UDC 517.9
R. Sharafdini (Persian Gulf Univ., Bushehr, Iran),
A. Z. Abdian (Lorestan Univ., College Sci., Khoramabad, Iran),
A. Behmaram (Univ. Tabriz, Iran)

SIGNLESS LAPLACIAN DETERMINATION
 OF A FAMILY OF DOUBLE STARLIKE TREES

БЕЗЗНАКОВЕ ЛАПЛАСІВСЬКЕ ВИЗНАЧЕННЯ СІМ’Ї ПОДВИЙНО ЗІРКОПОДІБНИХ ДЕРЕВ

Two graphs are said to be Q-cospectral if they have the same signless Laplacian spectrum. A graph is said to be DQS if there are no other nonisomorphic graphs Q-cospectral with it. A tree is called double starlike if it has exactly two vertices of degree greater than 2 . Let $H_{n}(p, q)$ with $n \geq 2, p \geq q \geq 2$ denote the double starlike tree obtained by attaching p pendant vertices to one pendant vertex of the path P_{n} and q pendant vertices to the other pendant vertex of P_{n}. In this paper, we prove that $H_{n}(p, q)$ is DQS for $n \geq 2, p \geq q \geq 2$.

Два графи називаються Q-коспектральними, якщо вони мають однакові беззнакові лапласівські спектри. Граф називається DQS, якщо не існує інших неізоморфних графів, що є Q-коспектральними по відношенню до нього. Дерево називається подвійно зіркоподібним, якщо воно має рівно дві вершини степеня більшого за 2 . Нехай $H_{n}(p, q)$ з $n \geq 2, p \geq q \geq 2 є$ подвійно зіркоподібним деревом, одержаним за допомогою додавання p висячих вершин до однієї висячої вершини шляху P_{n} та q висячих вершин до іншої висячої вершини P_{n}. У цій роботі запропоновано доведення того, що $H_{n}(p, q)$ є DQS для $n \geq 2, p \geq q \geq 2$.

1. Introduction. All graphs considered here are simple and undirected. All notions on graphs that are not defined here can be found in [4].

Let $G=(V, E)$ be a graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where $v_{1}, v_{2}, \ldots, v_{n}$ are indexed in the nonincreasing order of degrees, i.e., $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$, where $d_{i}=d_{i}(G)=d_{G}\left(v_{i}\right)$ is the degree of the vertex v_{i}, for $i=1, \ldots, n$. We denote the degree sequence of G by $\operatorname{deg}(G)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. The number of triangles of G is denoted by $t(G)$.

For $v \in V(G)$, the graph $G-v$ is an induced subgraph of G obtained from G by deleting the vertex v and all edges incident with it. For two disjoint graphs G and H, let $G \cup H$ denotes the disjoint union of G and H.

The line graph of a graph G, denoted by G^{L}, has the edges of G as its vertices, and two vertices of G^{L} are adjacent if and only if the corresponding edges in G have a common vertex.

We denote by P_{n}, C_{n}, and $K_{1, n-1}$ the path, the cycle and the star of order n, respectively.
The adjacency matrix A_{G} of G is a square matrix of order n, whose (i, j)-entry is 1 if v_{i} and v_{j} are adjacent in G and 0 otherwise.

The degree matrix D_{G} of G is a diagonal matrix of order n defined as $D_{G}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. The matrices $L_{G}=D_{G}-A_{G}$ and $Q_{G}=D_{G}+A_{G}$ are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. The multiset of eigenvalues of Q_{G} (resp., L_{G}, A_{G}) is called the Q-spectrum (resp., L-spectrum, A-spectrum) of G. Since A_{G}, L_{G} and Q_{G} are real symmetric, their eigenvalues are real numbers. Moreover, L_{G} and Q_{G} are positive semidefinite, and so their eigenvalues are nonnegative. We use $q_{1}(G) \geq q_{2}(G) \geq \ldots \geq q_{n}(G)$ to denote the Q-spectrum of G.

Fig. 1. Double starlike tree $H_{n}(p, q)$.
Two graphs are Q-cospectral (resp., L-cospectral, A-cospectral) if they have the same Q spectrum (resp., L-spectrum, A-spectrum). A graph G is said to be DQS (resp., DLS, DAS) if there is no other nonisomorphic graph Q-cospectral (resp., L-cospectral, A-cospectral) with G. Obviously, if a graph is DLS, then it is not necessary DQS. For example, consider, $K_{1,3}$ that is Q-cospectral with $K_{3} \cup K_{1}$.

The problem "which graphs are determined by their spectra?" originates from chemistry. Günthard and Primas [6] raised this question in the context of Hückels theory. Since this problem is generally very difficult, van Dam and Haemers [14] proposed a more modest problem, that is, "Which trees are determined by their spectra?".

A tree is called starlike if it has exactly one vertex of degree greater than 2 . We denote by $T\left(l_{1}, l_{2}, \ldots, l_{\Delta}\right)$ the starlike tree with maximum degree Δ such that

$$
\begin{equation*}
T\left(l_{1}, l_{2}, \ldots, l_{\Delta}\right)-v=P_{l_{1}} \cup P_{l_{2}} \cup \ldots \cup P_{l_{\Delta}} \tag{1.1}
\end{equation*}
$$

where v is the vertex of degree $\Delta, l_{1}, l_{2}, \ldots, l_{\Delta}$ are any positive integers. A starlike tree with maximum degree 3 is called a T-shape tree. A tree is called double starlike if it has exactly two vertices of degree greater than 2 . Denote by $H_{n}(p, q)$ the tree obtained by attaching p pendant vertices (vertices of degree 1) to one pendant vertex of P_{n} and q pendant vertices to the other pendant vertex of P_{n} (see Fig. 1). It is clear that $H_{n}(p, q)$ is double starlike if and only if $n \geq 2$ and $p \geq q \geq 2$.

Note that:
Liu et al., proved that double starlike trees $H_{n}(p, p), n \geq 2, p \geq 1$, are DLS [9];
Lu and Liu proved that double starlike trees $H_{n}(p, q)$ are DLS [10];
$H_{1}(2,1)$ is the star $K_{1,3}$ which is not DQS, since it is Q-cospectral with $K_{3} \cup K_{1}$ [14];
$H_{1}(p, q) \cong K_{1, p+q}$, which is DQS when $p+q \neq 3$ [8];
$H_{n}(1,1) \cong P_{n+2}$, which is DQS [14];
Omidi and Vatandoost proved that starlike trees with maximum degree 4 are DQS [12];
Bu and Zhou proved that starlike trees whose maximum degree exceed 4 are DQS [3];
if $p \geq 1$, then $H_{n}(p, 1)$ is a starlike tree, which is $\operatorname{DQS}[3,12]$;
Omidi gave all T-shape trees, which are DQS [11].
In this paper, we prove that for $n \geq 2, p \geq q \geq 2$ the double starlike tree $H_{n}(p, q)$ is DQS.
2. Preliminaries. Some useful established results about the spectrum are presented in this section, will play an important role throughout this paper.

Lemma $2.1[13,14]$. For any graph, the following can be determined by its adjacency and Laplacian spectrum:
(i) the number of vertices;
(ii) the number of edges.

For any graph, the following can be determined by its adjacency spectrum:
(iii) the number of closed walks of any length;
(iv) being regular or not and the degree of regularity.

For any graph, the following can be determined by its Laplacian spectrum:
(v) the number of components;
(vi) the sum of the squares of degrees of vertices.

For any graph, the following can be determined by its signless Laplacian spectrum:
(vii) the number of bipartite components;
(viii) the sum of the squares of degrees of vertices.

Lemma 2.2 [1]. Let G be a graph with n vertices, m edges, t triangles and vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$. Let $T_{k}=\sum_{i=1}^{n} q_{i}(G)^{k}$, then

$$
T_{0}=n, \quad T_{1}=\sum_{i=1}^{n} d_{i}=2 m, \quad T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2}, \quad T_{3}=6 t+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3} .
$$

Lemma 2.3 [7]. Let G be a graph with $V(G) \neq \varnothing$ and $E(G) \neq \varnothing$. Then

$$
d_{1}+1 \leq \mu_{1}(G) \leq \max \left\{\left.\frac{d_{i}\left(d_{i}+m_{i}\right)+d_{j}\left(d_{j}+m_{j}\right)}{d_{i}+d_{j}} \right\rvert\, v_{i} v_{j} \in E(G)\right\},
$$

where $\mu_{1}(G)$ denotes the spectral radius of L_{G} and m_{i} denotes the average of the degrees of the vertices adjacent to vertex v_{i} in G.

Lemma 2.4 [4]. Let G be a graph. Then $q_{n}(G) \geq 0$ with equality if and only if G is a bipartite graph. Bedsides, the multplicity of 0 as the signless Laplacian eigenvalue of G, is the number of bipartite components of G. Moreover, $\operatorname{Spec}_{Q}(G)=\operatorname{Spec}_{L}(G)$ if and only if G is a bipartite graph.

Lemma 2.5 [16]. If two graphs G and H are Q-cospectral, then their line graphs G^{L} and H^{L} are A-cospectral. The converse is true if G and H have the same number of vertices and edges.

Lemma 2.6 (Interlacing theorem [14]). Suppose that N is a symmetric $n \times n$ matrix with eigenvalues $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. Then the eigenvalues $b_{1} \geq b_{2} \geq \ldots \geq b_{m}$ of a principal submatrix of N of size m satisfy $a_{i} \geq b_{i} \geq a_{n-m+i}$ for $i=1,2, \ldots, m$.

Lemma 2.7 [5]. If G is a graph of order n, then $q_{2}(G) \geq d_{2}(G)-1$ and $q_{3}(G) \geq d_{3}(G)-\sqrt{2}$.
A connected graph with n vertices is said to be unicyclic if it has n edges. If the girth of a unicyclic graph is odd, then this unicyclic graph is said to be odd unicyclic.

Lemma 2.8 [2]. Let G be a graph Q-spectral with a tree of order n. Then G is either a tree or a union of a tree of order f and c odd unicyclic graphs, and $n=4^{c} f$.

Lemma 2.9 [15]. Let G be a graph of order n and $v \in V(G)$. Then, for $i=1,2, \ldots, n-1$,

$$
q_{i+1}(G)-1 \leq q_{i}(G-v) \leq q_{i}(G),
$$

where the right equality holds if and only if v is an isolated vertex.
3. Main results. We first bound the second largest and the third largest signless Laplacian eigenvalues of $H=H_{n}(p, q)$ with $n \geq 2$ and $p \geq q \geq 2$.

Lemma 3.1. For a double starlike tree $H=H_{n}(p, q)$ with $n \geq 2$ and $p \geq q \geq 2$ we have
(i) $q_{2}(H) \leq q+3+\frac{1}{q+2}$;
(ii) $q_{3}(H)<4$.

Proof. Let u and v be the vertices in $H=H_{n}(p, q)$ of degree $p+1$ and $q+1$, respectively.
(i) By Lemma 2.9 we have

$$
q_{2}(H)-1 \leq q_{1}(H-u)<q_{1}(H)
$$

It follows from Lemmas 2.3 and 2.4 that

$$
q_{1}(H-u) \leq q+2+\frac{1}{q+2}
$$

from which we conclude that

$$
q_{2}(H) \leq q_{2}(H-u)+1 \leq q+3+\frac{1}{q+2}
$$

(ii) Let $N_{u v}$ be the $(p+q+n-2) \times(p+q+n-2)$ principal submatrix of the signless Laplacian matrix of H formed by removing the rows and the columns corresponding to u and v. In this case, the largest eigenvalue of $N_{u v}$ is less than 4 . By Lemma 2.6 we have

$$
\begin{equation*}
q_{3}(H)<4 \tag{3.1}
\end{equation*}
$$

Lemma 3.1 is proved.
Proposition 3.1. Let G be a connected graph Q-cospectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq$ ≥ 2. Then:
(i) $d_{1}(G) \leq p+1$;
(ii) $d_{2}(G) \leq q+4$;
(iii) $d_{3}(G) \leq 5$.

Proof. (i) By Lemma 2.1, G has $n+p+q$ vertices and $n+p+q-1$ edges. It follows from Lemma 2.4 that G has only one bipartite component. Therefore, G is a tree, since G is connected. By Lemmas 2.3 and 2.4, we have $d_{1}(G)+1 \leq q_{1}(G)=\mu_{1}(G) \leq p+2+\frac{1}{p+2}$ and so $\Delta=d_{1}(G) \leq p+1$.
(ii) By Lemma 3.1(i) we obtain

$$
q_{2}(G)=q_{2}\left(H_{n}(p, q)\right) \leq q+3+\frac{1}{q+2}
$$

By Lemma $2.7 d_{2}(G) \leq q+4$.
(iii) By Lemma 3.1(ii) we get $q_{3}(G)=q_{3}\left(H_{n}(p, q)\right)<4$. It follows from Lemma 2.7 that $d_{3}(G) \leq 5$.

Proposition 3.1 is proved.

Proposition 3.2. Let G be a connected graph Q-cospectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq$ ≥ 2. Then G is a double starlike tree with the degree set

$$
\operatorname{deg}(G)=(p+1, q+1, \underbrace{2, \ldots, 2}_{n-2}, \underbrace{1, \ldots, 1}_{p+q}) .
$$

Proof. It follows from Lemma 2.1 that G is bipartite with $n+p+q$ vertices and $n+$ $+p+q-1$ edges. So, G is a tree. Denote by n_{k} the number of vertices of degree k in G for $k \in\left\{1,2,3, \ldots, d_{1}(G)\right\}$. By Lemma 2.1(i), (ii), (viii) and Lemma 2.2 we have the following equations:

$$
\begin{gathered}
\sum_{k=1}^{d_{1}(G)} n_{k}=n+p+q, \\
\sum_{k=1}^{d_{1}(G)} k n_{k}=2(n+p+q-1), \\
\sum_{k=1}^{d_{1}(G)} k^{2} n_{k}=(p+1)^{2}+(q+1)^{2}+p+q+4(n-2), \\
\sum_{k=1}^{d_{1}(G)} k^{3} n_{k}=(p+1)^{3}+(q+1)^{3}+p+q+8(n-2) .
\end{gathered}
$$

By Lemma 2.5 $H_{n}(p, q)^{L}$ and G^{L} are A-cospectral. In addition, by Lemma 2.1(iii) they have the same number of triangles (six times the number of closed walks of length 3). In other words,

$$
\sum_{k=1}^{d_{1}(G)}\binom{k}{3} n_{k}=\binom{p+1}{3}+\binom{q+1}{3}
$$

Let us denote by n_{i} the number of vertices of degree i in G for $i=1,2,3,4,5$. Therefore,

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-2, \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 n_{5}=2(n+p+q-1)-x, \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y, \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w, \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z,
\end{aligned}
$$

where

$$
x=d_{1}+d_{2}, \quad y=d_{1}^{2}+d_{2}^{2}, \quad w=d_{1}^{3}+d_{2}^{3}, \quad z=d_{1}\left(d_{1}^{2}-3 d_{1}+2\right)+d_{2}\left(d_{2}^{2}-3 d_{2}+2\right) .
$$

It follows that

$$
n_{5}=\frac{12(2 x-3 y+w-z)}{12}=0, \quad n_{4}=\frac{-48(2 x-3 y+w-z)}{12}=0
$$

and so

$$
n_{1}=p+q, \quad n_{2}=n-2, \quad n_{3}=0, \quad d_{1}=p+1, \quad d_{2}=q+1
$$

This means that G is a tree having exactly two vertices of degree more than 2 . So, G is a double starlike tree with the degree set $\operatorname{deg}(G)=(p+1, q+1, \underbrace{2, \ldots, 2}_{n-2}, \underbrace{1, \ldots, 1}_{p+q})$.

Proposition 3.2 is proved.
Proposition 3.3. There is no connected graph Q-spectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq 2$.
Proof. Let G be a connected graph Q-cospectral with $H_{n}(p, q)$ for $n \geq 2$ and $p \geq q \geq 2$. By Proposition 3.2, G is a double starlike tree with $\operatorname{deg}(G)=(p+1, q+1, \underbrace{2, \ldots, 2}_{n-2}, \underbrace{1, \ldots, 1}_{p+q})$. Now we show that $G \cong H_{n}(p, q)$. We consider the following two cases:

Case 1. The two vertices of degree greater than 2 are adjacent in G.
Suppose that there exist $q-a$ (resp., $p-b$) pendant vertices adjacent to the vertices of degree $p+1$ in G, where a and b are nonnegative integers satisfying that

$$
0 \leq b \leq p, \quad 0 \leq a \leq q
$$

Let $m_{G^{L}}^{i}$ be the number of vertices of degree i in G^{L}. Therefore,

$$
\begin{gathered}
m_{G^{L}}^{1}=a+b, \quad m_{G^{L}}^{p+q}=1, \quad m_{G^{L}}^{p+1}=b, \quad m_{G^{L}}^{p}=p-b, \quad m_{G^{L}}^{q}=p-a \\
m_{G^{L}}^{q+1}=a, \quad m_{G^{L}}^{2}=n-2-a-b, \quad m_{G^{L}}^{k}=0, \quad k \notin\{1,2, p, q, p+1, q+1, p+q\}
\end{gathered}
$$

Note that $H_{n}(p, q)^{L}$ and G^{L} are A-cospectral. By Lemma 2.1(ii), (iii), $H_{n}(p, q)^{L}$ and G^{L} have the same number of edges and the same number of closed walks of length 4. Moreover, they have the same number of 4-cycles. Lemma 2.1 implies that $H_{n}(p, q)^{L}$ and G^{L} have the same number of induced paths of length 2 , that is,

$$
\begin{gathered}
\binom{p+1}{2}+\binom{q+1}{2}+p\binom{p}{2}+q\binom{q}{2}+(n-3)\binom{2}{2}= \\
=\binom{p+q}{2}+b\binom{p+1}{2}+(p-b)\binom{p}{2}+ \\
+a\binom{q+1}{2}+(q-a)\binom{p}{2}+(n-2-a-b)\binom{2}{2} .
\end{gathered}
$$

It follows that $(p-1)(q-1)+b(p-1)+a(q-1)=0$, a contradiction, since $0 \leq b \leq p, 0 \leq a \leq q$ and $p \geq q \geq 2$.

Case 2. The two vertices of degree greater than 2 are non-adjacent in G as shown in Fig. 2.
Suppose that there exist $q-a$ (resp., $p-b$) pendant vertices adjacent to the vertices of degree $p+1$ in G, where a and b are nonnegative integers satisfying that $0 \leq b \leq p, 0 \leq a \leq q$. We show that $a=b=0$. Then, by counting the number of vertices in G and $H_{n}(p, q)$, we obtain

Fig. 2. The graph G in Case 2 of Proposition 3.3.

$$
l+\sum_{j=1}^{a} l_{j}^{\prime}+\sum_{l=1}^{b} l_{j}^{\prime \prime}+p+q=n+p+q
$$

Hence $l+a+b=n$. On the other hand,

$$
\begin{aligned}
m_{G^{L}}^{1}=a+b, & m_{G^{L}}^{p+1}=b+1,
\end{aligned} \quad m_{G^{L}}^{p}=p-b, \quad m_{G^{L}}^{q+1}=a+1, \quad m_{G^{L}}^{q}=q-a, ~ m, ~ m_{G^{L}}^{k}=0, \quad k \notin\{1,2, p, q, p+1, q+1\} .
$$

Note that $H_{n}(p, q)^{L}$ and G^{L} are A-cospectral. By Lemma 2.1, $H_{n}(p, q)^{L}$ and G^{L} have the same number of edges and the same number of closed walks of length 4. Moreover, they have the same number of 4-cycles. Lemma 2.5 implies that $H_{n}(p, q)^{L}$ and G^{L} have the same number of induced paths of length 2 , that is,

$$
\begin{aligned}
\binom{p+1}{2} & +\binom{q+1}{2}+p\binom{p}{2}+q\binom{q}{2}+(n-3)\binom{2}{2}= \\
& =(b+1)\binom{p+1}{2}+(p-b)\binom{p}{2}+ \\
& +(q-a)\binom{q}{2}+(a+1)\binom{q+1}{2}+ \\
& +(p-a)\binom{p}{2}+(n-3-a-b)\binom{2}{2}
\end{aligned}
$$

By a simple computation $a(q-1)+b(p-1)=0$ and so $a=b=0$. Therefore, $l=n$. This means that $G \cong H_{n}(p, q)$.

Proposition 3.3 is proved.
Lemma 3.2. Let G be a disconnected graph Q-cospectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq 2$. Then G has no triangles.

Proof. By Lemma 2.4 G has one bipartite component. We show that $t(G)=0$. Suppose not and so $t(G) \geq 1$. Obviously, $t(G) \leq 2$, otherwise, since G is disconnected, it follows from Lemma 2.8 that G has at least three odd unicyclic components each of them has a triangle. So $q_{1}(G), q_{2}(G), q_{3}(G) \geq 4$, which is a contradiction to Lemma 3.1(ii). First suppose that $t(G)=1$. Consider the following two cases:

Case 1. Let $d_{n}(G)<1$, i.e., $d_{n}(G)=0$. Since G has only one bipartite component, one may deduce that G has only one isolated vertex.

Subcase 1.1. By Lemma 2.8 $G=K_{1} \cup H_{1}$, where H_{1} is an odd unicyclic graph consisting of a triangle. By Lemmas 2.5 and 2.1(iii), we have

$$
t\left(G^{L}\right)=t\left(H_{n}(p, q)^{L}\right)=\binom{p+1}{3}+\binom{q+1}{3}
$$

Let us denote by n_{i}, the number of vertices of degree i for $i=1,2,3,4,5$. Therefore,

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-3 \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 n_{5}=2(n+p+q-1)-x \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w-6 \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z
\end{aligned}
$$

where

$$
x=d_{1}+d_{2}, \quad y=d_{1}^{2}+d_{2}^{2}, \quad w=d_{1}^{3}+d_{2}^{3}, \quad z=d_{1}\left(d_{1}^{2}-3 d_{1}+2\right)+d_{2}\left(d_{2}^{2}-3 d_{2}+2\right)
$$

By a simple computation $n_{4}=\frac{-48(2 x-3 y+w-z+6)}{12}<0$, a contradiction, since $2 x-3 y+$ $+w-z=0$.

Subcase 1.2. Let $t(G)=2$. By a similar argument and by using the previous notations we obtain $G=K_{1} \cup H_{1} \cup H_{2}$, and so

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-3 \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 n_{5}=2(n+p+q-1)-x \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w-12 \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z
\end{aligned}
$$

By a simple computation $n_{4}=\frac{-48(2 x-3 y+w-z+12)}{12}<0$, a contradiction, since $2 x-3 y+$ $+w-z=0$.

Case 2. Let $d_{n}(G) \geq 1$. By Lemma 2.8 if $t(G)=1$, then $G=Y \cup T$, where Y and T are a connected graph consisting of a triangle and a tree, respectively. Consider the following two subcases:

Subcase 2.1. By using the previous notations

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-2 \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 e=2(n+p+q-1)-x \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y \\
& n_{1}+8 n_{2}+27 n_{3}+64 d+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w-6 \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z
\end{aligned}
$$

By a simple computation $n_{4}=\frac{-48(2 x-3 y+w-z+6)}{12}<0$, a contradiction, since $2 x-3 y+$ $+w-z=0$.

Subcase 2.2. Let $t(G)=2$. By Lemma 2.8, we have $G=T \cup Y_{1} \cup Y_{2}$, where Y_{1} and Y_{2} are connected graphs consisting of a triangle and T is a tree with at least two vertices. By using the previous notations, we have

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-2, \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 n_{5}=2(n+p+q-1)-x, \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y, \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w-12, \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z,
\end{aligned}
$$

where

$$
x=d_{1}+d_{2}, \quad y=d_{1}^{2}+d_{2}^{2}, \quad w=d_{1}^{3}+d_{2}^{3}, \quad z=d_{1}\left(d_{1}^{2}-3 d_{1}+2\right)+d_{2}\left(d_{2}^{2}-3 d_{2}+2\right) .
$$

By a simple computation $n_{4}=\frac{-48(2 x-3 y+w-z+12)}{12}<0$, a contradiction.
Lemma 3.2 is proved.
Proposition 3.4. There is no disconnected graph Q-spectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq 2$.

Proof. Suppose by the contrary that G is a disconnected graph Q-spectral with $H_{n}(p, q), n \geq 2$ and $p \geq q \geq 2$. By Lemma 3.2, $t(G)=0$. Similar to Proposition 3.2 we have the following two cases:

Case 1. Let $d_{n}(G)=0$. By Lemma 2.8 if $s=1$, then $G=Y \cup T$, where Y is a connected graph consisting of a unique cycle of order at least 5 and $T=K_{1}$. On the other hand, Lemma 2.8 implies that $H_{n}(p, q)$ is either $K_{1,3}$ or P_{4}, a contradiction. So, let $s=2$. In this case $G=$ $=Y_{1} \cup Y_{2} \cup K_{1}$, where Y_{1} and Y_{2} are connected graph consisting of an unique cycle of order at least 5. It is clear that $|V(G)|=16$ and $|E(G)|=15$. Since $\operatorname{Spec}_{Q}(G)=\operatorname{Spec}_{Q}\left(H_{n}(p, q)\right)$, so $|V(G)|=\left|V\left(H_{n}(p, q)\right)\right|=n+p+q$. Therefore, $n+p+q=16$, that is, $p+q=16-n$. Applying the previous notations, we get

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=13, \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 e=2(15)-x \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(16-n-q)^{2}+(q+1)^{2}+16-n+4(n-2)-y, \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(16-n-q)^{3}+(q+1)^{3}+16-n+8(n-2)-w, \\
& 6 n_{3}+24 n_{4}+60 n_{5}=q(q-1)(q+1)+(16-n-q)(17-n-q)(15-n-q)-z .
\end{aligned}
$$

(Note that the degree of one of vertices is $d_{n}(G)=0$ and the two others degrees are d_{1}, d_{2}. We can subtract these three vertices from 16 . So, the number of vertices of degrees $1,2,3,4$ and 5 is 13 .)

Then

$$
\begin{gather*}
n_{5}=\frac{12\left(2 x-3 y+w-z+710+3 n^{2}+n(6 q-89)+3 q(q-31)\right)}{12}= \\
=710+3 n^{2}+n(6 q-89)+3 q(q-31) \tag{3.2}
\end{gather*}
$$

We know that $n \geq 2, q \geq p \geq 2$ and $n+p+q=16$. By substituting $(n, q) \in\{(2,12), \ldots,(11,3)\}$ in (3.2), we will have a contradiction.

If $s \geq 3$, then $q_{1}(G), q_{2}(G), q_{3}(G) \geq 4$, a contradiction to (3.1).
Case 2. Let $d_{n}(G) \geq 1$. Applying the previous notations

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n+p+q-2, \\
& n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+5 e=2(n+p+q-1)-x, \\
& n_{1}+4 n_{2}+9 n_{3}+16 n_{4}+25 n_{5}=(p+1)^{2}+p+q+(q+1)^{2}+4(n-2)-y, \\
& n_{1}+8 n_{2}+27 n_{3}+64 n_{4}+125 n_{5}=(p+1)^{3}+p+q+(q+1)^{3}+8(n-2)-w, \\
& 6 n_{3}+24 n_{4}+60 n_{5}=(p+1) p(p-1)+(q+1) q(q-1)-z .
\end{aligned}
$$

By solving this system of equations, we obtain that

$$
n_{3}=n_{4}=n_{5}=0 .
$$

Since G is dis-connected, it follows from Lemma 2.8 that G consists of at least one odd unicyclic graph that the order of its odd cycle is greater than or equal to 5 . This means that G has at least one vertex of degree 3 or 4 or 5 .

Proposition 3.4 is proved.
Combining Propositions 3.3 and 3.4, we have the following main result.
Theorem 3.1. Any double starlike tree $H_{n}(p, q), n \geq 2$ and $p \geq q \geq 2$, is $D Q S$.
Note that if $u v$ is an edge of $H=H_{n}(p, q)$, then the degree of $u v$ as a vertex of the line graph $H_{n}(p, q)^{L}$ is $d_{H}(u)+d_{H}(v)-2$. Since

$$
\operatorname{deg}(H)=(p+1, q+1, \underbrace{2, \ldots, 2}_{n-2}, \underbrace{1, \ldots, 1}_{p+q})
$$

it is easy to see that the degree sequence of H^{L} is

$$
\operatorname{deg}\left(H^{L}\right)=(p+1, q+1, \underbrace{p, \ldots, p}_{p}, \underbrace{q, \ldots, q}_{q}, \underbrace{2, \ldots, 2}_{n-3}) .
$$

Corollary 3.1. Let G be a graph such that G^{L} is A-cospectral with $H_{n}(p, q)^{L}$. If $|V(G)|=$ $=\left|V\left(H_{n}(p, q)\right)\right|$, then $G^{L} \cong H_{n}(p, q)^{L}$.

Proof. Let G be a graph such that G^{L} is A-cospectral with $H_{n}(p, q)^{L}$. Therefore, by Lemma 2.1(i), G and $H_{n}(p, q)$ have the same number of edges. Hence, by Lemma 2.5

$$
\operatorname{Spec}_{Q}(G)=\operatorname{Spec}_{Q}\left(H_{n}(p, q)\right),
$$

since $|V(G)|=\left|V\left(H_{n}(p, q)\right)\right|$. In the other hand, Theorem 3.1 implies that $G \cong H_{n}(p, q)$. Therefore, $G^{L} \cong H_{n}(p, q)^{L}$.

Corollary 3.1 is proved.

References

1. C. Bu, J. Zhou, Signless Laplacian spectral characterization of the cones over some regular graphs, Linear Algebra and Appl., 436, 3634-3641 (2012).
2. C. Bu, J. Zhou, H. B. Li, Spectral determination of some chemical graphs, Filomat, 26, 1123-1131 (2012).
3. C. Bu, J. Zhou, Starlike trees whose maximum degree exceed 4 are determined by their Q-spectra, Linear Algebra and Appl., 436, 143-151 (2012).
4. D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, London Math. Soc. Stud. Texts, 75 (2010).
5. K. Ch. Das, On conjectures involving second largest signless Laplacian eigenvalue of graphs, Linear Algebra and Appl., 432, 3018-3029 (2010).
6. Hs. H. Günthard, H. Primas, Zusammenhang von Graphtheorie und Mo - Theotie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta, 39, 1645-1653 (1956).
7. J. S. Li, X. D. Zhang, On the Laplacian eigenvalues of a graph, Linear Algebra and Appl., 285, 305-307 (1998).
8. M. Liu, B. Liu, F. Wei, Graphs determined by their (signless) Laplacian spectra, Electron. J. Linear Algebra, 22, 112-124 (2011).
9. X. Liu, Y. Zhang, P. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett., 22, 435 - 438 (2009).
10. P. Lu, X. Liu, Laplacian spectral characterization of some double starlike trees, Harbin Gongcheng Daxue Xuebao/ J. Harbin Engrg. Univ., 37, № 2, $242-247$ (2016); arXiv:1205.6027v2[math.CO].
11. G. R. Omidi, On a signless Laplacian spectral characterization of T-shape trees, Linear Algebra and Appl., 431, 1600-1615 (2009).
12. G. R. Omidi, E. Vatandoost, Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra, Electron. J. Linear Algebra, 20, 274-290 (2010).
13. C. S. Oliveira, N. M. M. de Abreu, S. Jurkiewilz, The characteristic polynomial of the Laplacian of graphs in (a, b)-linear cases, Linear Algebra and Appl., 365, 113 - 121 (2002).
14. E. R. van Dam, W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra and Appl., 373, 241-272 (2003).
15. J. Wang, F. Belardo, A note on the signless Laplacian eigenvalues of graphs, Linear Algebra and Appl., 435, 2585-2590 (2011).
16. J. Zhou, C. Bu, Spectral characterization of line graphs of starlike trees, Linear and Multilinear Algebra, 61, 1041-1050 (2013).

Received 27.12.18,
after revision - 23.06.20

