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PO PEI'VJIAPU3AIIIO MAJIMM IITYMOM BATATOBUMIPHUX 3BUYAMHUX
JUOEPEHIIAJIBHUX PIBHAHD 3 HEJINNIIWMIEBUMUA KOEDIINICHTAMHU

In this paper we solve a selection problem for multidimensional SDE dX°(t) = a(X°(t)) dt + eo(X°(t)) dW (t), where
the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane H. It is assumed that X°(0) = 2° € H,
the drift a(x) has a Hoelder asymptotics as = approaches H, and the limit ODE dX (t) = a(X(¢)) dt does not have a
unique solution. We show that if the drift pushes the solution away from H, then the limit process with certain probabilities
selects some extremal solutions to the limit ODE. If the drift attracts the solution to H, then the limit process satisfies an
ODE with some averaged coefficients. To prove the last result we formulate an averaging principle, which is quite general
and new.

CraTTIO TIPHUCBSYEHO 3HAXO/DKEHHIO TIPAHUI PO3B’SI3KIB 0araTOBUMIPHHMX CTOXaCTHYHHMX AW(EpeHLiaIbHUX pIBHSIHB
dX°(t) = a(X°(t))dt + eo(X°(t)) dW(t) npu € — 0, me xoediuientn mepeHocy ta Auys3ii € TOKATBHO IiMIIHIE-
BUMH (yHKIiAMH 330BHi (ikcoanoi rinepriommuu H. Hpumyckaetses, mo X°(0) = x° € H, xoediuient nepenocy
a(r) Mae TenpIepoBy aCHMIITOTHKY, KOJH x HaOmmkaerscs 10 H, i rpanudHe 3BuuaiiHe udepeHIiianbHe PiBHSIHHSA
dX(t) = a(X (t)) dt Moxe He MaTH €IMHOTO PO3B’sI3Ky. JloBEnEHO, IO SIKIIO MEPEHOC BiAUITOBXYE PO3B’SI30K Bif Timep-
wiomuHA [, To rpaHUYHUH Npouec i3 NMEeBHUMM WMOBIPHOCTSIMH BHOMpae JesKi eKCTpeMalbHi PO3B’SI3KM T'PAaHHYHOTO
IU(epeHIiaTbHOTO PiBHAHHA. SIKIIO MEepeHoC MPHUTATYE PO3B’s30K N0 H, TO TpaHWYHUIA IpOLEC 3aTO0BOJIBHSIE 3BUYAM-
He nudepeHIliaabHe PiBHIHHSA 3 ycepeAHECHUMH Koedirtientamu. [ TOBEACHHS OCTAaHHBOTO Pe3yabTary chOpMYILOBAHO
HOBHIl JOCTaTHBO 3arajbHUil MPUHIHUI yCEPESAHEHHS.

1. Introduction. Consider an ODE

du(t) alu
M0 o)), -
u(0) =0,

where a is a continuous function of linear growth that satisfies a local Lipschitz condition everywhere
except of the point v = 0. Then uniqueness of the solution to (1.1) may fail; e.g., for a(u) =
= +/|u|sgn(u), the ODE (1.1) has multiple solutions +#2/4, t > 0.

Consider a perturbation of (1.1) by a small noise:

du(t) = a(ue(t))dt + edW (t),
(12)
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where W is a Wiener process. Equation (1.2) has a unique strong solution due to the Zvonkin—
Veretennikov theorem [22]. It easy to see that a family of distributions of {u.} is weakly relatively
compact because a has a linear growth. Moreover, any limit point of {u.} as ¢ — 0 satisfies
equation (1.1) because a is continuous. Hence, if the limit lim._,g u. (in distribution) exists, then
this limit may be considered as a natural selection of a solution to (1.1).

The corresponding problem was originated in papers by Bafico and Baldi [2, 3], who considered
the one-dimensional case; other generalizations see, for example, in [4-9, 12, 15, 18-21] and
references therein. Investigations in multidimensional case are much complicated than in the one-
dimensional one. There are still no simple sufficient conditions that ensure existence of a limit
lim._,o u. and a characterization of this limit. One of the reason for this is the absence of the linear
ordering in the multidimensional case. Indeed, in the one-dimensional situation the are only two
ways to exit from the point 0: one way to the right and another to the left. The probability of
going left or right can be easily obtained since there are explicit formulas for hitting probabilities for
one-dimensional diffusions. The equation for the limit process outside of 0 must satisfy the original
ODE because a is Lipschitz continuous there.

In this paper we consider the multidimensional case, where the Lipschitz condition for a may
fail at a hyperplane. Let us describe the corresponding model. Consider an SDE

duc(t) = a(us(t))dt + eo (ue () dW (t),
(1.3)

ue(0) = 20,

where a: R — R? o:R? — R4 are measurable functions, W is an m-dimensional Wiener
process.

Assume that a and o are of linear growth, o is continuous and satisfies the uniform ellipticity
condition. This ensures existence and uniqueness of a weak solution to (1.3) and relative compactness
for the distributions of {u.}.

Set H := R%! x {0}. Suppose that the initial starting point ° € H and that the drift o satisfies
the local Lipschitz property in R% \ H.

Note that the definition of @ on H is inessential because u. spends zero time in H with proba-
bility 1 due to the nondegeneracy of the diffusion coefficient.

The case when a is globally Lipschitz continuous in the lower half-space R? := R4~! x (—o00, 0)
and the upper half-space Ri :=R91 x (0,00) was investigated in [19]. The result was formulated
in terms of the vertical components of a*(2%) := lim, —a0,2€RY a(z). In this paper we investigate
the case when the drift has Holder-type asymptotic in a neighborhood of H. Namely, we will assume
that

Al) ag(x) = |xg|"b(x), where v < 1, x4 is the dth coordinate of © = (x1,...,x4), and b is a
globally Lipschitz continuous function in R‘i and R%, b*(2) #0, 2 € H;

A2) ax, k=1,...,d— 1, are globally Lipschitz functions in ]R‘j_ and R%.

This case has new features, and the proofs will be based on new ideas compared to the proofs
from [19]. To illustrate the difference, let us recall briefly results of [19], where the case v = 0 was
considered, and sketch the expected results in the case v € (0, 1).
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1256 A. KULIK, A. PILIPENKO

Case 1 (The vector field a pushes outwards the hyperplane). Denote by n = (0,...,0,1) the
normal vector to the hyperplane H. Assume that v = 0 and +(a*(x),n) > 0, x € H. Then there
are two solutions u* to

du(t) = a(u(t))dt (1.4)

that start at z° € H and exit from H immediately to the upper and the lower half-spaces, respectively.
It was proved in [19] that if v = 0, then the limit process ug immediately leaves H and moves as
uT with probabilities proportional to |(ai(;170), n) ‘ The corresponding proof was similar to the one-
dimensional situation. It used some comparison principle adapted to the multidimensional situation.
Investigations for arbitrary v € (0, 1) will be similar, but selection probabilities will be different.

Remark1.1. It was assumed in [19] that the noise is additive, i.e., ¢ is the identity matrix and
m = d. The case of multiplicative noise is completely analogous.

Remark1.2. If v = 0 and the vector field a pushes away H from one side of H and attracts
from another side (for example, (a™(x),n) > 0), then there is a unique solution to (1.4) that starts at
2% € H. This solution exits from H immediately (to the upper half-space in our case) and the limit
process ug equals this solution of the ODE, see [19]. If v € (0, 1), the result is similar. Assume,
for example, that b= (2%) > 0. Then there exists a unique solution to (1.4) that exit H immediately
(there may be other solutions that stay in H). Moreover, this solution exits to the upper half-space
and the limit process ug equals this solution. We do not prove this result in this paper. The proof is
similar to [19].

Case 2 (The vector field a pushes towards the hyperplane).  Assume that v = 0 and
+(a*(z),n) < 0, x € H. It can be seen that any limit point of {u.} must stay at H with pro-
bability 1. It was proved in [19] that the limit process ug satisfies an ODE on H with the drift
Py (p+(z)at(z) + p—(x)a™(x)), where Py is the orthogonal projection to H and the coefficients
ag (z)

(N _ T
Ay (z) — a4 () o .
analogues, where the limit is zero process. In multidimensional case the first d — 1 coordinates may

p+(z) are equal to . Note that this multidimensional result has no one-dimensional

change while dth coordinate stays zero.

The idea of proof was to analyze the time spent by w. in upper and lower half-spaces. It was
seen that since any limit process stays at H and wu. is close close to H for small ¢, then the
times spent in upper and lower half-spaces in a neighborhood of « € H are proportional to the dth
coordinates a, (z) and a;r(:p), respectively (they are not zero if v = 0). Note that the proof in
[19] was independent of the type of a noise. The small noise might be arbitrary process that (a)
ensures existence a solution and (b) converges to 0 uniformly in probability as € — 0 (however, the
corresponding results were formulated for Brownian noise only).

The proof from [19] does not work if ay(x) — 0 as = approaches to H. The time spent in upper
and lower half-spaces might depend on the asymptotic of decay of a4 in a neighborhood of H. In
this paper we prove the result when a satisfies assumptions A1, A2 with v € (0,1), b*(z) < 0 and
b= (z) >0 for z € H.

It appears that if we scale the vertical coordinate 5*5ud,5 (t) for a special choice of 6 > 0, then a
pair (u1c(t),...,uq—1,(t)) and e °ug4.(t) can be considered as components of a Markov process
in a “slow” and “fast” time, respectively. Hence the description of the limit process for {u.} is
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closely related to the averaging principle for Markov processes. We will see that the limit process
satisfies an ODE on H whose coefficients are an averaging of functions aki, k=1,...,d—1, over
a stationary distribution of a scaled vertical component given the other components were frozen. The
idea to use some scaling for small-noise problem was effectively used in one-dimensional case if the
drift is a power-type function and the noise is a Levy «-stable process or even more general.

Remark1.3. The case v = 1 is critical. If ag(z) ~ x4b(x), where b*(z) # 0, x € H, then
the limit process may be non-Markov and satisfy certain equation [19] that depends somehow on a
Wiener process W (that formally should disappear in a limit equation).

The paper is organized as follows. In Section 2 we formulate the problem and the main results.
The proofs for the cases when the drift pushes outwards H and towards H are given in Sections 3
and 4, respectively.

In Subsection 2.3 we also formulate an averaging principle, which is quite general and new result.
The proof of averaging principle is postponed to Section 5.

2. Main results. Let us represent u.(t) as a pair (X(t),Yz(t)), where Y; is the last coordinate
of u. and X, consists of the first d — 1 coordinates. Below we study only the general problem for
the pair (X.(t), Yz(¢)), which can be easily be reformulated for u.. For notational convenience, we
assume below that X, is a d-dimensional process but not (d — 1)-dimensional one.

The general setup is the following. Let X., Y. be stochastic processes with values in R% and R,
respectively. Assume that the pair X., Y; satisfies the following SDE:

dX.(t) = (X:(t), Yz(t)) dt + e b(X(t), Yo(t))dB(2),
dYL(t) = o(Xo(1), Yo()) Y2 (1) dt + eB(X:(t), Y(t)) AW (1), (2.1)
X.(0)=2"  Y.(0)=0,

where B, W are Wiener processes (multidimensional and one-dimensional), that may be dependent.
Denote

Yyl = |y‘7(]1y>0 - 1y<0)7

H :=R%x {0}

Assume that

B1) ¢(z,y) = ¢ (2,y)1y>0 + ¢ (2,y)1y<o and p(z,y) = ¢"(z,y)1y>0 + ¢~ (z,y)y<o,
where functions 1*, ¢* are bounded, continuous in z, ¥.

We assume that domains of 1)*, ¢ are the whole space z € R¢, y € R, despite we use their
values on the corresponding half-spaces only. The functions ), ¢ may have jump discontinuity
on H.

B2) o*(z,0) # 0 for any 2 € RY,

B3) 8(z,y) = BT (2, y)1y>0 + B~ (2, y)1y<o, where 5 are bounded, continuous and separated
from zero function in the whole space R? x R; function b is bounded and continuous in (R% x R)\ H.

B4) v € (0,1).

Under assumptions B1—B4 there exists a weak solution to (2.1).

Indeed, it follows from the standard compactness arguments that there exists a weak solution to
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X.(0)=2°  Y.(0)=0.

Note that all coefficients may be discontinuous in H but the processes spend zero time there with
probability 1. Any redefinition of coefficients in H does not affect the equations.
By using the transformation of time arguments (see, for example, [13]), we get a solution to

AX(t) = ¥ (Re(0), V(1) ) dt + 2 b(Xe(0), Va(t) ) AB (o)

AY-(t) = B (Xa(t), V() dW (1),

X.(0)=2%  Y.(0)=0.

Finally, Girsanov’s theorem yields existence of a weak solution to (2.1).

Remark2.1. If b is nondegenerate, then existence of a solution can be proved without transfor-
mation of time arguments.

2.1. Repulsion from the hyperplane. In this subsection, we assume that p*(z,0) > 0 for all
x € R Then sgn(y)p(z,y)y” > 0, y # 0 and the drift pushes away from the hyperplane R? x {0}.

Suppose that assumptions B1—B4 hold true and functions %, ¢* are locally Lipschitz conti-
nuous in (z,y) € R? x R,

Then there are unique solutions (X (¢), Y*(¢)) and (X~ (¢),Y ~(t)) to the unperturbed system
(i.e., e = 0):

dX(t) =¢(X(t),Y (1)) dt,

such that Y (¢) > 0 and Y~ (¢) < 0 for all ¢ > 0.
Indeed, set Y (t) := Y'1~7(t). Then

X(t) =20 + /¢<X(s),37117(s)> ds,
0

V(t)=(1-7) / o(X(9).775(s)) ds.
0

Since v > 0, the functions (x,9) — ¢*(z,§) and (x,7) — ¢*(x,7) are locally Lipschitz continu-
ous. So, equations

X =a® [0 (X5, (7)) ds,

0
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t
~ ~ 1
V) = (1= ) [ o (X0 (7)™ ) ds
0

have unique solutions (X*(t), Y*(¢)) and these solutions are such that Y*(#) > 0 and Y~ (t) <
< 0 for all ¢+ > 0. Making the inverse change of variables we get the desired functions Y *(t) =
= (P2) ™.
The solution does not explode in a finite time because ¥*, ¢* are bounded by assumption B1.
Theorem 2.1. The distribution of (X.,Y:) in C([0,T]) converges weakly as € — 0 to the
measure

P-O0(x-y-) T P+o(x+y+),

where

1

( P07
2
B*(2,0
p+ = ( 1< ) — (2.2)
(20 Y5 (Lereto VT
(B~ (20,0))? (8+(20,0))*

and O(x+ y+, O(x-y-) means the unit mass that concentrated on the functions (X, YY) and
(X—,Y ™), respectively.

The proof is given in Section 3.

Remark2.2. 1f 0% (2,0) > 0 (or £p*(2,0) < 0) for all € R?, then the limit process is
(XT(t), Yt (t)) (respectively, (X~ (¢),Y ~(t))) with probability 1.

Remark2.3. If we have inequality ¢ (2°,0) > 0 and ¢~ (2°,0) < 0 only at the initial point
(and hence in some neighborhood by continuity of coefficients), then the functions (X*(t), Y*(¢))

are well defined up to the moment Tﬁ = inf {t >0:YE(t) = O} of the first return to H. In this
case we have the convergence in distribution for the stopped processes:

(XE(- A TIJ{r ANTg), Ye(- A TIJ_[r A TI;)) =
= p*(;(X*(-/\Tg/\TE),Y*(J\T;/\TE)) + p+6(X+(~/\T§/\TE),Y+(~/\T$/\TI__I))'

The proof is essentially the same, but it involves routine localization arguments in addition.
2.2. Attraction to the hyperplane. In this subsection, we assume that ¥ (x,0) < 0 for all
r € RY,
Suppose that assumptions B1—B4 hold true and ¢)* are locally Lipschitz in z for any fixed .
Theorem 2.2. For any T > 0 we have the uniform convergence in probability

lim sup [|(Xa(), Y(1) - (X(1),0)] =0,
e=Utelo,1]

where X (t) is a solution to the ODE
dX(t) = (X (t))dt, X(0)=0,
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and

B(z) = v+ (2,0) 2 0) +
(UL 0Py ™ (L 0y
¢~ (z,0) ¢t (z,0)
<(5‘(:ﬂ, 0)*\7
i (,0) 90;(”5’ 0 — 2.3)
(L 0YT (@02
¢~ (z,0) ¢t (z,0)
The proof is given in Section 4.
Remark2.4. Note that
L )

where (%) is the stationary distribution for the SDE

dy ™ (t) = (% (2, 0) Ly ()50 + 7 (@, 0) Ly 1y <o) (W) (1)) dt + B(,0) AW (2).
Hence,
P(z) =¥ (2,0)7([0, 00)) + 9~ (z,0)7) ((—00,0)),

i.e., the drift of the limit equation is the averaging of )T over the stationary distribution of an SDE
with frozen x variable. The corresponding relation between the averaging principle and averaging of
coefficients in the limit equation for the small noise perturbation problem will be seen from the proof.

In the next subsection, we formulate an averaging principle, which is applied in the proof of
Theorem 2.2. We consider more general SDEs than (2.1) because the idea of the proof is universal.
The corresponding result may be interesting by itself.

2.3. Averaging. Let for ¢ > 0 the processes X.(t),Y:(t) take values in R% R* and have the
form

0 (X:(s),Y(s)) dB5+

I
=
~—~"
I
I
—
=
_|_
O\H‘
S
Q)
—~
I
—
V2)
e
o
~
S~—
~—
IS
»
+
O\w

(2.4)
t t

Yo(t) = Ya(0) +7 / AT (X(s), Yels)) ds + /2 / 5 (Xe(s), Ya(s)) dWS+
0 0
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+O/R/l CE(XE(S_%Y;‘(S_),Z) {Qa(dz,ds) — 1|z‘§p5_1,u5<dz)ds ,

where B;, W{ are Brownian motions and N¢(du, dt), Q°(dz,dt) are Poisson point measures on a
common filtered probability space (2%, ¢, P¢), and the random measures N¢(du,dt), Q°(dz,dt)
have the intensity measures v°(du)dt and e~ 'u®(dz)dt, respectively. These random measures are
involved into the system in the partially compensated form, which is quite typical for the Lévy-driven
SDEs; what is a bit unusual is the choice of the cutoff functions 1, <,, 1|;/<, with the number p > 0
to be specified separately. This choice will become clear later, when we describe the limit behavior
of the Lévy measures v°(du), p°(dz) as ¢ — 0. Note that here and below we do not assume a
uniqueness of a solution to prelimit equation (2.4).

The factor ! in the intensity measure for Q°(dz, dt) and the factors e~ !, £~ /2 at the integrals
w.rt. ds and dW? in the equation for Y. mean that the evolution of the component Y, happens at
the “fast” time scale e ~'¢, which we will also call the “microscopic” time scale. The component X,
evolves at the “slow”, or “macroscopic” time scale t; its evolution involves the deterministic term,
two stochastic terms (continuous and partially compensated jump parts), and a residual term &., for
which we do not impose any structural assumptions, and only require it to be asymptotically small
in the following sense:

Hy (Negligibility of the residual term). The process &.(t) is an adapted cadlag process, and, for
any 7' > 0,

sup |&:(t)] — 0, —0,
te[0,7

in probability.
The aim of this subsection is to get the averaging principle for the “slow” component X.. Let us
stress that the framework we adopt is quite general. In particular,
the two-scale system (2.4) is fully coupled in the sense that the coefficients of the “slow”
component depend on the “fast” one, and vice versa;
the noises for the “slow” and the “fast” component are allowed to be dependent;
the coefficients of the “slow” component can be discontinuous.
Let us introduce further assumptions on the system (2.4). Note that all the assumptions listed below
are quite natural and nonrestrictive.
H; (Bounds for the coefficients). There exists a constant C' such that

o (z, )| <C, o (z,9)| <O, Xz, 9)[ < C, | (@9, u)] < Clul, [CF(2,y,2)| < Clz]

for all values of z, y, u, 2.
In addition, for any R > 0 there exists a constant C'r such that

|A%(z,y)| < Cr, z€RY |y <R

H; (Bounds for the Lévy measures). There exist constants C' and p > 0 such that

Juiavpan e, e+ P10u @) < o
RrR™ Rl
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Hj3 (The coefficients of the fast component are convergent). There exist continuous functions
A(‘T7 y)? 2(%, y)7 C(«T7 Y, Z) such that

A (z,y) = Az, y), ¥ (2, y) — X(w,y), and  C*(z,y,2) = C(2,9,2) as €—0

uniformly on every compact set in R? x R¥, R? x R*, and R? x R* x (R'\ {0}), respectively.

To introduce the next condition, let us define the weak convergence of a family of Lévy measures
on R™ in the following way: v°(du) = v(du) if for every continuous function ¢ with a support
compactly embedded into R \ {0},

/go(z) ve(dz) — /go(z) v(dz), &—0.
R™ R™

H4 (The Lévy measures of the noises are weakly convergent). There exist Lévy measures v(du),
p(dz) on R™ R! respectively, such that

Ve (du) = v(du) and p(dz) = pu(dz) as e—0.
In addition,
v({uslul = p}) =0, p({z: |2l = p}) =0, @3)

Condition (2.5) yield that the cutoff functions 1;,<,, 1|.|<, used in (2.4) are a.s. continuous w.r.t.
the measures v(du), u(dz), respectively. Note that there exists at most countable set of levels p such
that (2.5) fails, hence one can always choose p to satisfy this condition. Of course, changing the
cutoff level would change the drift coefficients respectively.

Next, assume that the drift of the fast component performs an attraction to origin.

Hs (The drift condition for the microscopic dynamics). There exist x > 0 and ¢, > 0 such
that

Az, y) -y < —clyl™, Jyl = (2.6)
In addition, the balance condition holds:
K+p>1, 2.7

where p is introduced in the assumption H;.
Consider a family of “frozen microscopic equations”

dy(t) = Az, y(t)) dt + X (z, y(t-)) dWi+

—1—/0(33,3/(75—), z) [Q(dz, ds) — 1|Z‘§1,u(dz)d8}, (2.8)
Rl

where W is a Wiener process and ((dz,dt) is an independent Poisson point measure with the
intensity measure y(dz)dt. For the corresponding “frozen dynamics” we introduce a separate family
of assumptions.
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Fo (The “frozen microscopic dynamics” is well defined and Feller). For any x and any initial
value y(0) = y, the SDE (2.8) has a unique weak solution, which is a Markov process. Furthermore
we denote the corresponding family of Markov processes by 3*), z € R? and write Pt(x) (y,dy’)
for the corresponding family of transition probabilities.

We also denote

Pz f (., y) = /f(fv,y’)Pt(I)(y,dy’), t >0,
Rk

the semigroup of operators corresponding to the two-component process (<, y(x)) in which the first
component is constant and the second one is the Markov process specified above. We assume that
this semigroup is Feller.

For this family, we assume the following mixing property, which is actually the local Dobrushin
condition, uniform in parameter x; see [16] (Section 2).

F; (The “frozen microscopic dynamics” is locally mixing). There exists & > 0 such that, for
any R > 0, there exists p = pr > 0 such that, for any =, y1, y2 with |z| < R, |y1| < R, |y2| <R

1P (. dy') = P (o )|y < 1= p,
where Pt(x) (y,dy’) denotes the transition probability of the process y®) . and the total variation
distance between probability measures is defined as

[Ad1 = Aellry = Sljxp(kl(A) — X2(4)).

We note that assumptions Fy, Hs ensure that, for each x € R4 , the laws of yt(x) converge to the

invariant probability measure (IPM) 7(®) (dy) with an explicitly rate; see Proposition 5.1 below.

For the coefficients of the “slow” component, we assume a weaker analogue of Hj, where the
convergence and continuity of the limiting coefficients may fail on an exceptional set, which should
be negligible, in a sense.

Hg (The coefficients of the slow component are convergent). There exist functions a(zx,y),
o(x,y), c(z,y,u) and an open set B C R% x R¥ such that, for any compact set K C B,

a®(z,y) = a(z,y) and o(x,y) > o(zr,y) as €—0
uniformly on K, and for any R > 1
(z,y,u) = c(z,y,u), €—0,
uniformly on K x {u: R7! < |u| < R}. The set A = (R? x R¥) \ B satisfies
@y (z,y) €e A} =0 forany zeR%

In addition, the functions a(z,y), o(z,y), and ¢(z,y, u) are continuous on B and B x (R™\ {0}),
respectively.

Define the averaging of the limiting drift coefficient for the macroscopic component w.r.t. the
family of IPMs for the frozen microscopic one:
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a(z) = / a(z, 57 (dy).

Rk
Next, consider the limiting diffusion matrix and compensated/noncompensated jump kernels for the
macroscopic component,
b(z,y) = o(z,y)o(z,y)",
Ky (2,9, A) = V({u: lu| < p,c(z,y,u) € A}),
K(p)(:p,y,A) = V({u: lu| > p,c(x,y,u) € A}),

and introduce the corresponding averaged characteristics as

Be) = [ b)),

Rk

F(p)(x,dv) = /K(p)(x,y,dv)ﬂ(x)(dy),
Rk

F(p)(ac,dv) = /K(p)(:v,y,dv)w(x)(dy).
RE
Finally, we introduce an auxiliary technical assumption.
Ay The averaged coefficients @(z), b(x) are continuous. The averaged Lévy kernels K () (, dv),

K (x,dv) depend on x continuously, in the sense that
K2, dv) = K ,)(zx,dv) and K" (2, dv) = K (z,dv) as 2’ — .

Remark2.5. 1t is easy to give a sufficient condition for Ay to holds. Namely, it is enough to
assume, in addition to Hyo —Hg, Fy, Fy, that the transition probabilities Pt(w) (y,dy’) are continuous
in z w.rt. the total variation convergence for each y € R*, ¢ > t;. Then, because of the conver-
gence (5.6), the same continuity holds for the family of the IPMs 7(*)(dy). The latter continuity,
combined with Hy, H,, Hy, and Hg, yields the required continuity of the averaged coefficients.

Now we are ready to formulate our main statement.

Theorem 2.3. Assume Hy—Hg, Fy, F1, and Ay to hold,

X.(0) =2 =0,

in probability and {Y:(0)} be bounded in probability.
Then the family {X.,e > 0} is weakly compact in D([0, 00), R%), and any of its weak limit point
as € — 0 is a solution to the martingale problem (L, C3°) with

Lo(x) = V() -a(a) + 5V%(x) - Ba)+

+ / (cp(x +v) —p(x) — V() - U)f(p) (x,dv)+
Rm
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+ / ((z +v) — 9(2)) K (2, dv) =
Rm

= V() -alw) + 5 V() - )+

[ [ (ol elapn)) = ola) = Vol@) - el u)us, )vldun dy). @9)
Rk R™

where ¢ € C§°.

If the martingale problem (2.9) is well posed, then X, weakly converges as € — 0 to its unique
solution with X (0) = z°.

3. Proof of Theorem 2.1. The proof almost copying the proof of Theorem 3.1 in [19]. Thus we
only sketch the main steps of the proof.

Step 1. The sequence {(X.,Y:)} is weakly relatively compact. The proof follows from boun-
dedness of functions ¢, ¥, b, B.

Therefore, to prove the theorem it suffices to verify that any subsequence {(X;,,Y:,)} contains
sub-subsequence {(Xank Ye, )} that converges to the desired limit. Without loss of generality we
will assume that {(X.,Yz)} is weakly convergent by itself.

Step 2. Estimate for the time spent by Y; in a neighborhood of 0.

We will use the following general statement.

Lemma 3.1. Assume that processes {n:(t)} satisfy the SDE

dne(t) = ac(t)nl (t)dt + eb-(1)dW (1),
1e(0) = 0,
where || < 1, and a.(t), b:(t) are Fi-adapted processes such that
a:(t) > A>0, 0<C; <b(t) <Co

forall w, t, €.
Set

72(8) :==inf {t > 0: [n-(t)] > 6}.
Then there is a constant K = K (A, Cy,C3) such that
V8 >0 3eg>0 Vee (0,60): Er.(8) < Ko,

The proof of the lemma is quite standard. We postpone it to the Appendix.
Without loss of generality we will assume that

wi(az,O) >c1 >0 and 0<ca<p(x)<cy forall z¢€ RY, (3.1)

where c1 23 are some positive constants. This assumption does not restrict generality, since the
general case can be considered using a localization. Under this additional assumption, Lemma 3.1
applied to
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72(6) ;= inf {t > 0: |Y-(¢)| > 6}
and the Chebyshev inequality yield
V6>0 Feo>0 Vee (0,0): P(r(0) >0 2 ) <Kiz. (3.2)

Remark3.1. Tt can be seen from the construction of Y+ that the inequality (3.2) is valid for
TE(8) :==inf {t > 0: [YE(t)| > 6} also.

Step 3. We see from (3.2) that with high probability the random variable 7.(J) is dominated by
575" 1t follows from the standard estimates for moments of SDEs that for small ¢ we have

E sup |X.(s) — x0|2 < Ct,
s€[0,t]

where constant C' can be selected independently of ¢ € [0, 1].

So, we have the following estimates:

AC1 >0 Yo >0 3Fg9g>0 Vee (0,8): P( sup | X.(t) — 20 > 51?) < Cld%, (3.3)
t€[0,7:(9)]

P< sup | XE(E) — 20 + [YE@)] > 2516”> <0 (3.4)
t€]0,7: ()]

Verity, for example, (3.3):

IN

P( sup |X5<t>—w°\2616”>
t€[0,7< ()]

< P(Te((S) > 51777) —i—P( sup | Xc(t) — x0| > 56> <

Note also that

sup V()] = |Va(ra(8)| =6 as. (3.5)
t€[0,7: ()]
by the definition of 7.(J).

Step4. We denote by (X®¥(t),Y™¥(t)) a solution to the corresponding ODE that starts from
x € R% y # 0. This solution never hits R% x {0}, recall (3.1). We have correctness of the definition
of (X™¥(t),Y™¥(t)) because in all other points coefficients satisfy the local Lipschitz condition.
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If we wish to highlight that y > 0 (or y < 0), then the corresponding solution is denoted by
(XTou(t), Y Tou(t)) (or (X5Y(t),Y "Y(t)), respectively).

Let w be such that Y;(7.(d)) = 0, i.e., the process Y; hits ¢ earlier than —§. Then for this w we
have

sup (| Xe(t) — X (1) + [Ye(t) = YT (1)]) <
te[0,T

< sup (| Xe(re(8) + 1) — XHXCEODVelroD 1) 4
te[0,T]

F[Ya(ra(8) + £) — Y+ XD Ye(me0) (1) D i

+ sup (‘X+,XE(TE(5)),YE(TE(6))(t) — XF(7.(6) + t)}‘i’
t€[0,T]

|y Xe @)Y (1) — Y+ (1 (5) + t)})Jr

+ sup (|XF(78) + ) = X + [V () + 1) - V(1)) +
te[0,T

+ sup  (IXe(t) = 2|+ [Ya(1)]) =
1€[0,7(5)]

:Il+...+f4.

Select small § > 0 and after that select &g > 0 from (3.2). It follows from (3.3), (3.4), and
construction of (X, Y ") in Subsection 2.1 that I, I3, I, are small with high probability.

To estimate I; we need the following statement on integral equations. Let f(t) = (fx(t), fy (¢))

be a nonrandom continuous function, and functions X (j;’)z’y, Yaf)"”y satisfy the integral equation

t
X = o + / VE(X(), Y™ () ds + fx (1),

t
Vi) = [ 6 (056, Y 6) (V™) (s) ds + £ (0), £ 0.7),
0

XG0y =2, YE™0) =y.

Remark3.2. We do not assume that a pair X (if)x’y Y(?)x’y is a unique solution. Recall also that

the domains of 1)+, T is the whole space.
Lemma 3.2.

V6>0 VR>1 3a>0 Vze[-R,R] Vte[0,T] Vf: |flloo <o,
1 +,x, x, +,x, T,
we [R’ } Xy () = X2V @]+ [YEH™(E) - YT (@)] <6,
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1 —,Z, —,T —,Z, —,z,
Vy € {—R,—R]: \X(f’) Y(t) — XmY(t)| + \Y(f)’”y(t) YY) <6

The proof of the lemma is standard. Notice that if « is small enough, then Y(f)my(t) # 0,

t € [0,T], and coefficients of the integral equations are locally Lipschitz continuous if y # 0.
Let w be such that Y.(7.(d)) = d. Then

‘XE(TE(d) + t) _ X+7XE(TE(5))7YE(TE(5))(75)‘ + ‘Ys('rs(6> + t) _ Y"‘vXE(TE(‘S))vYE(TE(‘S))(t)‘ —

_ <\X(J}’)“"‘75(t) — X0 (t)] + \YJ)’J”"S(t) —yH®o(1) \)

)

z=Xc(7(9))
where
Te (0)+t t
fO= = [ WX Ve(6)dB), € [ B(X.(0), Vels))dW ()
7(9) 0
Since b and S are bounded we have the uniform convergence in probability:

Te(8)+t t
P

£ sup b(X:(s),Yz(s))dB(s)| + /ﬂ(Xe(s),Yg(s))dW(s) =0, €—0,
te[0,7 -16) 5

for any § > 0.
This, (3.3), (3.5), and Lemma 3.2 give us convergence

t€[0,T

Yo (e (6) + ) — YX6<TS<5>>%<%<5>>@)]) Bo, -0,

for any § > 0.
Step 5. The proof of the theorem follows from Step 4 and the next estimate of probabilities
P (Yo(7(9)) = £6).
Lemma 3.3. Forall ;1 > 0, §g > 0 exists to 6 € (0,0¢) such that
pm—p< limi(l)lfP(Yg(Tg(é)) =) <limsup P(Yz(7=(9)) = 6) <p" +p,
e—

e—0

p~ — p <liminf P(Yz(7-(6)) = —6) < limsup P(Yz(7=(8)) = —6) < p~ +p,

e—0 e—0

where p* are defined in (2.2).
Proof. Let v > 0 be arbitrary. Select ; > 0 such that

}cpi(x,y) — Lpi(xO,O)‘ <v, 0< (Bi(:ﬂO,O))2 —v< (ﬁi(gl:,y))2 < (ﬁi(a:ﬂ,()))2 +v (3.6)

as |z — 2% < 61, |y| € [0, 0]
Set 0.(6) :=inf {t > 0: | X.(t) — 2°| > §}.
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It follows from (3.3) that P(aE (51%) < 7'8(5)> < 05 % for small e. Hence, if 55 < o1,

then with probability greater than 1 — C'§ 5 the process Y. exits [—J, §] before X, exits [—d1, d1].

Therefore, without loss of generality we will assume that (3.6) is satisfied for all (x,y).

Set
! 2(¢T(2°,0) + v)7 1
) [;“p{_e%w+nw+@mm2—m}d% y=0,
85 y =
v 2(¢ (22,0) — v)|z 1
/0 eXP{ 27+ 1)(B (29,0 +v) }d’” y<0.
Then

2
el y)y'sL(y) + S8 )sly) < 0

for all x, y (recall that we assume that (3.6) is satisfied for all (x,y)).
So,

0> ESS(K(TE((S))) = 55(6)]-3(}/;:(7—5(5)) = 5) + 56(*5)P(YV5(7—5(6)) = *6) =
= 5:(0)P (Yz(7=(9)) = 6) + 5:(=0) (1 = P(Ye(7=(9)) = 9)) =

= (85(5) — 55(—5))P(Y5(Ta(5)) = (5) + s:(—0).

Therefore,
i = im _ —se(=0)
fimsup P(V2(r:(0) =) < iy =55 =
/ "] 2@ 0 — vl
= lim = e2(y + 1)((87(2°,0))2 +v)

S0 0 2~ (9,0) — v)[2[H! ’ 2" (9,0) + 1)o7+
/f‘p{ e2<v+1><<ﬁ<x0,o>>2+u>}d”/o eXp{ &2

< ot (2%,0) + v )W}rl
(8+(20,0))* — v

( 0 (2°,0) — v >71+1+< ot (z%,0) + v )”“
(87 (29,0))* +v (6+(m0,0))2 —v

Here we used the following:
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1
1 2\ T+ 1
- (E> WF<>7 €_>0’
1+~v\ A 1+~
forany A >0, 6 > 0.

Since v was arbitrary, this completes the proof of Lemma 3.3 and Theorem 2.1.
4. Proof of Theorem 2.2. At the beginning notice that

Y. =0, e—0. (4.1)

Indeed, by Itd’s formula we have
t
Y2(t) < C2 + 22 / Ya(5)B(Xa(s), Ya(s)) dW (s),
0

where C' is independent of €. Hence we get an estimate

sup EY2(t) < Ce? Ve > 0.
t€[0,T]

It follows from the Doob inequality that

t
sup QE/K(S)B(XE(S),Y;(S)) dW (s) 50, e —0.
te[0,7

This completes the proof of (4.1).
Let 6 > 0 be a fixed number. Notice that

e0YL(t) = 0D / o(Xo(s), Ya(s)) (60 Ve(t))" dt+

pelmo-tort 2hry /B(Xa(S),Ya(s)) dW (s) =
0
= /('O(XE(S)’E(;e5%(8))(85)@(75))7 d(55(7*1)t)+
0

d(v+1)

¢
+81_2/B(XE(S),555_5§/5(5))dW5(55(7_1)s),
0

d(v=1)

where W, (t) =~ 2 W (e~°0~Y¢) is a Wiener process.
0 1 2 ~ =2
If 1— (7;—) =0,ie, = ot then the process Y. (t) := e %Y. (t) = et Y-(t) satisfies

the SDE
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2(yv—1) 2(y—1)

Y.(t) —/(p(Xa(s),evilf’E(s))f/ (s)d et s +/5 ), 7T V(s ))dWE<a 71 s).
0 0

5 2(1—v)
Set £ = ¢ +1 . Therefore,

dXc(t) = az(X(t), Ya(t)) dt + bz (X< (t), Ya(t)) dB(t), w)
AY.(t) = az(Xo(t), Va(t) dE~"t + B=(Xo(1), Va(t)) dW=(711), '

where
az(z,y) = ¥ (z,e71y) = (2,e77y),

bz(z,y) = sb(x,aﬁy) = é(WH)/Q(l*'Y)b(:E,éﬁy),
0z(z,) = p(z,e7Ty)y" = p(x,ET7y)y7,
B(w,y) = Bz, e771y) = Blw,E77y).
We see that the system (4.2) has the form (2.4). Let us apply Theorem 2.3, where k£ = 1,
a*(z,y) = az(z,y), o (x,y) = (2,y,u) = C*(2,9,2) = 0,

Aa(x7y) = Oég(l',y), EE(.’L',y) = ﬂé’(x;y),
t
£-(t) := g0FD20=7 [ p(x 5 V2(s))dB(s).
[t

Conditions Hy, Hy, and H; are obviously true.
Functions from condition Hj3 are

A(x,y) = (SO+(J,'7 O)]ly>0 + QD_ ($70)]ly<0)yfyy
E(m,y) = 5+(x’0)]ly20 + B_('T’O)]ly<07 C(I‘,y, Z) =0.

Note that A and > are discontinuous at y = 0 and formally Hs is not satisfied. However, the only
place in Theorem 2.3, where we used the continuity of A and 3, is the identification of limit points
for the sequence {y.,} in the proof of Proposition 5.2. Since diffusion coefficients 5% are separated
from zero functions, it can be seen that processes {y., } spend small time in small neighborhoods of
0 uniformly on {e,}. This yields that any limit point of {y., } solves (2.8) and Proposition 5.2 holds
true. This is all we need for Theorem 2.3 application.

Condition Hy is satisfied with v = o = 0.

Without loss of generality we will assume that

(pi(:v, 0)<e<0 forall ze€ R, 4.3)

where c is a constant. The general case can be considered using a localization. Hence, condition Hs
is satisfied with k = ~.

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 9



1272 A. KULIK, A. PILIPENKO

Consider equation with frozen coefficients
dy(x) (t) = (‘P+(xa 0>]1y(w>(t)>o + ¢ (=, O)ﬂy(x>(t)<o) (Z/(I) ()" dt+

+ (B (2,001,090 + B (2, 01,01 (9 <0 ) AW (1) (44)

Existence and uniqueness of a weak solution to equation with frozen coefficients, and the strong
Markov property follows from [10]. Hence, condition Fy holds true.

To verify condition Fy, we modify the argument from [16] (Section 3.3.2). Because the diffusion
coefficient in (4.4) is discontinuous, we do not have a good reference to state that the transition
probability density p(*) (t,y,y') is continuous in x, y, 3. In order to overcome this minor difficulty
we use the following localization argument. Consider the SDE

dy= () = ¢ (@, 0) ("D @1 A 2) Tsen (y "D @) dt + 87 (@,0)dW (). 45

This is an SDE with a constant diffusion coefficient and bounded and Holder continuous drift coeffi-
cient, hence the standard analytic theory (see, e.g., [11]) yields that its transition probability density
p@H)(t,y,4') is continuous in x, y, y'. Then for 3o = 1 and every to > 0 it holds that

sup |25 (y,dy') — P (yo, dy) || gy =
|z|<R

= S|u<pR/|p§§’+)(y,y’) — " o, )| dy' =0,y — 0.

The coefficients of the equations (4.4), (4.5) coincide on [0, 2], and thus the laws of the solutions to
these equations, stopped at the moment of exit from [0, 2], coincide. Taking t; small enough, we

can guarantee that each of these solutions stay in [0, 2] up to the time ¢( with probability > 5 if the
13

initial value y stays in [2, 2] . By the coupling characterization of the TV distance (the “Coupling

lemma”, e.g., [16], Theorem 2.2.2), this yields that, for such %,

RICNE

Combining these two estimates we see that there exist g > 0 and r > 0 small enough, so that

P (yo, dy)

sup HPtO (y1,dy’) —
y17y2€[272] |:E|<R

sup HPt(f)(yl,dy) P (yo, dy’ )HTV < %;

y1,y2€[1-r,1+7],|z|<R

1 1
in the right-hand side we could actually take any number > 3 + 3= 3 This proves the local

Dobrushin condition in a small ball centered at yy = 1. To extend this condition to a large ball
ly| < R, we use another standard argument, based on the support theorem. Namely, y*) can be
represented as an image of a Brownian motion under the time change and the change of measure (see
[13]). Since the Wiener measure in C(0, 00) has a full topological support, it is easy to show using
this representation that, for any ¢; > 0, there exists § > 0 such that

Pt(lw) (y, 1—r1+ r]) >, lz| <R, |yl <R
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Take h = to +t; and for =, y1, y2 with |z| < R, |y1] < R, |y2| < R consider two processes Y,!,
Y;? which start at y;, yo, respectively, solve (4.4) independently up to the time 1, and then provide
the maximal coupling probability on the time interval [t1,¢1 + to], conditioned on their values at
the time ¢; (we can construct such a process using the Coupling lemma for probability kernels [16],
Theorem 2.2.4). Then

HP (y1,dy’) — ()(yz,dy)

<P YR -

/ Hpto 21, dy t(o )(227 dy ) TVP}E:E) (yl, le)P}Ew) (yg, dZQ) <

< 1_Pt(lz)(yh[l_T71+T])Pt(1x)(y2a[1_r71+r])+

v [P ) - P )
[1—r147r]2

P 1 dz) B (1, d2) <

3\ x
<1+ (—1+ 4) Pt(1 )(yl,[l —7«,1+7~])Pt(1 )(yQ, [1—r147r]) <
<1 - —
<1 1

for any |z| < R, |y1| < R, |y2| < R, which completes the proof of Fy.
The IPM 7(%) (dy) equals (see [14], Exercise 5.40):

(@) =c(z) [ ex pr(@,0) y* ex ¢ (z,0) y*!
“w ()< p{w*(w))?(wl)}“”” p{w<x,o>>2<7+1>}“y<0>dy’

where

i R/ (oo { e e oo { G oy o) 0=

(e (cogany)

(v+1) ot

Condition Hg is satisfied with a(z,y) = ¥4 (z,0)1,~0 + ¥—(x,0)1y<0, o(z,y) = c(z,y,2) =0,
and B = R? x {0}.
The averaged coefficient

a(z) = ¥ (2,007 ([0, 00)) + ¢~ (x,0)7 ((—00,0)) =

T ey
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()’
¥y,
() ()"

is Lipschitz continuous, b(z) = 0, K ,)(x,dv) = K (x,dv) = 0. So, condition Ag holds true and
the corresponding martingale problem has a unique solution.

This with (4.1) concludes the proof.

5. Proof of Theorem 2.3. The weak compactness of the family {X., e > 0} in ([0, c0), R%)
follows, in a standard way, from the negligibility assumption Hy and the boundedness assumptions
H,, H>. Under the assumptions of the theorem, for any C§°-function ¢ the function Ly is conti-
nuous and bounded. Hence, in order to prove that any weak limit point of the family {X.,e > 0} as
¢ — 0 solves the martingale problem (2.9), it is enough to show that, for any C§°-function ¢, any
51,...,8¢ < s < t, and any continuous and bounded function ®: Ré*7 — R

+v¢~ (x,0)

B (Xo(s1), ..., Xe(5)) go(XE(t))—@(Xs(s))—/Lgo(Xe(r))dr 50, e=0, (1)

s

we denote by E° the expectation w.r.t. P°. Denote

X.(t) = Xe(t) - &(t) =

= X.(0) +/aE(XE(s),Ya(t))ds+/a€(XE(s),YE(s))dB§+
0 0

+/ / & (Xe(s—), Ye(s—),u) [Ns(du, ds) — 1|u|§pue(du)d5]. (5.2)

0 Rm™

Observe that L is a bounded and continuous function. So, by Hy relation (5.1) is equivalent to

ESO(Xo(51),- .., Xe(5q)) | 0(Xe (D)) —@(XE(S))—/Lgo()N(E(T))dT —0, £—0. (53)

Denote
b (2,y) = 0" (z,9) (0% (2,9))",  K(,(z,y,A) = v ({u: Ju] < p,&(2,y,u) € A}),
K(p)’e(x,y,A) = ue({u: lu| > p,c(x,y,u) € A}),
and

Lp(r.y) = Vilw) - (2, ) + 5 V() 0 9) +

+ / (go(ac +v) — p(x) — Vo(z) - v) K{, (@, dv)+
Rm
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+ [ (o) = ole) ) KO,y do).

R™

Then, by the 1t6 formula, we have

cp(XE(t)) - go()zg(s)) = /£E<p(X5(r), Y:(r)) dr 4+ (martingale part). (5.4)

Applying Hy once again, we get that, to prove (5.1) and (5.3), it is enough to prove, for any
81y..058¢ <,

E®(X.(s1),. .., X(59)) (Esgo(Xg(t),Y;(t)) - L@(Xg(t))) 50, £—0. (55

Before proving (5.5), we formulate and prove two auxiliary statements.

5.1. Auxiliaries, I: uniform ergodic rate for the frozen microscopic dynamics.

Proposition 5.1. Let conditions Hy —Hs, Fy, Fy hold. If k € (0,1) and p > 0 are from these
conditions, then for every R > 0 there exists C such that for any x, y with |x| < R, |y| < R

pt+r—1

<ot e (5.6)

1B (y, dy) — 7 (dy)| 1y,

If k > 1, then there exists a > 0 such that, for every R > 0 and any x,y with |x| < R, |y| < R,
1P (. dy') — @ (dy) ||, < et

with a constant C depending on R.

Proof. The required statement is actually obtained, though not in this precise form, in [16]
(Section 3). The difference between the current situation and the one studied in [16] is that the
ergodic rates were obtained there for individual processes (while here we have a family indexed
by z) and separately for diffusions and Lévy driven SDEs (while here we have both types of the
noise involved simultaneously). This difference is not crucial, and we just give a short outline of the
argument, referring to [16] for details.

The convergence conditions H3, Hy yield that the bounds from the conditions Hy, H, and the
drift condition Hs remain true for the limiting coefficients A(x,y), X(x,y), C(z,y,z) and Lévy
measure y(du). Then we have the following: if V' € C? is a function such that V(y) > 1 and
V(y) = |y|?, |y| > 2, then, for any = € RY, the semimartingale decomposition holds

t
V@ (1) = V(5@ (0)) + / AV (2,y®(s)) ds + (martingale par), (5.7)
0

where the function AV (z,y) satisfies
Cv —avV(y) 7, ke (0,1)
v —ayVv iy Py, R s L)y
AV (z,y) < (5.8)
CV - CLVV(y), K > 17

with some constants Cy,, ay > 0. For the proof of this statement, see [17] (Proposition 2.5).
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Given (5.7), (5.8) we can proceed analogously to [16] (Sections 3.3, 3.4). Namely, for x € (0, 1)
we use [16] (Theorem 3.2.3) and [16] (Example 3.2.6) to show that

~ ~ ~ o~ pt+r—1
E,V(@(h) -V <Cv-aV(y) » . (5.9)
where h is the same as in the assumption Fy, 6‘/, ¢y > 0 are some new constants, and V is a new
function which is equivalent to V' in the sense that, for some positive constants c1, ¢

01V§‘7§CQV

Following the proof of [16] (Theorem 3.2.3) and calculations of [16] (Example 3.2.6) line by line,
we easily see that, because the constants Cy/, ¢y in (5.8) do not depend on x, the constants 5‘/, ¢y,
c1, ¢ and the function V can be chosen uniformly for x € R4,

Inequality (5.9) is actually the Lyapunov condition for the skeleton chain y,(f’h) = y(m)(kh),
k > 0, for the process y(‘”), see [16] (Section 2.8). Combined with the local Dobrushin condition
assumed in Fy, we get by [16] (Corollary 2.8.10) the inequality

ptr—1 ~

<C(1 R 1
L, SCO+RTFTTE), re©1)

HPéi)(y, dy') — 7 (dy)

where we have used the identity

p+r—1 1_10+1<a—1 71_p+/<;—1
P D 11—k

Since Lyapunov condition and the local Dobrushin condition are uniform in x, the constant C' here
can be chosen uniformly for 2 € R%; one can easily check this following line by line the proofs
of [16] (Corollary 2.8.10) and the theorems it is based on: [16] (Theorems 2.7.5 and 2.8.6). Since
the total variation distance HPt(I)(y, dy') — 7@ (dy’ )H sy is nonincreasing in ¢ and V(y) is locally
bounded, this completes the proof of the required statement in the case x € (0, 1).

For k > 1, we can argue in a completely analogous way, using [16] (Corollary 2.8.3).

5.2. Auxiliaries, I1: weak convergence of the microscopic dynamics to the frozen one. Consider
the following microscopic analogue of (2.4). Assume that (z.,y.) is a solution (maybe nonunique)
to the equations

ze(t) = x(0) + 5/&5 (ze(s),y:(t)) ds + 81/2/0'6 (z(s),y=(s)) db5+
0 0

t

+//CE("TE(S—)’ys(s_)’“) |07 (du, ds) = 1)y < 20 (du)ds| + ¢(0),

0 Rm™
(5.10)
t

ye(t) = y-(0) + /A5 (ze(5),y:(s)) ds + [ 3°(z=(s),y=(s)) dwi+

o _

+0/R/zcg(%(s_)7ye(s_)’z) | (dz, ds) = 1j.j<pp (d2)ds .
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where b, wi are Brownian motions and n°(du,dt), ¢°(dz,dt) are Poisson point measures on a
common filtered probability space (ﬁs ,.7?6 , 155), and the random measures n®(du,dt), ¢°(dz,dt)
have the intensity measures ev°(du)dt and p®(dz)dt, respectively, (°(t) is an adapted cadlag process.

System (5.10) naturally appears, e.g., if we consider the original system (2.4) at the “microscopic

time scale” et with an initial time shift by ¢y:
re(t) = Xc(to +et), Ye(t) = Ye(to + et), and C5(t) = &(to +et) — &(to).  (5.11)

For a fixed pair of functions (p(g), o(¢)) such that p(¢) — 0 and p(¢) — 0 as ¢ — 0, and
constants R > 0, 1" > 0 denote by K(p, 0, R,T") the class of all families {(:cg,ye),a > 0} which
satisfy (5.10) on some probability space with nonrandom initial values z.(0), y-(0), |z-(0)| < R,
ly=(0)| < R and

B (sup 601> 0(2)) < ).
s<T

Proposition 5.2. Let conditions Hy —Hs, Fy hold. Then, for any 0 < t < T and any bounded
continuous function f: R x R¥ = R and R > 0,

=0, =0, (512

Ee ¢ 1)) — p.frozen
swp (B O 0 — PR

{(ze,ye) yeL(p;0,R,T

where

Ptfrozenf(x7 y) = /f(y/)Pt(x) (yv dy/)v t 2 0.
Rk

Proof.  Assuming the contrary, we will have that there exists a sequence x.,(-), ve,(-) of
solutions to (5.10) with |z, (0)| < R, |ye,(0)] < R such that

(B F (e, (), 92, (1) = PO ()

0, n—oo. 5.13
T=Tenp (0)1y:y5n (0)> 7L> ( )
Without loss of generality, after passing to a subsequence, we can assume that z. (0) — z. and
Ye,, (0) = y, as n — oo. Then it is easy to show that, for any ¢ > 0,

lim P sup |z.,(s) — x| >c| =0. (5.14)
n—00 s€[0,T7]

Next, denote by P* the law in D ([0, T],R¥) of y®) with y(®)(0) = y,. Since the P*probability
for y(-) to have a jump at the point ¢ is 0, the function F(y(-)) = f(y(t)) is a.s. continuous on
D( 0,7 },Rk). Thus, in order to prove that (5.13) fails, it is enough to show that the laws of y.,,
n > 1, weakly converge in D([O,T],Rk) to P*. Such a statement is quite standard, and we just
outline its proof here.

By (5.14), the continuity assumption Hs, and convergence of the noise Hy it is easy to prove that
any weak limit point to {y., } solves (2.8). By the weak uniqueness assumption Fy, this yields that
any weak limit point to {y., } has the law P*.

That is, to prove the required weak convergence it is enough to prove that {y. } is weakly
compact in D([0, 7], R¥).
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To prove the weak compactness, we use Ly-moment bounds for the increments of the process
Ye,, combined with a truncation of the large jumps. Namely, by Hj for any fixed § > 0 there exists
Qs such that

f”(N([O,T} x {l2] > Qs}) > o) <8, e>0.

Thus it is enough to prove weak compactness for every “truncated” family {v., o}, @ > 0, where
Y. satisfies an analogue of (5.10) with the integral for ¢° taken over {|z| < Q} instead of R!. For
such a “truncated” family, applying [17] (Proposition 2.5) we get

‘yemQ(s)}Q = ‘yEmQ(O)!2 + /H(r) dr + (martingale part), (5.15)
0

where H is bounded. Combining this with the maximal martingale inequality, we get that

= 2
E™ sup |ye,.q(s)]
s€[0,T

is bounded. Since the coefficient A%(z,y) is bounded locally in y, the above bound and the (uniform)
bounds for C*¢, uf from Hy, H; yield the required weak compactness of {y., }. Summarizing all the
above, we have that {y., } weakly converges to P*. Combined with (5.14), this contradicts to (5.13)
and proves the required statement.

5.3. End of the proof of Theorem 2.3. In this subsection we complete the proof of (5.5). This
will conclude proof of the theorem. Denote

Lolr.y) = Vela) -alz,y) + 5V%0(@) - bla,y)+

+ / (9o +v) = ol@) = Vip(e) - 0) Ky (5, do) +
2

+/<wx+w—¢@DK@@wﬂW:

Rm™m

= Vo(a) - ale,y) + 5 V30() bl u)+

+ / (‘P(w + C(x7 Y, u)) - (70($) - V(p(x) ’ C('% Y, u)]l|u|§p)l/(du)' (5-16)
Rm

Next, since the set B from the condition Hg is open, there exists a sequence of continuous functions
X;j(x,y), 7 > 1, such that

(1) 0< Xj(xvy) <L j=1

(i1) each x; has a support compactly embedded to B;

(iii) for each z, y, x;(z,y) / Xoo(2,y) = 1B(2,y), j = 00.

Recall the notation f(z) = / Flz,y)7m® (dy).

Rk
The following lemma collects several simple statements used in the proof.
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Lemma 5.1. The following properties hold:

(a) there exists C' > 0 such that |L°p(x,y)| < C, ¢ >0, for all =, y;

) Lfp — Ly, € — 0, uniformly on each compactum K C B;

(c) there exists C' > 0 such that |Lo(x,y)| < C for all (x,y) € B;

(d) xj(x) — 1, j — oo, uniformly on {|z| < R} for each R > 0;

(e) xjLo(x) = Lp(z), j — oo, uniformly on {|z| < R} for each R > 0, where L is defined
in (2.9);

) forany T >0,

E°|X.(t) - Xe(s)|" A1 < Clt —s|, s,te0,T],
where X is defined in (5.2), and

sup  P*(|X.(t)) > R) =0, R — oc;
t€[0,77,e>0

(g) forany T > 0,

sup  P°(|Y-(t)] > R) -0, R— oc.
t€[0,T],e>0

Proof. Statement (a) follows directly from the assumptions Hy, H,. Statement (b) can be
derived, in a standard way, using the convergence assumptions Hy, Hg and the bounds from the
assumptions Hy, H,. Statement (c) follows from (a) and (b).

To prove statement (d), we first mention that each function 7 is continuous by the assumption
Fy. These functions converge monotonously, at each € R?, to the function

Xeela) = [ Laa)n(dy) = 1
RE
where the last identity holds by the assumption Hg. Then the required uniform convergence follow

by the Dini theorem.
To prove statement (e), we first use statements (c) and (d) to get

IX;Le(x) — Lo(x)| = [x;Le(x) — xooLp(a)| < C(1 = XG(2)) =0, j — oo,

uniformly for x with |z| < R. Then the required statement follows by the identity

L) = [ Lotw.prdy) =
Rk
_ 12 ()
= [ (7ot i + 57%(a) b)) n )+

Rk
—i—/ / (ap(:c +v) —p(x) — Vp(x) -v) K (z, dv)m®) (dy)+

Rk R™
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+// <90(96 +v) — @(x))[((ﬂ)(%y’dv)ﬂ(x)(dy) _

Rk R™

=Vep(z)-a(z) + %V%o(x) b(z) + / (np(a: +v)—p(z) — Vo(z) - v)F(p) (z,dv)+

= Ly(z).

Statement (f) can be obtained using the same “truncation of large jumps” argument as in the proof of
Proposition 5.2 and the bounds from the assumptions Hy, Ha; we omit the details.

To prove statement (g), we treat Y-(t) as the value of the process y. from (5.10) taken at the
(large) time instant 7 = e~ 't with (.(7) = & (e7), i.e., y-(T) = Yz(e7). Without loss of generality
we can assume that the constant x in the assumption Hs satisfies £ < 1. Then by [17] (Theorem 2.8),
for every py <p+k — 1,

sup E€|y5(7)‘py < 00,
72>0,e>0
here we have used that the initial values y.(0) = Y.(0) are bounded. This immediately yields (g).

Lemma 5.1 is proved.

Now we are ready to prove (5.5). Fix N > 0, and write denote by P;__,;, Ef__,; the conditional
probability and conditional expectation w.r.t. 7 _. For ¢ small enough, we have s, <t —cN and
thus

E0(X.(51),..., Xo(59)) (ﬁacp(Xa(t),Ye(t)) - ch(Xg(t))> -

= B O(Xo(s1), -, Xe(5)) B ey (£70(X(0), Yo(0) = Lio(Xo (1)) ).
By the assumption Hy, there exist functions p(¢) — 0, o(¢) — 0 such that
PE( sup |&:(s) > p(é?)) < o(e),
s€[0,7
where T > ¢ is a fixed number. For a given R > 0, consider the F;__,,-measurable set
Qi NR= {wi Piav( sup [&(s) > P(6)> < R@(S)} :
s€[0,T7
then by the Markov inequality

1
P07\ Oy ) < = —FF

RQ(&) s€[0,T]

Pi_.n < sup [&(s)| > p(e))] -

_ 1 P5< sup |&:(s)| > p(5)> <

RQ(E) s€[0,T]
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<26 _

E
Ro(e) R’

We have seen in the proof of Lemma 5.1 that Ly = x oL, thus by statement (c) of this lemma the
function L is bounded. The functions ®, £ are bounded, as well,

EF®(Xo(s1), ., Xelsg)) (L0 (Xo(0), Ya() = Lo (X (1)

N—

\ <

< CP%(|X.(t — eN)| > R) + CP(|Ya(t — eN)| > R) + —+

= Q

+CE G, (E;EN (ﬁggp(Xa(t), Y(t)) — Lgo(Xg(t))> , (5.17)

where we denote
Qf,N,R = ypN{|Xc(t —eN)| < R,|Y.(t —eN)| < R}.

Fix j > 1, decompose
E; .y (L5 (Xo(0), Yolt) = Lip(X.(1)) ) =
= Ef_oy (L5 (Xa(0), Y1) — L2 (Xe(t), Yalt)) s (X (1), Ya() )+
By (£70(Xe(1), Ya(t) = £o(Xe(1), Ya(1)) ) x5 (X (), Ya(t)) +
+ (B v Lo (Xe(0), Ya(t) x (Xo(0), Ye() = PR (L) (Xo(t = eN), Ye(t — =N)) ) +
+ (PR (L) (X (t — £N), Yalt — eN)) = XGLR(Xe(t — 2N)) )+
+ (Le(Xe(t = eN)) = Lo(Xe(t = N)) )+

+(L90(X€(t _eN)) — L@(Xs(t))>. (5.18)

Let us estimate each term in the decomposition (5.18). For the first term, we simply write using
Lemma 5.1(a)

B (L5 (Xe(0), Ya(0) = £70(Xe (1), Ya(8) s (Xo(0), Y2(1) )| <

< OBy (1 (Xe(8),Y2(1)). (5.19)

For the second term, we recall that the support of x; is compactly embedded to B, thus, by
Lemma 5.1(b),

By (70 (XL (1), Ya(t)) = £o(Xo(0), Yo(1)) ) x5 (Xe0), Ya) | <

<sup [Lo¢(z,y) — Lo(z,y))|x;(z,y) =0, &—0. (5.20)
x7y
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To estimate the third term in (5.18), observe first that the function ;L is continuous, which folows
from Hy, He similarly to Lemma 5.1(b). Next, define the pair z., y. by (5.11) with ¢ty = ¢—eN and
take P = P}_.n .- the regular version of the conditional probability. Then, for a.a. w € Qt N.R>
the pair z¢, y. w.rt. the probability P;__, , belongs to the class K(p,2Rp, R,2N) in the notation
introduced before Proposition 5.2. Applylng this proposition, we get

Bl | [BfonLo(Xa(t), Yo(0) x (Xelt), Yalt)) -
Pl (o £0) (Xo(t — eN), Ya(t — gN))( 0, £—0. (5.21)

To estimate the fourth term, we use Proposition 5.1; without loss of generality we assume that x < 1.
Since the function ) ;L is bounded, Proposition 5.1 yields

Bl ]Pff (X L) (Xe(t —eN),Ye(t —eN)) — x;Lp(Xc(t — sN))] < ON~E L (522)
For the fifth term, we have
E€1§;N’R‘(X]Tcp(Xg(t —¢eN)) — Lo(X(t — EN)))‘ < ISIUSI;% Ix;jLo(x) — Lo(z)). (5.23)
For the sixth term, we get
Elg, ’ch (t—eN)) — L@(Xa(t))‘ 50, -0, (5.24)

by Lemma 5.1(f) and uniform continuity of Ly on compacts. Summarizing the estimates (5.17) and
(5.19)—-(5.24), we get

limsup |E°® (X (s1), ..., X(sq)) (£€90(X€(t)’ Ye(t) - LSO(XE(t))) ‘ =

e—0

< C sup P*(|Xc(s)| > R)+C sup P°(|Yz(s)| > R) + —

s<t,e>0 s<t,e>0

+CN™ e + sup ‘,Cgoxj (x) — L(p(ﬂ?)“i‘
|[z|<R

+Climsup B g, Ef oy (1 — G (Xa(), Y;(t))). (5.25)

e—0

Similarly to (5.21)-(5.23), we have

lim sup E°15. REf,5N<1 — x5 (X (t), Ye(t ))) <CN~ g + sup (1 —x5(x)),

e—0 |z|<R

thus,

lim sup Ea(I)(Xs(Sl)a e 7X6<3q>) ('CE‘P(X?@)’ Ya(t)) o L(P(Xs(t)» ‘ =

e—0

< C sup P°(|Xc(s)| > R)+C sup P°(|Yz(s)| > R) + —

s<t,e>0 s<t,e>0
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LON~ TR —|— sup ‘L’(pxj x) — 90(3:)‘ + C sup (1 —x;(x)). (5.26)
lz|<R lz|<R

The constants R, N, j in the above inequality are arbitrary. Taking first j — oo, N — oo for a fixed
R, we get, by Lemma 5.1(d), (e), that

lim sup Ea(I)(Xs(Sl)a e aXs(sq)) (ﬁa‘p(XE(t)’ Y“?(t)) o L(p(XE(t)D ’ =

e—0

< C sup P°(|Xc(s)| > R)+C sup P°(|Ye(s)|>R)+ —

s<t,e>0 s<t,e>0 R

(5.27)

Then by Lemma 5.1(f), (g) we can pass to the limit R — oo and finally get

lim sup EE<I>(X€(51), .. ,XE(Sq)) <£580(X5(t)a Ys(t)) - L@(Xs(t))> ‘ = 0.

e—0

This proves (5.5) and completes the entire proof.
6. Appendix. Proof of Lemma 3.1. Set

s

C(t) =inf{ s> 0: / B2 (2)dz > ¢

0

Making the change of time 7- () := 7:((c(t)), we see that 7.(t) satisfies assumptions of this lemma

with another constant A > 0 and a new Wiener process W (t) = W ((-(t)) but with b.(t) = 1. Since
(C2) 72t < (.(t) < (C1)~2t without loss of generality we will assume that b.(t) = 1.
d 2 q?
Set L. := A:ﬂ% + %d— Denote

|| y
_ —2 Ayt 2 24271
ve(x) := [ exp CFE -3 €% D dz | dy.
0 0

We have L.v.(z) > 1, sgn(z)v.(z) > 0, and v.(0) = 0.
Then, by Ito’s formula, we have

Te(8)An )
Bo.(n () Am) =B [ (0o (51 (5) + 02 (5 ds =
0
7e(8)An P 7 (8)An
2B [ () + Sl ds =B [ Loo(o)ds >
0 0
Te(9)An

>E / lds = E7.(0) A n.
0

Passing n — oo and applying the Fatou lemma we get a.s. finiteness of 7.(9). Since v:(n:(7:(0))) =
= v:(9) = v(—3), we get the estimate
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E7.(0) < v:(9).

7+1 y’y-i-l
Let z > 0 be arbitrary. Changing the variables s := —— and ¢ := =—— we obtain
€ €
A T 7T
£2
9e 74T 2At 2A27+1 =
V() = s expq ——— exp dz [t +idt =
(v +1)e y+1 (y+1)e?
0 0
Y +1
4 &2 t
2+ 2At 2As | = =
= —>> / exp{ } /exp{ }swlds tr+idt =
(v+1)2% y+1
0 0
Y +1
2 t
2 2(1=7) 2At 2A = =
= ———5¢ T / exp { —} /exp { ° }svﬁl ds | t571dt. (6.1)
(v+1) v+1 v+1
0 0

It follows from L’Hopital’s rule that for any o > 0 and 8 > —1:
t
/eassﬁds ~a et oo
0

So,

t
2A = 1 2At =
/eXp {’y +81 }8731 ds ~ 7;4 exp {’y 1 }t”yl, t — +o0.
0

Applying this and L’Hopital’s rule, we get

u t
—2At 2As = =
expy ——— exp sr+ids | ty+idt ~
v+ 1 v+1
0 0

Therefore, we get from (6.1) the following equivalence for any fixed x 20 as € — 0 :

2(1—v)

ve(x) ~ Ke 7t (

2\ T
AR N
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1=y
20—y (|7 7
= K2€ y+1 =

52
2(1—~) 2(v—1)
= Koe "/Jrl’Y |x’1_75ﬁ = K2|x’1_7,

where K is a constant independent of ¢.

This yields that for any fixed § > 0:
limsup E7.(8) < limsup Ev.(0) = K26' 7.

e—0 e—0

Lemma 3.1 is proved.
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