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POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY-VALUE PROBLEM
FOR p-LAPLACIAN DYNAMIC EQUATION ON TIME SCALES

JOJATHI PO3B’SI3KH TPUTOUYKOBOI KPAMOBOI 3AJTAUI
JJISI ITMHAMIYHOT'O PIBHSIHHSI I3 p-JIAIIJIACIAHOM
HA YACOBUX IIKAJIAX

We consider a three-point boundary-value problem for p-Laplacian dynamic equation on time scales. We show the existence
at least three positive solutions of the boundary-value problem by using the Avery and Peterson fixed point theorem. The
conditions we used here differ from those in the majority of papers as we know. The interesting point is that the nonlinear
term f involves the first derivative of the unknown function. As an application, an example is given to illustrate our results.

Po3misimaeTbest TpUTOUKOBA KpaioBa 3aj1ada Jjis JMHAMIYHOTO PIBHSHHS 13 p-JarjaciaHoM Ha 4acOBHX IIKayax. 3a J0Mo-
Moroto Teopemu EiiBepu ta [letepcona npo HepyxoMy TOUKY JOBEJICHO iCHYyBaHHS IPHHAWMHI TPhOX JOJATHUX PO3B’S3KIB
TaKoi KpaifoBoOi 3a1a4i. YMOBH, IKi BAKOPHCTOBYIOTBCS TYT, BiIPi3HAIOTHCS BiJl YMOB, SIKi BUKOPHUCTAHO Y OLTBIIOCTI BiTOMHUX
HaM poOiT. LlikaBUM MOMEHTOM € Te, 110 HeNiHIHHMH WieH [ MiCTHUTP Ieplry HoXixHy HeBinoMoi GyHKLil. Sk 3acTocyBaHHs
HaBeJICHO NMPUKJIA ISl UTIOCTpaLil OTPUMAHUX PE3yJIbTaTiB.

1. Introduction. This paper is concerned with the existence of positive solutions of the p-Laplacian
dynamic equation on time scales

(8p(™(®))" + 9 f (tu(),u(t) =0, te[0,Tlr, (1.1)
u(0) — Bo(u?(v)) =0, u®(T) =0, (1.2)
ut(0) =0,  u(T)+ Bi(u®(v)) =0, (1.3)

where ¢,(s) is p-Laplacian operator, i.e., ¢,(s) = |s[P"?s for p > 1, with (¢,)"' = ¢, and
1/p+1/q=1, v e (0,p(T))r. Some basic knowledge and definitions about time scales, which can
be found in [7, 8]. As we know, when the nonlinear term f is involved in the first-order derivative,
difficulties arise immediately. In this work, we use a fixed point theorem because of Avery and
Peterson to overcome the difficulties.

Throughout the paper, we will suppose that the following conditions are satisfied:

(H)) T is a time scales with 0, 7" € T, v € (0, p(T));

T
(Hy) let ¢ > min {t eT:t> 2}, and there exists 7 € T such that ( < 7 < T holds;

(H3) f:1]0,T]r x Rt x R — R* is continuous, and does not vanish identically on any closed
subinterval of [0, T'|r;

(Hg) g: T — RT is left dense continuous (i.e., g € Ci(T, R+)), and does not vanish identically
on any closed subinterval of [0, T'|;
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(Hs) Bp(v) and Bj(v) are both continuous odd functions defined on R and satisfy that there
exist A, B > 0 such that

Bv < Bj(v) < Av, v>0 j=0,1.

In [3], Anderson established the existence of multiple positive solutions to the nonlinear second-
order three-point boundary-value problem (BVP) on time scale T given by

utV(t) + f(t,u(t) =0, te(0,T)CT,
u(0) =0, au(n)=u(T).

He employed the Leggett— Williams fixed point theorem in an appropriate cone to guarantee the
existence of at least three positive solutions to this nonlinear problem.
Anderson et al. [4] studied the time scale, delta-nabla dynamic equation

()Y +ct)f(u) =0 for a<t<b
with boundary conditions
u(a) — By (UA(I/)) =0 and u?(b)=0.

They established the existence result of at least one positive solution by a fixed point theorem of
cone expansion and compression of functional type.
In [9], Dogan investigated the following p-Laplacian dynamic equation on time scales:

(dp(u®()))Y +a(t) f (t,u(t), u®(t)) =0, ¢ €[0,T]r,
u(0) — Bo(u®(0)) =0, u?(T) =0,

where ¢,(u) = |u[P~?u for p > 1. We proved the existence of triple positive solutions for the
one-dimensional p-Laplacian BVP by using the Leggett— Williams fixed point theorem.

In [10], Dogan studied the existence of positive solutions of the p-Laplacian dynamic equation
on time scales

(6o>(1)Y = —w(t) f(t,y(t),y> (1), te0,T]r,

y2(0) =0, y(T)+ Bi(y*(v)) = 0.

We proved the existence at least three positive solutions of the BVP by using the Avery and Peterson
fixed point theorem.
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In [11], Guo considered the following one-dimensional p-Laplacian three-point BVP on time
scales

(oo (1)) + h(6)f (t,u(t),u™(t)) =0, te (0,T)r,
u(0) — Bu(0) = yu(n), u(T)=0.

He established existence criteria for at least three positive solutions by using a fixed point theorem
for operators on a cone.

In [12], He investigated the existence of positive solutions of the p-Laplacian dynamic equation
on a time scale

[6p(u® ()] +a(t) f(u(t)) =0, tel[0,T]r,

satisfying the boundary conditions

u(0) =0, u(T)+ Bi(u®(v)) =0,

where ¢,(s) is p-Laplacian operator, i.e., ¢,(s) = [s[P72s, p > 1, (¢p) "t = ¢y, 1/p+1/q = 1,
v € (0,p(T))r. By using a new double fixed point theorem due to Avery et al. [5] in a cone, he
proved that there exists at least double positive solutions of BVP.

In [19], Sun and Li studied the one-dimensional p-Laplacian BVP on time scales

(p(u®(£))> + h(t) f(u(8)) =0, t€ [a,b],
u(a) = Bo(u®(a)) =0, u®(a(b)) =0,

where ¢, (u) is p-Laplacian operator, i.e., ¢,(u) = |u[P"2u, p > 1. They found some new results
for the existence of at least single, twin or triple positive solutions of the above problem by using
Krasnosel’skii’s fixed point theorem, new fixed point theorem because of Avery and Henderson and
Leggett— Williams fixed point theorem.

Sun et al. [20] considered the eigenvalue problem for the following one-dimensional p-Laplacian
three-point BVP on time scales

(p(u®()))Y + Ah(t) f(u(t)) =0, ¢ € (0,T)r,
u(0) — Bu(0) = vu(n), uA(T)=0.

They established some sufficient conditions for the nonexistence and existence of at least one or two
positive solutions for the BVP.
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In [23], Wang considered the existence of three positive solutions to the following BVPs for
p-Laplacian dynamic equations on time scales:

[Dp(u™ ()] + a(t)f(u(t) =0, te0,T]r,
u®(0) =0, w(T)+ Bi(u®(n)) =0,
or
u(0) — Bo(u®(n)) =0, u™(T)=0.

He established the existence result for at least three positive solutions by using the Leggett— Williams
fixed point theorem.

In recent years, there has been much current attention focused on study of positive solutions
of BVPs on time scales. When the nonlinear term f does not depend on the first-order derivative,
nonlinear BVPs on time scales have been studied extensively in the literature (see [1, 3, 4, 12-23]).
However, there are few papers dealing with the existence of positive solutions for BVPs on time
scales when the nonlinear term f is involved in the first-order derivative explicitly (see [9, 11]).

Compared with [9] and [11], in this paper, we remark that our boundary conditions are entirely
different from those used in [9, 11]. Dogan [9] studied the existence of positive solutions of a
two-point BVP on time scales by using Leggett— Williams fixed point theorem. Here we study the
existence of positive solutions of a three-point BVP on time scales by using Avery and Peterson fixed
point theorem. Guo [11] studied the existence of positive solutions for p-Laplacian three-point BVPs
on time scales by using the Avery and Peterson fixed point theorem. His method was the same as
ours. But the assumptions we used in the paper are different from those in [11]. We have defined
that Banach space F and the cone P are different from [11]. Guo [11] took ¢ € [0,7]. We have
taken ¢ € [0,0(T)] instead of ¢t € [0, 7).

Compared with [10], in this paper, we are concerned with same problem. So the papers all look
the same and both papers seem to achieve similar results. But here we have replaced v € (0,7t
with v € (0, p(T"))r. We have also replaced ¢ € [0, 7] with ¢ € [0, 0(T)]r. Therefore, Lemmas 2.1
and 2.2 and their proofs are different from Lemmas 2.2 and 2.3 in [10]. We define that the cones P
and P; are different from the published paper [10]. Moreover, example is slightly different from the
published paper [10].

Motivated by works mentioned above, in this paper, we shall show that the BVP (1.1) and (1.2)
has a least three positive solutions by using the the fixed point theorem due to Avery and Peterson.
The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.
Our results are new for the special cases of difference equations and differential equations as well as
in the general time scale setting.

This paper is organized as follows. In Section 2, we state some definitions, notations, lemmas
and prove several preliminary results. In Sections 3 and 4, by defining an appropriate Banach space
and cones, we impose the growth conditions on f which allow us to apply the fixed point theorem
in finding existence of three positive solutions of (1.1), (1.2) (respectively, (1.1), (1.3)). In Section 5,
we give an example to demonstrate our results.
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2. Preliminaries and lemmas. In this section, we list the following well-known definitions
which can be found in [7, 8].

Definition 2.1. A time scale T is a closed nonempty subset of R. For t < supT and r > inf T,
define the forward jump operator o and the backward jump operator p as, respectively,

o(t)=inf{reT: 7>t} €T,
p(ry=sup{reT:7<r}eT

Sforall t,r € T. If o(t) > t, t is said to be right scattered, and if o(t) = t, t is said to be right
dense (rd). If p(t) < t, t is said to be left scattered, and if p(t) = t, t is said to be left dense (Id). A
function f is left dense continuous, ld-continuous, f is continuous at each left dense point in T and
its right-hand sided limits exist at each right dense points in T.

Definition 2.2. Forx: T — R and t € T (assume t is not left scattered if t = sup T), we define
the delta derivative of x(t), 2 (t), to be the number (when it exists) with the property that, for each
€ > 0, there is a neighborhood U of t such that

|2(0(t)) — 2(s) —22(t)(0(t) — 5)| < elo(t) — s

forall s € U. For x: T — R and t € T (assume t is not right scattered if t = inf T), we define the
nabla derivative of x(t), xV (t), to be the number (when it exists) with the property that, for each
€ > 0, there is a neighborhood V' of t such that

|2(p(t)) — z(s) — 2V (1)(p(t) — 5)| < elp(t) — s

forall s V.

If T = R, then 22(t) = 2V (t) = 2/(t). If T = Z, then 2°(t) = z(t + 1) — x(t) is the forward
difference operator while 2V (t) = x(t) — x(t — 1) is the backward difference operator.
Definition 2.3. If F2(t) = f(t), then we define the delta integral by

/f(s)As = F(t) — F(a).

If ®V(t) = f(t), then we define the nabla integral by

/f(s)Vs = ®(t) — O(a).

We provide some background materials from the theory of cones in Banach spaces.

Definition 2.4. Let E be a real Banach space. A nonempty, closed, convex set P C E is a cone
if it satisfies the following two conditions:

(i) z€ P, \>0imply \x € P;
(i) x € P, —x € P imply x = 0.
Every cone P C E induces an ordering in E given by x <y if and only if y — x € P.
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Let v and 6 be nonnegative continuous convex functionals on P, « be a nonnegative continuous
concave functional on P, and 1 be a nonnegative continuous functional on P. Then, for positive real
numbers r1, 72, 73, and r4 we define the following sets:

P(y,r4) ={z € P: y(z) < r4},
P(’Y,O[,TQ,’UL) = {1: e P: 2 < O[(SU), ’)/(IE) < T‘4}7
P(7’97Q7T2,T3’7‘4) = {.%' e P: ro < Oé(.%'), 6(x> < T3, ’y(x) < T4}7

R(%%Tl,m) = {x eP:r < ¢($)’ ’Y(x) < 7/‘4}'

Let the Banach space E = C([0,0(T)]r — R) with the norm

[l :max{te[sup lu(t)|, sup |UA(t)‘},

0,0(T)]t te[0, Tt

and define the cone P C F by
P={uecE:u(t)>0,te0,0(T)m uV(t) <0, u™(t) >0, t €[0,T]r, u™(T) =0} .

We note that u(t) is a solution to the BVP (1.1), (1.2) if and only if

t T
u(t):/gbq /g(r)f(r,u(r),uA(r))VT As+
0 S
T

+Bo | ¢4 /g(r)f(T,U(T)vuA(T))VT

14
Define the operator F': P — E by

t T

(Pu)(t) = [ o0 | [ ot0f(rulr), b)) 97 | A
0 s

T

+BO (z)q /g(T)f(’F,u(T),UA(T))vT

v

Lemma 2.1. [f'u € P, then:
(i) u(t) > U(T)U(U(T))for t€[0,0(T)]r;

(i) tu(s) > su(t) for t,s € [0,0(T)| with s < t.
Proof. (i) Since u®V(t) < 0, it follows that u®(¢) is nonincreasing. Thus, for 0 < t < o(T),

u(t) — u(0) = / u®(s)As > tuP(t)
0
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and

~

from which we have

(i) If t = s, then the conclusion holds. If s < ¢, since wu(t) is concave, nonnegative on
[0,0(T)]r and u?(o(T)) = 0, hence, we get

u(t) — u(0) < u(s) — u(O)
t - s

Thus,
tu(s) > su(t) + (t — s)u(0) > su(t).

Lemma 2.1 is proved.
Lemma 2.2. For any u € P, there exists a real number M > 0 such that sup;c(g o (1)), u(t) <

T
< M supye(o, 17, u”®(t), where M = max {1, JE‘F)(B + T)}

t
Proof. Because u(t) = u(0) + /uA(t)At and u®(t) > u”(T) = 0, we obtain
0

t
w(T) = sup u(t) < sup < Bo(u®(v)) + /uA(t)At <
te[0, Tt te[0, T ,

<(B+T) sup u?(t).
tel0, Tt

From Lemma 2.1, we have

o(T)

o(T)

sup  u(t) =u(o(T)) <

u(T) <
t€[0,0(T)]x T

(B4+T) sup u(t).
T t€[0,T
Lemma 2.2 is proved.

The next theorem from Theorem 1.3 in [17] is stated in context of T C R. The proof'is, therefore,
omitted.

Theorem 2.1 (Arzela— Ascoli theorem on T). Let D C C([a,blr; R). Then D is relatively com-
pact if and only if it is bounded and equicontinuous.

Lemma 2.3. F': P — P is completely continuous.
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Proof.  Firstly, we verify that F': P — P. From (Hj3), it is obvious that (Fu)(t) > 0 for
t€[0,T)r C t € [0,0(T)]t and (Fu)>(T) = 0. Moreover,

T
(Fu)A(t) = ¢q /g(r)f(r,u(r),uA(r))Vr >0

is continuous and nonincreasing in [0, 7’|,
T v

/ 9(r)F (ru(r), u® (1)) Vr | = —g() F(tu(t),ud (1) <0, te[0,Tlr.

t

In addition, ¢,(u) is a monotone increasing continuously differentiable function for u > 0. If

T
/g(r)f(r,u(r),uA(r))Vr >0 for tel0,T]r,

we find (Fu)2V(t) <0 for t € [0, Ty. If

T
/g(r)f(r,u(r),uA(r))Vr =0 for tel0,T]r,

then (Fu)2V(t) = 0 for t € [0, T]r.
Secondly, we prove that /' maps a bounded set into itself. Suppose that ¢ > 0 is a constant and

u€ P, = {u €P:jul| = max{ sup |u(t)|, sup ‘uA(t)}} < c}.
tE[O,U(T)h‘ tG[O,T]'H‘

Notice that f(¢,u,v) is continuous, so there exists a constant C' > 0 such that f(t,u,v) < ¢,(C)
for (t,u,v) € [0, T)t x [0, ¢] x [0, c]. From here, t € [0, T,

T
bq /g(r)f(r,u(r),uA(r))Vr <+ (2.1)
and
¢ T
/QSq /g(r)f(r,u(r),uA(r))Vr As+
0 s
T
+ By | ¢q /g(r)f(r,u(r),uA(r))Vr < +o00. 2.2)

14

Consequently, ' maps a bounded set into a bounded set.
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Thirdly, if ¢1,t2 € [0, Tt and ¢; < t2, then we have

to T
|(Fu)(tr) — (Fu)(ts)| = / b0 / 9(r)f (rou(r), u® () Vr | As| <

t T
< t/(bq O/Q(T)f(r,u(r),uA(r))Vr As| <

T

< Cltr — a6, / o(r)Vr

0

Therefore, by Theorem 2.1, we see that F'P, is relatively compact.
We next claim that F': P. — P is continuous. Suppose that {u,}o"; C P, and lim, 0 ||ty —
— ugp|| — 0. This means that

lim |u, —ug)| =0  and lim |u5 — ug'| — 0.
n—00 n—00

Since {(Fun)(t)}zoz1
convergent subsequence in {(F un)(t)}zo:l. Let {(F un(m))(t)}:zl be a subsequence which con-
verges to w(t) uniformly on [0, 7]r. Examine that

is uniformly bounded and equicontinuous on [0, T'|t, there exists a uniformly

t T

(Fun)(t) = / b4 / o) in (1), 1D (7)) T | Ast

0 s

T

1By ¢, / 9(r) F (7, un(r), u2 (1)) V7

v

From (2.1) and (2.2), inserting w,,,,) into the above and then letting m — oo, we find

t T

wlt) = / b / 9(r) £ (r, uo(r), ud (1)) Vr | Ast

0 s

T

+Bo | &, / 9(r) f (r, g (r), u (1)) O

v

From the definition of F', we know that w(t) = Fug(t) on [0, T]r. This shows that each subsequence
of {(Fun)(t)}:):1 uniformly converges to (Fug)(t). So, the sequence {(Fun)(t)}zo:1 uniformly
converges to (Fug)(t). This means that F' is continuous at ug € P,.. Therefore, F' is continuous on
P. since wy is arbitrary. Thus, F is completely continuous.

Lemma 2.3 is proved.

The following fixed point theorem due to Avery and Peterson is fundamental in the proofs our
main results.
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Theorem 2.2 [6]. Let P be a cone in a real Banach space E. Let v and 6 be nonnegative
continuous convex functionals on P, « be a nonnegative continuous concave functional on P, and v
be a nonnegative continuous functional on P satisfying 1)(Au) < Mp(u) for 0 < X\ < 1 such that
for some positive numbers h and 14,

a(u) <Yu)  and ul < hy(u)

Sor all w € P(v,r4). Suppose F: P(y,r4) — P(v,r4) is completely continuous and there exist
positive real numbers r1, ro, and r3 with r1 < ro such that:

(S)) {u€ P(v,0,a,ra,r3,714) : (u) > ro} # & and a(Fu) > 1o for u € P(7,0,a,1r9,73,74);

(S2) a(Fu) > ry for u € P(v,a,ra,a) with (Fu) > rs;

(S3) 0 ¢ R(~,,71,7r4) and Y(Fu) < ry for all uw € R(y,v,r1,r4) with ¥(u) = r1.
Then F has at least three fixed points uy,ua,us € P(y,14) such that

Y(u)) <7y for i=1,2,3;

ro < afuy);

r1 < ¥(ug) with aug) < ro;

ﬂ)(Ug) <7

3. Solutions of (1.1) and (1.2) in a cone. Let ( € T be such that 0 < v < { < T, and define
the nonnegative continuous convex functionals v and 6, nonnegative continuous concave functional
«, and nonnegative continuous functional ), respectively, on P by

ofu) = inf u(t) = u(C),

v = il u(t) = u(),

Y(u) = sup ut(t) = u?(0),
te[0, T

O(u) = sup u(t) =u(7).
te[T7Th‘

In view of Lemma 2.2, we find

sup  u(t) <M sup u®(t) = M~y(u) forall ueP.
tE[O,U(T)]’]T tE[O,T]T

We also see that (Au) = A0(u) for A € [0, 1].
For notational convenience, we denote Ay, u and § by

T
Ao = g g(r)Vr |,
/
T
1= (C+ B)d, / a(r)vr |,
¢
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T

5= (¢ + A)g, / o(r)Vr

0

¢ Cp

Theorem 3.1. Assume that there exist constants 11, 9, r4 such that 0 < r; < f'rg < ﬁm,

AoC > u, and suppose that f satisfies the following conditions:
(A) f(t,u,v) < ¢p( 0) Jor (t,u,v) € [0,T]r x [0, Mr4] X [—rq,74];

(Ap) f(t,u,v) > ¢p<,u>f0r (t,u,v) € [¢,T)1 X [ro, Mry] X [—74,74];
(A3) f(t,u,v) < qbp( ) Sor (t,u,v) € [0, T] x [0, ?rl} X [—14,74].

Then the BVP (1.1), (1.2) has at least three positive solutions uy, us, and us such that

luil| <rg for i=1,2,3, ro<ui(¢), m1 <u2(C) and wuzx(C) <ry with wus(() <ry.
3.1)

Proof. The BVP (1.1), (1.2) has a solution u = wu(t) if and only if u solves the operator
equation v = F'u. Thus we set out to verify that the operator F' satisfies Avery and Peterson’s fixed
point theorem which will prove the existence of three fixed points of F' which satisfy the conclusion
of the theorem.

Firstly, we will show that

F: P(y,rq) = P(v,74). (3.2)

For any u € P(v,74), we have y(u) = sup;cjory, U A(t) < ry4. From Lemma 2.2, we get

SUPtefo,0(7))y W(t) < Mry. From (A1), we obtain f (¢, u,v) < ¢ < >, and so

T
V(Fu) = sup (Fu)>(t) = 6, / o(r) f (r u(r), ud (1) Vr | <
te[0, T 0
T
< ¢q /g(r)Vr %:m.
0

Thus (3.2) holds.

Secondly, we prove that condition (S;) in Theorem 2.2 holds. Let u =

A AoT A
Then a(u) = 2rey > 1o, O(u) = 02 and v(u) = A2 oy So, {u € P('y,@,a,rg, m,m):
7 1 1

A
a(u) > 7‘2} # &. On the other hand, for any {u € P(’Y,H,OJ,TQ,OTQ,T4>S a(u) > 7"2}, it
i

follows from Lemma 2.2 that o < u(t) < Mry, —ry < u®(t) < 74, and for all t € [¢, T]r. From
(Az), we get
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¢ T
a(Fu) = Fu(() = /gbq /g(r)f(r,u(r),uA(r))Vr As+
0 s

> (¢ + B)og /Tg(r)(bp<7°2> vr | =
¢
T
=+ By | [ar)vr | 2 =r
¢

A
Therefore, we have a(u) > ry for all u € P(% 0, 0,19, ﬂ7 r4
L
Theorem 2.2 is satisfied.

801

>. Consequently, condition (S;) in

Thirdly, we verify that condition (S;) of Theorem 2.2 holds. For any u € P(v,a,r2,7r4) with

0(Fu) > orz that is
i

)

T
0(Fu) = (Fu)™(7) = ¢, /g(r)f(r,u(r),uA(r))vr > )\(Z2

we obtain

¢ T
= in U ) f(r,u(r), u™ (r r S
awwtd%ﬁwwz!%(ﬁxﬁu<x (r)Vr | As+

S

T

+A| ¢4 /g(r)f(r,u(r),uA(r))Vr >

v

T

> (9q /Q(T)f(hU(T),uA(T))Vr > CA(LTQ > 7o

T

Hence, condition (S;) in Theorem 2.2 is satisfied.
Finally, we prove that (S3) in Theorem 2.2 is satisfied. Since (0)

0 ¢ R(v,%,71,74). Suppose that u € R(v,,71,74) With ¥ (u) = infiej¢ 7, u(t)
Lemma 2.1 implies that

sup u(t) = u(T) <
te[0, T

ZU’(C) = ZTI?
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T
this yields 0 < u(t) < —r; forall ¢ € [0, T|r. Moreover, v(u) = sup,c( 7y, u”(t) < ry. Hence, by

the condition (A3) of this theorem, we have

¢ T
= in U ) f(r,u(r), u™ (r T s
a(Fuw) = int (F ><t>g0/¢q O/g< )£ (rulr), u (1) Vi | Aot

T

+A| ¢q /g(r)f(r,u(r),uA(r))Vr <

T
<+ 0| [omen(F)vr] -
0

T
= ¢+ 0y | [otrvr | =,
0

Thus, condition (S3) in Theorem 2.2 holds. As a result, all the conditions of Theorem 2.2 are
satisfied.

Theorem 3.1 is proved.

4. Solutions of (1.1) and (1.3) in a cone. Let the Banach space E = C([0,0(T)]r — R)
with the norm

full =max{ _swp Jutol, s [u20)]},

tE[0,0’(T)h‘ tG[O,T}T
and define the cone P, C F by
Pi={ueE:u(t) >0, te0,0(D)r; «2V(t) <0, u?) <0, te[0,T]r, u®(0)=0}.

Fix 7 € T such that 0 < 7 < v, and define the nonnegative continuous convex functionals + and 6,
nonnegative continuous concave functional «, and nonnegative continuous functional 1, respectively,
on P; by

o(u) = inf u(t) = u(T),

vu) = inf u(t) = u(T),

y(u) = sup [ut(t)| = u(T),
tel0, T

Ou) = sup [ud(t)] = u™(T).
te[r,T)r

Set
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T

)\1 - d)q /g(T’)VT )

0

T

11 = B, / o(r)Vr |,

0

T

01 = Agy /g(T)VT

0

We note that u(t) is a solution of (1.1), (1.3) if and only if

+Bi | ¢q /g(r)f(?W(r),uA(?”))V’“

0

¢ q

Theorem 4.1. Assume that conditions (H))—(Hs) are satisfied. Let 0 < r; < TT‘Q < ﬁm,
1

A1¢ > 1, and suppose that f satisfies the following conditions:
(€0 fltu0) < 0, (5) or (tu,0) € 0Tl x 0,304 x [
1

©) fltu) > ¢(M) for (t,u,0) € [C, T  [ras Mra] x [—r4, ]

(C3) f(t,u,v) < <g1> Sor (t,u,v) € [0,T] % [0, ?7“1] X [—=7r4,74].

Then the BVP (1.1) and (1.3) has at least three positive solutions uy, ue, and us such that

luil| <rg for i=1,2,3, ro<ui(¢), m1 <u2(C) and wux(C) <ry with wus(() <ri.

4.1)
5. Example. Let
No
1 1111,537
T=4J2—-|(= - ===, 1,=-,=,=,2
{ <3> }U{07874’6’27 ?47274? }7
. 1 3
where Ny denotes the set of all nonnegative integers. Take T'=2, p =7, v = ok (=17= 3

and choose

~ 100000
g(t) =t+p(t)

and
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t+1+ v for (t,u,v) € [0,2]t x [0,4] x [—6,6],
ft,u,v) = St +|v] +pu) for (t,u,v) € [0,2]r x [4,4.1] x [—6,6],
t+ 1584+ |v| for (¢, u,v)€]0,2]r x [4.1,20] x [—6,6].

Here p(u) satisfies p(4) = 1, p(4.1) = 1584, p(u) : R — R is continuous and p*(u) > 0. Choose
ry =2, r9 =4.1, r4, = 6. Then

1
2 6
Ao = /g(r)Vr ~ 1.260,
0

1
1 2 ’
=(1 ~ 1.201
a ( * 100000) /W)w 0,
1

1
=(1 ~ 1.2 .
) ( +100000> /g(r)Vr 5993
0

It is easy to see that 0 < r; < %rz < %m, AoC > p, and f(t,u,v) satisfies that
0

6 6
Fltu,v) < ¢, (;‘(‘)) - (1260) ~11659.6 for 0<t<2, 0<u<10.1, || <6,

9 4.1 6
t — = — ~ 1 2 bt 1<t<?2 4.1 < u<10.1 <
f(,u,v)>¢p(u> <1.201> 583.26 for <t<2, <wu<10.1, |v| <6,

2 6
F(t,u,0) < qﬁp(%) - <1.25993> ~15.9993 for 0<t<2, 0<u<d, [v|<6.

Then all conditions of Theorem 3.1 hold. Thus by Theorem 3.1, the BVP (1.1), (1.2) has at least
three positive solutions 1, ug, usg such that

|lui]| <6 for i=1,2,3, 41<ui(l), 2<ul) and wug(1l) <4.1 with ws(l) <2.
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