergence theorem,

"

) 0 T 1
T ZM%//Hﬁ(u)e%(u)dtdu —0, n—oo. (3.22)
T k=l 5 0

Next, since I;zn-0y — o in the weak topology of LI as n — oo, and Iiz>0ys Ifz—0y are
uniformly bounded, we trivially obtain that

Liznsoylizs01 = olizs0y, 1" =ILizns0yliz=0) = oliz=0}, (3.23)
in the weak topology of L as n — oco. Using the fact that
L0, 4+00) (Zn)(0,400) () = L0, 400)(z) as xp =z in R,
and the uniqueness of a weak limit, we get
oliz=0y = Liz>03- (3.24)
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Since x € Lo, convergence (3.23) yields

1 T 1
//X P (u dtdu—)//x (u)lyz,—0y (w)dtdu, n — ooc.
0 0 0

On the other hand side, xI™ — 0 in L2 by (3.22). Hence
xolfz—gy = 0.
The latter equality and (3.24) yield
xo = x0l{zs0y + x0lz—0p = XI{z=0y in L

that is equivalent to equality (3.17).

Lemma 3.2 is proved.

A. Auxiliary statements.

Lemma A.1. Let & (t), t > 0, k € [2], be continuous real valued semimartingales with respect
to the same filtration. Let also the quadratic variations equal

t
(ks &1t /O'k,l t>0, klecl[2.
0

Then for all k,l € [2] a.s

t
(S il / 711 (8 )iy (s)20) Ligy (s) 0y A5, £ 2 0.
0

Proof. By Theorem 22.5 [17], one has, for k € [2] a.s

t

/Uk,k(S)H{gk(s)zo}dS = /H{O}(fk(s))d[&c]s =
0

0
+00
- / Iy () L "de = 0, ¢ >0,
—00

where Lf *t >0, x € R, is the local time of . Applying the Cauchy-type inequality [17]
(Proposition 17.9), we estimate for every ¢ > 0 a.s.

t t t
/|0172(s)|]l{51(5)0}ds < /0171(3)11{51(5)O}ds/agg(s)ds =0.
0 0 0

Similarly, we get
t

/|O’172(S)]I{§2(5)0}ds = 0, t> 0, a.s.
0
These equalities trivially yield the statement of the lemma.
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Lemma A.2. Let A\ be a nonnegative function from Lo, () be a nonnegative definite self-adjoint
Hilbert—Schmidt operator on Ly, x> be defined by (1.6) and

n

A — Zn()\,ﬁ,?)]l{qzkwyrg, n>1,
k=1 ’

where qj; | = n||Qm||?. If M=oy = A a.e., then ™ — X in Ly as n — oco.
Proof. Denote

n
A= prt \ = Zn()\, )T, 1> 1.
k=1
In this proof, functions from Lo will be considered as random elements on the probability space
([0,1], B([0,1]), Leby ), where B([0,1]) is the Borel c-algebra on [0,1]. We remark that A" is the
conditional expectation E [A\|S"] determined on that probability space, where S = o {7, k € [n]}.
By Proposition 1 [1], A = Xin Ly as n — oc. In particular, A converges to A in probability as
n — oo.
Let

n
q" = Z ngg kT —ZnQHQﬂn”2M —Z< QZM el, ) )W =
k=1 k=1

k=1

oo n
:Z“lQ (Zn2<el,7rk > Z,ul (pr" el , n>1.

Remark that pr" e; — ¢; in probability as n — oo for all [ > 1.

We fix a subsequence N C N. Then, by Lemma 4.2 [17], there exists a subsequence N’ C N
such that A" — X a.s. along N’. Using Lemma 4.2 [17] again and the diagonalisation argument, we
can find a subsequence N” C N’ such that pr'e; — ¢; a.s. along N” for all [ > 1. By Fatou’s

lemma,
oo
lim ¢" > Z,u?e% =x? as.
N"3n—o00 =1

This inequality and the lower semicontinuity of the map R > x — (g ) (z) yield

im  dgr>0p 2 Tpesop = Iy as:
N""35n—00

Consequently, using the equality
n ~
A=Y " n(A )T {ap >0}k = A" Tgns0y, (A.1)
k=1
and the convergence A" — \ a.s. along N”, we obtain

lim A= lim A'Tgnsgy > Al ag) = A as.

N""3n—00 N'""3n—00

By (A.1), we also have
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Im A< Iim A=\ as.
N'"">5n—o00 N'"3n—00

This implies the convergence A" — X a.s. along N”, and hence, A — X in probability as n — oo
by Lemma 4.2 [17]. We also remark that A" < A, n > 1, and \* — X in Ly. Hence, dominated
convergence Theorem 1.21 [17] implies that || A”|| — ||A||. By Proposition 4.12 [17], A™ — X in Lo
as n — 0o.

Lemma A.3. Let A € Ly and B;, i = 1,2, be bounded operators on Ls. Then AB; € Lo,
1 =1,2, and

(AB1,ABy) Z v2(Bien, Biey),
n=1

where {e,,n > 1} and {V,?l, n > 1} are eigenvectors and eigenvalues of A* A, respectively.

Proof. Set A" := Zn

=1
) .
converges to vV A*A = E Ly Ve ® g in Lo. Hence

vig; ® g1, n > 1. Then it is easily seen that the sequence {A"}, -,

WE

<ABl, AB2>£2 = <ABlsk,ABz€k> = Z<A*ABl€k, Bg€k> =
k=1

B
Il

1

- <\/A*ABl,\/A*AB2> = lim (A,B1, 4,B),, =

Lo
00 o n
= nlgglo : <AnBle’5k, AnB25k> = nh—>rgo kz lz: V12<Bl<€k, 5l><B25k7 El> =
=1 =11l=1

oo oo [e.e]
2
:ZZV 5k,Blsl 8k,BQ€l Zvl <BTE[,B;€Z>.

=1 k=1 =1

Lemma A4. Let A € Lo and a sequence of bounded operators By, n > 1, in La converge
pointwise to an operator B, that is, for every ¢ € Lo, B,y — By in Lo as n — oo. Then B is
bounded and AB;, — AB* in Ly as n — oo.

Proof. We first note that norms || B,,||, n > 1, are uniformly bounded, by the Banach — Steinhaus
theorem. Consequently, B is a bounded operator on Ls.

Next, we will show that {AB};} -, converges to AB* in the weak topology of Lo. Let {,,n >
> 1} and {2, n > 1} are eigenvectors and eigenvalues of A* A. Then for every k,1 > 1

(AB; e, © )y, = (ABper,ex) = (1, BnA'er) —
— (e, BA%¢) = (AB", e, © 1)y, as n— oo

Since span{ey ® g;, k,l > 1} is dense in Lo and HAB*H[;2 < ||Allz, l|BEIl, n > 1, is uniformly
bounded, the sequence {AB};}, -, converges to AB* in the weak topology of Lo. By the dominated
convergence theorem, the uniform boundedness of the norms of || B, ||, n > 1, and Lemma A.3, we
obtain

2
|AB;|12, = Zw HBnézH2—>ZVz |Ball|* = |AB*||7, as n— oc.
= =1

This implies that {ABn}n21 converges to AB* in the strong topology of Ls.
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Let £5°" be a closed subset of £y consisting of nonnegative definite self-adjoint operators.
Consider
B(Ly™):={LeB(Ly): LcLY™ ae}.

Remark that a nonnegative definite self-adjoint operator A on Lo has the square root, i.e., there exists

2
a unique nonnegative definite self-adjoint operator v/A on Ly such that <\/Z> = A. This trivially

follows from the spectral theorem.
Lemma A.5. (i) The set B (L5"") is closed in B (L2) .
(i1) For every r > 0 the set

2
S, :=<¢ LeB (LY L . dt <r
2

is closed in B (L2) .
(iii) For every r > 0 the map ®" : S, — B (LY"") defined as

(L) =+/Ly, te[0,T], LeS,

is Borel measurable.
Proof. Let L™, n > 1, be a sequence from B (£5**) which converges to L in B (L) . We take
arbitrary ¢t € [0,7] and ¢, 1) € Ly and consider

t t t
/ s, =/ L, b © @), ds= hm/ SO @), ds
0 0 0
t t t
= Jin [ (Cowyds= lim [ (o200)ds= [ (o L) ds
0 0 0

Due to the density of the set span {]I[Oﬂ@ ® 1, t€[0,T], o, € Lo} in L], we obtain that L is
self-adjoint a.e. Similarly, one can show that L is nonnegative definite. Hence, B (£5*") is closed.

Next we prove (ii). Take a sequence L™, n > 1, from S, which converges to L in B (L3). We
remark that L € B (£5*") due to (i). Then

. T
Z/ Ltek,ek dt <
0

k=1

0/ el o= | [ﬁgHﬁek!F

o T T
lim Liey,e)dt = m/ ? t<7“,
> I
0 0

k=1

T

by Fatou’s lemma and the fact that / (L}ek, er) — / (Liex, e), n — oo, for all k& > 1. Thus,
0 0

S, 18 closed.
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In order to check (iii), we first remark that it is enough to show that, for every ¢ € [0,7] and
p, % € Lo, the map

t

T
5.3 L [ (D). Log(0)0 09, ds = [(@(L)p0)ds € R (A2)
0

0

is Borel measurable. By Theorem 1.2 [23], the Borel o-algebra on B (£2) coincides with o-algebra
of all Borel measurable sets of £ contained in the ball B (L2) . Consequently, it is enough to show
that map (A.2) is Borel measurable as a map from S, to R, where S, is embedded with the strong
topology of £1'. But then map (A.2)

t

SaLn—>/<b’" ww—/ so, L

0

is continuous, and, thus, Borel measurable.

Lemma A.5 is proved.

Let the basis {é;, k> 1} in Ly be defines as in Subsection 3.2, that is, é;(u) = 1, v € [0, 1],
and é;(u) = v2cosm(k — 1)u, u € [0,1], k > 2. For h € Ly, we define

ihen

if the series converges in Ly. We remark that (h,¢) = —(h,¢') for every ¢ € C[0,1] with
P(0) = ¢(1) = 0. | |
Lemma A.6. Let h € Ly be nonnegative and h exist. Then hlpy(h) = 0 a.e.

Proof. We consider, for every € > 0, the function ¢.(z) = V22 + &2 — ¢, x € R. Then .
is continuously differentiable, 1.(0) = 0 and t¢.(z) — |z| as ¢ — 0+ for all x € R. Moreover,
[L(x)] <1 and ¥.(x) — sgn(z) for all z € R. Take any function ¢ € C|0, 1] satisfying ¢(0) =
= ¢(1) = 0. By the dominated convergence theorem, it is easily seen that

<w€(h)a (pl> = _<'¢(/€(h‘)h7 @)

Making € — 0+, and using the nonnegativity of h, we have
~(h, ) = (1, ¢") = —(L(0,400) (R)R, ).

Since ¢ was arbitrary, we can conclude that i = hﬂ(0,+oo)(h) a.e.

Lemma A.6 is proved.

Remark A.1. The same statement of Lemma A.6 remains true if the “cos” basis is replaced by
the “sin” basis & = v/2sinwku, u € [0,1], k > 1.

Acknowledgement. The author is very grateful to Prof. A. Dorogovtsev for valuable discussions
during the work on this paper.
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