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MIXED PROBLEM FOR HIGHER-ORDER EQUATIONS
WITH FRACTIONAL DERIVATIVE AND DEGENERATION
IN BOTH VARIABLES

MIINAHA 3AJJAYA AJA PIBHAHb BUIIIOTI'O ITOPAAKY
3 IPOBOBOIO INOXI/THOIO, IO MA€ BUPOIKEHHSA
3A OBOMA 3MIHHUMH

We consider an initial-boundary-value problem for a higher-order equation with fractional Riemann - Liouville derivative
in a rectangular domain degenerating in both variables. The solution to the problem is constructed in the explicit form by
the method of separation of variables. Uniqueness is proved by the spectral method.

Po3rnsHyTO MOYaTKOBO-KpaiioBy 3afady AJs PIBHSHHS BHILOTO MOPSAKY 3 Apo06oBoro moxigHoro Pimana—JliyBimis B mps-
MOKYTHiH 00JacTi, IO BHPOIPKYEThCA 3a 0OOMa 3MiHHUMHU. P03B’s30K 3amaui OTpUMAHO B SBHOMY BHIVISIII METOIOM
BiZIOKpEMJICHHS 3MiHHUX. €IMHICT JOBOIHUTHCS 3a JONIOMOTOI0 CIIEKTPAIBHOTO METOY.

1. Introduction. In the domain Q@ = Q, x Q,, Q, = {z:0<z <1}, Q, = {y: 0 <y <1},
consider the equation
0%k,
(_1>k+lD8zu(xu y) - xsym aygk =0, (1)
where 0 < a<1,0<m <k, m¢N,se NU{0}, k € N, D§, is the operator of Riemann—
Liouville fractional differentiation of order «,

x

1 0 / u(T,y)dr

Dg,u(z,y) = m% J (x— 1)

For equation (1), consider the problem.
Problem A. Find a solution to equation (1) from the class

Diu(z,y) € C(), ' %u(z,y) € C(Q x Qy),

)
" tu(z, y) 5 0% u(z,y)
W EC(QI XQy), W EC(Qx XQy),
satisfying the conditions
Hu(z,0)  u(z,1) .
- = — =0 0<z<1 =0,1,...,k—1 3
ay] ay] ) X — ) ] ) ) ) ) ( )
: a—1 _
lim DG, u(z, y) = @(y). )

Here, ¢(y) is sufficiently smooth and satisfies the natural concordance conditions.
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Fractional differential equations arise in mathematical modeling of various physical processes and
phenomena [1]. Second-order equations of the form (1) with partial derivatives of fractional order
a € (0,2) were studied in [1-8]. In these papers, the Cauchy problem was considered, the first, the
second and mixed boundary-value problems, a fundamental solution is found, a general representation
of solutions is constructed. Mixed equations and higher-order equations with a fractional derivative
were studied in [9—12]. Degenerate fractional-order equations were studied in [1, 13]. The research
will be carried out by the Fourier method. Previously, by the Fourier method, boundary-value
problems for equations with a fractional derivative were studied in [6-9, 12].

U(.I‘,y) = UO(;U:y) Su=1x"

Based on work [5], we will make some comments. Let 2!~

from condition (4) we have

iig% 2z, y) = %. ©)

2. Existence of a solution. We are looking for a solution in the form
u(z,y) = X(2)Y (y).

Then with respect to the variable y, taking into account condition (3), we obtain the following
spectral problem:

Y (y) = (1A Y (),
(6)
YOO =yWa)=0, j=01,....k—1.
Notice that A = 0 is not an eigenvalue. Using the results of [14], we can write the solution to
problem (6), satisfying the conditions at the point z = 0, in the form
i—(i—1)
2k —m

—(i+1)

7
1
T 2k —m

+1,...,

Yi(y) =y" - 0Fak-1 +1,...

)
2k —m

—(2k—1)  (—=D)Faym

], i=0,1,...,2k—1,

L 2%k-m " (2k—m)**
where
ai, apa > ) .’Bk
F, = dl
P bl,...,b ] ZO q)k k!

is the generalized hypergeometric function
(a)k =ala+1)...(a+k—1)

is the Pochhammer symbol.
In particular, for £ = 1 we have (¢, . .., c3 are constants)

2—m 2.7 2"m
'\ T E (_1)j<22\<2@ m>> 2Ny
2 2
0o GE) Y 1 —avir s (20
=0 j!F(j—2+1)
—m
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- () “°<_Dj<2@“mJ
Vi) cwjzoj!r@:jlml y =iy (i gt )

2—m

= 63\/?1]21(

where

N A RaZ
= (-1(3)
W= 2 GG )

are Bessel functions [15].
Satisfying the boundary conditions, we obtain the condition for the existence of eigenvalues

J<M> o
-m\2—m

Let us get back to the general case. Because (2k —m) ¢ N, then the system of functions

{E(y) zgk—l is the forms a fundamental system of solutions. Hence, the general solution of

equation (6) has the form
Y(y) = coYo(y) + erYi(y) + ... + cop—1Y2k—1(v),
and from the boundary conditions at the point = 0, we have
Y(y) = eYi(y) + cir1Yer1(y) + - .. + cor—1Yor—1(y).

It mean that
Y(y) =0, y— +0.

From the conditions at the point = 1, we obtain the system

ckYr(1) + k1 Y1 (1) + .o+ cop—2Yop—2(1) + cop—1Yor—1(1) = 0,

(erYr(y) + o1 Yir1(y) + - - - + can—2You—2(y) + con—1Yor—1(y)), _

Equating to zero the main determinant of the system, one can find the eigenvalues of problem (6).
But in view of the complexity of this process, we will proceed in a different way, namely: we reduce
problem (6) to the integral equation using the Green function and obtain the necessary estimates for
the eigenfunctions. But first, we show that A > 0. Indeed, we have

1 1
/Y(y)Y(%)(y)dy = (—1)kA/y‘mY2(y)dy,
0 0
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1 1
/(Y(k) )\/y_mY2 )dy,
0 0

because A = 0 is not an eigenvalue, it follows that A > 0. It remains to show the existence of
eigenvalues and eigenfunctions of problem (6). The integral equation equivalent to problem (6) has
the form

1
Y(y) = (—1)FA / £y, €)Y (€)de, ™)
0

where

1 Gl(y7§), Oﬁyﬁf,

G - -
) (2k - 1)! Ga(y,€), £€<y<1,

is the Green function of problem (6) (see [16]). Here,

k—1k—i—1

Gl(yaf):(l—f)kykz Z (—1)'Ch_ 1Ck 1+5Y Yyt

(y 5) ksz Z CZk 1Ck 1+j£k’—i—1yj+i7

Rewrite (7) as

(y,6) =¢ %[(—1)@(%5)]@_%
Then we have
1
) [Guove ®)
0

Equation (8) is an integral equation with a continuous, in both variables, and a symmetric kernel.
According to the theory of equations with symmetric kernels, equation (8) has no more than a
countable number of eigenvalues and eigenfunctions. So, problem (6) has eigenvalues A\, > 0,
n =1,2,..., and the corresponding eigenfunctions are Y,,(y). Further, we assume that
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1

1Y ()||” = /y‘er?(y)dy —1.
0

Then, taking into account (8), we have the Bessel inequality

i <Yn(y)>2 < /ly‘mGQ(y,ﬁ)dy < 0. )
0

n=0 An
Now we find the conditions under which the given function ¢(y) is expanded in a series according

to the eigenfunctions Y,,(y). For this we use the Hilbert— Schmidt theorem.
Theorem 1. Let the function ¢(y) satisfies the following conditions:

e(y) € C?*(0, 1],
eD0)=¢W(1)=0, i=0,1,....k—1.

Then it can be expanded in a uniformly and absolutely converging series of the form

P(y) =D enYaly),
n=1

where
1
P = / y o (y) Yo (y)dy.
0

Proof. We show the equality

really

Those for the function y_%go(y) the conditions of the Hilbert— Schmidt theorem are satisfied and,

therefore,
o

v o) =Yy 2 eaYaly),
n=1
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dividing by ¥y~ 2, we have
oo
= Z onYn(y)
n=1

Theorem 1 is proved.

In what follows we will assume that the function ¢(x) satisfies the conditions of Theorem 1. We
proceed to solve the equation in the variable x. Taking into account condition (5), we obtain the
following initial problem:

Dg . Xn(z) = —Ap2° X, (),
(10)

: l1—a _ Pn
lim @ Xn(7) = 5

1
/go Yy~ Y, (y)dy.
0

Using the results of [17], the solution to problem (10) can be written in the form

where

a—1

O
XTL(':U): a “ 06—1—8—1 X
r< >r<>
a—+ s a+ s

! a+s—1
o I T — T 1 m
<m+a+s> <m—|— a+s ) (m + )(—/\n(a+s)xa+5)
<D

I((a+s)m+ ) m!

m=0

This representation implies the uniqueness of the solution to problem (10).

Because o + s + 1 > s+ 1, then the last series converges absolutely and uniformly for fixed
values of A\, and for bounded values of = (see [18]). This means that the permutation of the series
and the integral in above was legal.

In terms of special functions, the solution to problem (10) can be written in the form

o1

X
r< @ >...F<O‘+S_1)
o+ s a—+s

o a+s—1
L) (L) (11), - s garks
Xs—l—l\pl ( 70{4—5)’ ’< T a4s )7( ) )7 n(a+8) x 7

(a+s,a)

Xn(x) =

where
P

o, (((al,al)a...,(apvap))a Z)) _ i 1F (c;m + a;) Lm

(ﬁl)bl)v"'7(6qabp m=0 Hz 1 Blm‘{'b)ﬁ

is the generalized Wright function (see [18]).
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Using the results obtained in [18, 19] (Theorem 4), we obtain an asymptotic expansion of the
generalized Wright function for large values A, and z > § > 0:

o a+s—1
1, —,..., (1], — 1,1), =\ ats
s+1P1 (704-%9)7 ’(’ a+s )7(’ )~ Anet ) ~
(a+s,a)
~ s+1,1()\n(a+s)x°‘+s) :Hs—i-l,l(t) =

atm—1 —
—Zt s Sepr1(t;m) + 7 Ssr11 (ks + 1),

where

Ss+171 (t; m) =

a+m-—1 a+m-—1 s T—m
0o '+ —|'f{1— (k+ —— T —k
D <+ ats > ( (+ ats ))HLW <a+s )t—k_
->= g _
par i p<a_(a+5)<k+a+7n>>

a+s
s —T
Hr:l,r;«ém k+1 . r—m r—m
00 (=) sinmt——TI'( k — +1
m 1 a+s a+s -
—OE sinﬂ7a+m_1 -
- a+s
sinm((a+ s)k)I((a + s)k +m)
_ (Cpymrapst Z 1)sk+D) sinm((o + 8)k)T((a + s)k + m) ok
a+m-—1 ’

s r—m rT—m
inmT————-—- i ' k- 1
sinn LT s (- T )

o W Tk F(a“—l_k_1>
S (t;s+1) Z r=1 a+ts ik
s+l “ k' T(a — (a+s)(k+ 1))

DFHEID (0 + )k + 5 4+ 1) sin (o + )k) 4k

— s+1 s—1 - (
-1 -1
Zko T 1p(k+2_a+r>smw
r—=

a—+ s a—+ s

Taking into account the latter, we have that there exists a number K such that, for all n > K and
for x > § > 0, the estimate

M
‘Xn(x)’ < /\—|g0n|x0‘_1, 0 < M is constant.
n

So, the formal solution of the posed problem A has the form

z,y) =Y Xn(2)Ya(y). (1)
n=>0
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Let us show that (11) is a classical solution to equation (1). We have
= R Va(y)
)| < 3 K@) ¥alw)] < M2 3 o 2L
n=0 n=0 n

We apply the Cauchy — Bunyakovsky inequality

0 Yn [e%) 0 Yn 2
Sl s o2 (5

n=0 n=0 n=0
Taking into account inequality (9) and the Bessel inequality

[e.9]

1
o2 < /wz(y)y‘md@/ < 0,

n

we obtain uniform convergence of series (11) in any closed subdomain {2 and the condition
2 (x,y) € C(y x Q). Let us now turn to the proof of the legality of differentiation. We
will act in the same way as above

o0

| D u(,y)| < 3108 Xn (@) [Yaly)| <

n=0

< z* Z /\n‘Xn(x)HYn(y)‘ < Magstot Z “Pn‘ ‘Yn(y”
n=0

n=0

Next, we apply the Cauchy — Bunyakovsky inequality

o0

= = Yo (y) - Y2(y)
D len )] =D Pngnl| =5 ‘S PR N D vt
n=0 n=0 n n=1 n=0 n
we have
1 1
. (—1)* (2k)
wnz/y o(y)Yn(y)dy = S /«p(y)Yn (y)dy =
0 " 0
(—1)* Lo
= sO(y)Yé%_”(y)‘o— / ¢ ()Y, 2D (y)dy
" 0
If
. (2k—1)
Jm ¥, T (y) # oo,
then
©(0)Y,**1(0) =0,
and if
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then, applying L’Hopital’s rule, we get

lim M — lim Yn(zk)(y) — (=1)**1\, lim *(Y)y " Yaly)
y=H0 (p(y) Tt v —(p(y) A (y) Tymto o Y(y)
= ( )k+1>\ lim O(ka)O(yk)y_m _ 0’

y—40 O(ykil)

whence

1
= Ao = [ (087w Yalwly ™.
0

Hence, \,p, are the Fourier coefficients of the function (—1)kym<p(2k)(y). Then, by Bessel’s
inequality, we obtain

o 1
> X |en(y) /ym ) () dy. (12)
n=0 0
Now, in order for the calculations made above to be legal, we impose the following restrictions on
the function (y):
PpD0) =) =0,  @ly) €C?M0,1], j=0,1,....k—1L

Taking into account (9) and (12), we have that the series

Dy, 0zU Z Dy, O:Jc )
converges uniformly in any closed subdomain (2 for s = 0 and converges uniformly in €, x Q, for
s =1,2,3,.... The uniform convergence of the series
a% a ’fY e
ZX ( L ™S A X (@) Ya(y). (13)

Theorem 1 is proved.
Theorem 1’. Let the function p(y) satisfies the following conditions:

ely) € C?*0,1),  oD(0) =W (1) =0, j=0,1,....k— 1.

Then a solution to Problem A exists.
Remark. 1t can be seen from the construction of the solution that (see (13))

O**u(z, y)

Dy 2k € O x Q). (14)
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3. Uniqueness.

Theorem 2. If there is a solution to problem A from class (2), (14), then it is unique.

Proof. Let the function u(x,y) be a solution to Problem A with zero initial and boundary con-
ditions. Consider its Fourier coefficients with respect to the system of eigenfunctions of problem (6)

1
D/y Yo (y)dy,

it is easy to show that w,(x) is a solution to the problem

Dgxun(x) = _)‘nfzsun(x)v alzii%(l‘liaun(x)) =0.

This problem has only a zero solution, i.e.,

1
/y Y, (y)dy =0 forall n.
0

Because G(y, &) symmetric, continuous,

1

11
/ (y,&)d§ < o0, /G (y,&)dy < o0 // (y,&)dydé < 0o, A, >0 forall n,
00

0

then the conditions of Mercer’s theorem are fulfilled and

S A
S panG]

n=0

G(y,€) =

Hence, we have

L Qku T
T u(z,y) = /G(y7£)<(—1)k§7§(9a£(215)>d€ =
0

s )\n ang
1
o —%Yn 52k 7
_ ( 1)kz Yy )\n (y> /Yn(é.) ;%(23}; )d§ _
n=0 0

n=0
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o0 m

1
DDV v ) [ (-1 €ute, e =
0

~ 1
=y 2 Z Y, (y) /g_mYn(E)u(:L‘,ﬁ)dg =0= u(z,y) =0.
0

n=0
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