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PICONE’S IDENTITY FOR A,-LAPLACE OPERATOR
AND ITS APPLICATIONS *

TOTOYKHICTb MNIKOHE JJISI A,-OITEPATOPA JIAIIJIACA
TA ii BACTOCYBAHHSI

We prove a nonlinear analogue of Picone’s identity for A, -Laplace operator. As an application, we give a Hardy type
inequality and Sturmian comparison principle. We also show the strict monotonicity of the principle eigenvalue and
degenerate elliptic system.

JloBeneHo HemiHiiHUI aHanor TotoxkHocTi ITikone it A, -oneparopa Jlamnaca. SIk 3acTOCYBaHHS HaBEJICHO HEPIBHICTbH
turry [apai ta npuamun nopiBHsSHAS LlITypMma. Takox TOBEAEHO CTPOry MOHOTOHHICTH BIAQCHOTO 3HAYCHHS MPHUHIHITY Ta
BHPOJDKCHOI eTINTHYHOT CHCTEMH.

1. Introduction. It is a well-known fact that in the qualitative theory of elliptic PDEs, Picone’s
identity plays an important role. The classical Picone’s identity says that if u and v are differentiable
functions such that v > 0 and « > 0, then

2 2
\Vu]2+%]Vv|2—2%Vu~Vv: Vu?> -V (1;) Vv >0, (1.1)
(1.1) has an enormous applications to second-order elliptic equations and systems (see, for instance,
[1-3, 22] and the references therein). Nonlinear analogue of (1.1) is established by J. Tyagi [29]. In
order to apply (1.1) to p-Laplace equations, (1.1) is extended by W. Allegretto and Y. X. Huang [4].
Nonlinear analogue of Picone’s type identity for p-Laplace equations is established by K. Bal [6].

In this article we establish the nonlinear analogue of generalized Picone’s identity for A, -Laplace
operator and its applications.

This paper is organized as follows. In Section 2, we recall the definition of the A, -Laplace
operator and the associated functional setting. We further give examples for the class of A,-Laplace
operator. Section 3 deals with nonlinear analogue of Picone’s identity. In Section 4, we give several
application of Picone’s identity to A, -Laplace equations.

2. The A, -Laplace operator. The A, -operator was considered by B. Franchi and E. Lanconelli
in [7, 8], and recently reconsidered in [10] under the additional assumption that the operator is
homogeneous of degree two with respect to a group dilation in RY. We consider the operators of the
form

al )
Ay =Y "0y, (V70s,) s asza—mj, j=1,2,...,N.

Jj=1

Here, the functions -; : RY — R are assumed to be continuous, different from zero and of class
C' in RV\II, where
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N
II:= x:(azl,xg,...,xN)eRN: ijzo

Jj=1
Moreover, we assume the following properties:
i) There exists a group of dilations {J; };~¢ such that
5,52]RN—>]R, 5t($1,...,xN):(telﬂfl,...,tENxN), 1:€1§52§...§€N,

such that v, is d;-homogeneous of degree ¢; — 1, i.e.,
v (6 () =ty () VaeRY Wwt>0, j=1,...,N.

The number

is called the homogeneous dimension of RN with respect to {0 }¢0.

ii)’ylzl, 'yj(ac):’yj(xl,xg,...,xj_l), ]ZQ,,N
iii) There exists a constant p > 0 such that

0 < x404,7j () < pvy; () Vke{1,2,...,7—1} Vj=2,... N,

andforeveryxeﬁf = {(wl,...,xN)ERN:szO Vj:1,2,...,N}.
iv) Equalities 7; (z) = v; (#*), j = 1,2,..., N, are satisfied for every z € RY, where

$*:(|$1‘7--'a’xN’> if $:($1,$2,...,x]\7).

Many aspects of the theory of degenerate elliptic differential operators are presented in monographs
[27, 28] (see also some recent results in [5, 10-20, 23 —26] and the references therein).

Definition 2.1. By SY(Q), 1 < p < +o0, we will denote the set of all functions u € LP(Q)
such that ;0 ;u € LP(Q) for all j = 1,..., N. We define the norm in this space as follows:

N
lullsyioy = 4 [ {1+ 3 ion,ul? | ds

Q J=1
If p = 2 we can also define the scalar product in S?Y(Q) as follows:

N
(u,v)s2(0) = (4, v) [2(02) + > (150s,u, 750,0) 12(0)-
j=1
The space S,Z;’O(Q) is defined as the closure of CL(Y) in the space S(Q).
Set

ol

N
2
v'yu = (7183:17% 72&'1:2“7 s 77NaxNu) ) |v“{u‘ = Z h’jamju‘
i=1
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We now give some examples of the A,-Laplace operator. We use the following notations: we
split RY into
N N N: N:
RY =R™ xR x RS,

and write

= (56(1),33(2)7:3(3)), 20 — (:ng‘)’xgi)"‘.’x%)i) e RM,
D2 =3"1V)2, =123
j=1
We denote the classical Laplace operator in R™: by

N;
_ 2
Dy =) P
=1

Example?2.1 (see [11, 17]). Let « be a real positive number. The operator
Ay =D, + [2DPYA e + Ae),

where
Y= (1717"'a1’ |x(1)|a’”."x(1)|a)’

N1 —times (N2+N3)—times

is called the Grushin operator (see [9]).
Example2.2 (see [11, 17]). Let «, 8 be nonnegative real numbers. The operator

Ay =Dy + Ay + [V 2z 2PA ),

where
y=( Li,...,1, [aW2®P L aWa@)F),

(N1+N2)—times N3 —times

is called the strongly degenerate elliptic operators (see [24, 28]).

3. Generalized Picone’s inequality.
Theorem 3.1. Let v > 0 and u > 0 be be two non-constant differentiable functions in ). Also
assume that f € C1(R, (0,00)) satisfies f'(y) > 1 for all y € (0,00). Define

V. u- Vv ulf (v) | Vo

L(u,v) = [Vyul* -

f() o)y
2 u?
R(u,v) = |V ul” =V - V..
( ) ‘ v ‘ v (f(v)) v
Then L(u,v) = R(u,v) > 0. Moreover, L(u,v) =0 a.e. in §) if and only if V., (E> =0a.e in Q,
v

i.e., uw = kv for some constant k in each component of (1.
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Proof. Expanding R(u,v) one easily sees that L(u,v) = R(u,v). To show L(u,v) > 0 we
proceed as follows:

V. u- Voo ulf (v) |Vl B

f) o)
w2 0) [Vl o[Vl [Va]
f2(v) fv)

(IVyul [Vyu] = Vyu - Vi) =

L(u,v) = |Vyul® —

= |V ul* +

N
7o)

_ 2 U ]V7v|2 _ u? |Vyv\2 _ 2u [Vyul [Vl
- (’V’Y“‘ N ) 7(0) )

2 ¢l \V/ 2 9
ul f %5 LI f(Z) (IV-ul V0] = Vyu - Vo).

By using Cauchy’s inequality, we get

u? |V’YU’2 > 2u |Vyul| [Vl

V. ul? + = (3.1)
Yt ) 7(0)
Which is possible since both « and f are non negative. Equality holds when
Voul = [Vl (32)
Ty |
Again using the fact that f/(y) > 1, we have
2 2
u2f’(v2) Vvl > u? ‘QV’Y,U| (3.3)
f2(v) f2()
Equality holds when
f'(v) =1. (3.4)

Combining (3.1) and (3.3), we obtain L(u,v) > 0. Equality holds when (3.2) and (3.4) together with
|V,ul [Vyv| = Vu - Vv holds simultaneously.

Solving for (3.4) one obtains f(v) = v. So, if L(u,v)(xz¢) = 0 and u(zg) # 0, then (3.1) together
with f(v) = v and |V u| |V v| = Vyu - Vo yields, ie., Viyu = (u/v)Vyv or V4 (u/v)(z) = 0.
On the other hand, if A = {z € Q,u(x) = 0}, then V,u = 0 a.e. in A (see [17]), and thus
Vy(u/v) = 0 ae. in . We conclude that V,(u/v) = 0 a.e. in Q and consequently u = kv for
some constant k.

Remark3.1. 1If v = (1,1,...,1) and f(y) = y, we get the classical Picone’s identity (1.1)

~———

N —times
for Laplacian operator.
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4. Applications. In this section, we will give some applications of nonlinear Picone’s identity
following the spirit of [4].

4.1. Hardy type result. We start with establishing a Hardy type inequality for A, -Laplace
operator.

Theorem 4.1. Assume that there is a v € C*(Q) satisfying

—Ayv > Agf(v), v>0 in £,

Jor some \ > 0 and nonnegative continuous function g. Then, for any u € C§°(Q2), u > 0, it holds
that

/\unfdx > )\/guzdx, 4.1)
Q

Q

where f € C1(R, (0, 00)) satisfies f'(y) > 1 for all y € (0, 00).
Proof. Take ¢ € C§°(12), ¢ > 0. By Theorem 3.1, we have

0< /L(¢,v)dm =

Q
- Q/R(gb,v)dx = Q/ <|V7¢I2 -V, (}f;;) -v7v> dz =
= [0+ fan) o <

Q

< [ (1950 - 2d%g) da.
Q

Letting ¢ — u, we get (4.1).

4.2. Strumium comparison principle. Comparison principles play vital role in study of partial
differential equations. Here, we establish nonlinear version of Sturmian comparison principle for
A, -Laplace operator.

Theorem 4.2. Let fi and fo are two weight functions such that f1(§) < f2(§) for all £ € Q
and f € CH(R,(0,00)) satisfies f'(y) > 1 for all y € (0,00). If there is a positive solution u
satisfying

—Ayu= fi(z)u inQ, u=0 on 0Q,
then any nontrivial solution v of
Ay = foz)f(v) inQ, v=0 on 09, (4.2)

must change sign.
Proof. Let us assume that there exists a solution v > 0 of (4.2) in 2. Then by Picone’s identity,
we have

0< /L(u, v)da = /R(u,v)dw =

Q Q
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= Q/ <|VW|2 -V, <f”z;> -vyu) dx =

— [ (@2~ falap) do = [ (@)~ fala)) ds <0,
Q Q
which is a contradiction. Hence, v changes sign in 2.
4.3. Strict monotonicity of principle eigenvalue in domain. Consider the indefinite eigenvalue
problem
—Ayu=Ag(xz)u inQ, u=0 on JQ, (4.3)
where g(x) is indefinite weight function.
Theorem 4.3. Let )\T(Q) > (0 be the principle eigenvalue of (4.3), then suppose ) C o and
Q1 # Qq. Then A\ (Q1) > A\ (Q2), if both exist.
Proof. Let u; be a positive eigenfunction associated with A\{ (€2;), i = 1,2. Evidently, for
¢ € C5°(§21), we obtain

0< /L(¢, o) dz: = /R(gb,ug)dm -

1951 Q

- Q/ (rw\? -V, (fjf)) 'kuz) dz =

_ 2 ¢’ _
_Q/ o d“Q/ Flug) 20 =

2
:/]V7¢\2dw—AT(Qz)/ ¢ g(x)uzdz.
971

f(u2)

951

Letting ¢ — uy and f(y) =y, we get

0< /L(ul,uQ)d:v — (N (1) = M) /g(x)u%dx.
0 951

This gives A\ (1) > A (92), as if AT (1) = A (€2). We conclude that u; = kuy which is not
possible as 2y C 9 and €y # o.

Remark4.1. When g(x) = 1, we have A\ (21) > A\ (2) if Q1 C Qs and Q1 # Qo.

4.4. Quasilinear system with singular nonlinearity. We will use Picone’s identity to establish a
linear relationship between solutions of a quasilinear system with singular nonlinearity. Consider the
singular degenerate elliptic system equations

—Ayu = f(v) in§,

A = 0 g

U ’ 4.4)
u>0, v>0 in{),
u=0, v=0 on 09,
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where f € C1(R, (0,00)) satisfies f'(y) > 1 for all y € (0, 00). We have the following result.
Theorem 4.4. Let (u,v) be a weak solution of (4.4). Then u = kv, where k is a constant.
Proof. Let (u,v) be the weak solution of (4.4). Now for any ¢; and ¢2 in S%O(Q), we have

/ Vou- Vgide = / F(v)rda, (4.5)
Q Q

2
/ Vv Vagods = / / 5”)¢2d:c. (4.6)
Q Q

Choosing ¢1 = u and ¢ = u?/f(v) in (4.5) and (4.6), we obtain

Q/]V7u|2dx = Q/f(v)udx = Q/v,yv-v7 <f“z)> dz.
Q/R(u,v)dx = Q/ <|V7u]2 ~ V-V, (;‘;)) dz =0,

this gives R(u,v) = 0, which in turn implies that u = kv.

Hence, we get
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