DOI: 10.37863/umzh.v73i4.648

UDC 519.51

A. Brzeska (Inst. Math., Univ. Silesia, Katowice, Poland)

DENSITY AND CAPACITY OF BALLEANS GENERATED BY FILTERS ЩІЛЬНІСТЬ ТА ЄМНІСТЬ БОЛЕАНІВ, ЗГЕНЕРОВАНИХ ФІЛЬТРАМИ

We consider a ballean $\mathbb{B}=(X,P,B)$ with an infinite support X and a free filter ϕ on X and define $B_{P\times\phi}(x,(\alpha,F))$ for every $\alpha\in P$ and $F\in\phi$. The ballean $(X,P\times\phi,B_{P\times\phi})$ will be called the *ballean-filter mix* of \mathbb{B} and ϕ and denoted by $\mathbb{B}(B,\phi)$. It was introduced in [O. V. Petrenko, I. V. Protasov, *Balleans and filters*, Mat. Stud., 38, No 1, 3-11 (2012)] and was used to construction of a non-metrizable Fréchet group ballean. In this paper some cardinal invariants are compared. In particular, we give a partial answer to the question: if we mix an ordinal unbounded ballean with a free filter of the subsets of its support, will the mix-structure's density be equal to its capacity, as it holds in the original balleans?

Розглядається болеан $\mathbb{B}=(X,P,B)$ з нескінченним супортом X і вільний фільтр ϕ на X та визначається $B_{P \times \phi}(x,(\alpha,F))$ для кожного $\alpha \in P$ та $F \in \phi$. Болеан $(X,P \times \phi,B_{P \times \phi})$ називають болеан-фільтр міксом для \mathbb{B} і ϕ та позначають $\mathbb{B}(B,\phi)$. Таку термінологію було введено у статті [O. V. Petrenko, I. V. Protasov, Balleans and filters, Mat. Stud., **38**, № 1, 3–11 (2012)], де її застосовано для побудови болеана групи Фреше без метризації. У цій роботі порівнюються деякі кардинальні інваріанти. Зокрема, наведено часткову відповідь на питання: якщо ϵ мікс ординально необмеженого болеана з вільним фільтром підмножин його супорту, то чи буде щільність мікс-структури рівною її ємності, як це має місце для оригінальних болеанів?

1. Introduction. Given sets X, P and a function $B: X \times P \to \mathcal{P}(X)$, a triple $\mathbb{B} = (X, P, B)$ is called a ball structure with a support X, a set of radiuses P and a ball function B. If $(x, \alpha) \in X \times P$, then $B(x, \alpha)$ is called a ball of radius α around x. Consistently if $A \subseteq X$ and $\alpha \in P$, then $\bigcup \{B(x, \alpha) : x \in A\}$ is called a ball of radius α around the set A.

If B is a ball function, then a dual ball function B^* is defined as follows: for every $x \in X$ and $\alpha \in P$, we put

$$B^{\star}(x,\alpha) = \{ y \in X : x \in B(y,\alpha) \}.$$

The ball structure $\mathbb{B}^* = (X, P, B^*)$ is called *dual* to the structure $\mathbb{B} = (X, P, B)$.

A ball structure $\mathbb{B}=(X,P,B)$ is called *upper symmetric* if for any $\alpha,\beta\in P$ there exist α' , $\beta'\in P$ such that

$$B(x,\alpha) \subseteq B^{\star}(x,\alpha')$$
 and $B^{\star}(x,\beta) \subseteq B(x,\beta')$

for every $x \in X$. A ball structure $\mathbb{B} = (X, P, B)$ is called *upper multiplicative* if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma)$$

for every $x \in X$. A ball structure which is both upper symmetric and upper multiplicative is called a ballean. Note that if \mathbb{B} is upper symmetric/multiplicative, then \mathbb{B}^* is upper symmetric/multiplicative.

Let
$$\mathbb{B} = (X, P, B)$$
 and $\mathbb{B}' = (X', P', B')$ be balleans. A mapping $f: X \to X'$ is called:

 \prec -mapping if, for any $\alpha \in P$, there exists $\alpha' \in P'$ such that $f(B(x,\alpha)) \subseteq B'(f(x),\alpha')$ for every $x \in X$;

asymorphism (or isomorphism as in [3]) if f is a bijection and both f and f^{-1} are \prec -mappings.

468 A. BRZESKA

If $f: X \to X'$ is a \prec -mapping we will write $\mathbb{B} \prec \mathbb{B}'$. Balleans $\mathbb{B} = (X, P, B)$ and $\mathbb{B}' = (X', P', B')$ are called *asymorphic* if there exists an asymorphism $f: X \to X'$. We will write $\mathbb{B} = \mathbb{B}'$ if X = X' and \mathbb{B} and \mathbb{B}' are asymorphic. Note that $\mathbb{B} = \mathbb{B}^*$ if and only if a ball structure \mathbb{B} is upper symmetric. Of course for every balleans we have $\mathbb{B} = \mathbb{B}^*$. A ballean $\mathbb{B} = (X, P, B)$ is called *symmetric* if $B(x, \alpha) = B^*(x, \alpha)$ for any two $x \in X$ and $\alpha \in P$. Recall that every ballean is asymorphic to some symmetric ballean [1].

Given $\mathbb{B}=(X,P,B)$, we define natural preordering \leq on P by the rule: $\alpha \leq \beta$ iff $B(x,\alpha) \subseteq B(x,\beta)$ for every $x \in X$. A subset $P' \subseteq P$ is called *cofinal* if, for each $\alpha \in P$ there exists $\beta \in P'$ such that $\alpha \leq \beta$. A ballean $\mathbb{B}=(X,P,B)$ is called *connected* if, for every two points x and y of X, there exists $\alpha = \alpha(x,y) \in P$ such that $y \in B(x,\alpha)$. The connectedness is an equivalence relation. A connected ballean $\mathbb{B}=(X,P,B)$ is called *ordinal* if P contains a cofinal subset P' which is well-ordered by \leq . We put $\mathrm{cf}(\mathbb{B})=\min\left\{\mathrm{card}(R): R \subseteq P \land R \text{ is cofinal in } \mathbb{B}\right\}$.

Observe that if we replace P by its minimal cofinal subset P', we get an asymorphic ballean [4, p. 175]. Hence, we can replace P by a regular cardinal $\rho = \operatorname{cf} \operatorname{card}(P)$ and write $\mathbb{B}(X, \rho, B)$ in the place of $\mathbb{B}(X, P, B)$.

2. Examples.

Example 1. Let (X,d) be a metric space. Put $B_d(x,\epsilon) = \{y \in X : d(x,y) \le \epsilon\}$ for every $\epsilon > 0$. The ballean $\mathbb{B}(X,d) = (X,\mathbb{R}^+,B_d)$ is called a *metric* ballean. Note that every metric ballean is ordinal.

A filter ϕ on infinite set X is called *free* if $\bigcap \phi = \emptyset$. A free filter ϕ on infinite set X is called *uniform* if $\operatorname{card}(Y) = \operatorname{card}(X)$ for every $Y \in \phi$. If $\operatorname{card}(X) \geq \kappa \geq \omega$, then the free filter of all subsets $F \subseteq X$ such that $\operatorname{card}(X \setminus F) < \kappa$ will be denoted by $\mathcal{F}_{\kappa}(X)$.

Example 2. Let X be a set and ϕ be a free filter on X. For any $x \in X$ and $F \in \phi$, we put

$$B_{\phi}(x,F) = \begin{cases} X \setminus F, & \text{if } x \notin F, \\ \{x\}, & \text{if } x \in F. \end{cases}$$

Then $\mathbb{B}(\phi) = (X, \phi, B_{\phi})$ is a symmetric ballean.

Note that $\chi(\phi) = \mathrm{cf}(\mathbb{B}(\phi))$ for every free filter on an infinite set X [4, p. 23].

Example 3. Let $\mathbb{B} = (X, P, B)$ be a ballean and ϕ be a free filter on X. We put

$$B_{\phi}(x,F) = \begin{cases} B(x,\alpha) \setminus F, & \text{if } x \notin F, \\ \{x\}, & \text{if } x \in F. \end{cases}$$

Then the ball structure $\mathbb{B}(B,\phi)=(X,P\times\phi,B_{P\times\phi})$ is a ballean. We will call it a *ballean-filter mix* of \mathbb{B} and ϕ [2].

Remark 1. Note that:

- (a) if ϕ and ψ are free filters on X such that $\phi \subseteq \psi$, then $\mathbb{B}(B,\phi) \prec \mathbb{B}(B,\psi)$;
- (b) $\mathbb{B}(B,\phi) \prec \mathbb{B}$ for every free filter ϕ on X;
- (c) if $\mathbb{B} = (X, P, B)$, $\mathbb{B}' = (X, P', B')$ and $\mathbb{B} = \mathbb{B}'$, then $\mathbb{B}(B, \phi) = \mathbb{B}(B', \phi)$ for every free filter ϕ on X.

Example 4. Given an uncountable set X and a regular cardinal $\kappa < \operatorname{card}(X)$, we define $\operatorname{Seq}(\kappa)$ as a family of all subsets A of X such that $\operatorname{card}(A) < \kappa$. We put

$$P_{\operatorname{Seq}(\kappa)} = \{ f : X \to \operatorname{Seq}(\kappa) : \forall_{x \in X} (x \in f(x) \land \{ y \in X : x \in f(y) \} \in \operatorname{Seq}(\kappa)) \}$$

and $B_{\mathrm{Seq}(\kappa)}(x,f)=f(x)$ for every $(x,f)\in X\times P_{\mathrm{Seq}(\kappa)}$. Then, thanks to regularity of κ , $\mathbb{B}(\mathrm{Seq}(\kappa))=(X,P_{\mathrm{Seq}(\kappa)},B_{\mathrm{Seq}(\kappa)})$ is a ballean.

3. Subsets of balleans. Given a ballean $\mathbb{B} = (X, P, B)$, a subset $V \subseteq X$ is called:

bounded if there exist $\alpha \in P$ and $x \in X$ such that $V \subseteq B(x, \alpha)$;

unbounded if V is not bounded;

large if there exists $\alpha \in P$ such that $X = B(V, \alpha)$;

thick if $X \setminus V$ is not large;

 α -discrete for $\alpha \in P$ if $\{B(v,\alpha) : v \in V\}$ is disjoit family.

The set of all, respectively, bounded, unbounded, large, thick subsets of ballean $\mathbb{B}=(X,P,B)$ will be denoted by, respectively, $\operatorname{Bound}(B)$, $\operatorname{Unbound}(B)$, $\operatorname{Large}(B)$, $\operatorname{Thick}(B)$. Note that every dense subset of a metric space (X,d) is large in $\mathbb{B}(X,d)$. However it is not vice versa. For example, the set of integers is large in $\mathbb{B}(\mathbb{R},d)$ but it is not dense in (\mathbb{R},d) , where d is an Euclidean metric.

It is also known that for every $\alpha \in P$ each maximal (with respect to inclusion) α -discrete subset of any ballean $\mathbb{B} = (X, P, B)$ is large in it [1, 4].

4. Density. We define a *density* of a ballean \mathbb{B} as follows:

$$den(\mathbb{B}) = min \{ card(Y) : Y \subseteq X \land Y \text{ is large in } \mathbb{B} \}.$$

Recall [1] that if X is infinite and filter ϕ is free, then ballean $\mathbb{B}(\phi)$ is unbounded and connected (such a ballean is also called a *conun*) and $\phi = \text{Large}(\mathbb{B}(\phi))$.

Remark 2. Note that $\mathrm{Large}(\mathbb{B}(B,\phi))\subseteq \phi\cap\mathrm{Large}(\mathbb{B})$. Indeed, if $Y\subseteq X$ is large in $\mathbb{B}(B,\phi)$, then there exist $F\in\phi$ and $\alpha\in P$ such that $B(Y,(\alpha,F))=X$. Hence $F\subseteq Y$ and $B(Y\setminus F,\alpha)=X$ and $B(Y\setminus F,\alpha)=X$ and $A(Y\setminus F,\alpha)=X$. So, A(Y)=X and A(Y)=X are also in A(Y)=X and A(Y)=X are also in A(Y)=X.

Corollary 1. If ϕ is a free filter on an infinite set X, then

$$den(\mathbb{B}(\phi)) den(\mathbb{B}) \le den(\mathbb{B}(B,\phi))$$

for every ballean $\mathbb{B} = (X, P, B)$. So, if ϕ is uniform, then

$$\operatorname{den}(\mathbb{B}(B,\phi)) = \operatorname{den}(\mathbb{B}(\phi)) = \operatorname{card}(X).$$

Proposition 1. Let $\mathbb{B} = (X, P, B)$ be a connected ballean with infinite support X and let ϕ be a free filter on X containing $\mathcal{F}_{\omega}(X)$ and such that $X \setminus F$ is bounded for every $F \in \phi$. Then $\text{Large}(\mathbb{B}(B, \phi)) = \phi$.

Proof. Take $F \in \phi$ and an arbitrary $y \in F$. Put $G = F \setminus \{y\}$ and choose $x \in X$ and $\alpha \in P$ such that $X \setminus G \subseteq B(x,\alpha)$. By connectedness of $\mathbb B$ there exists $\beta \in P$ such that $x \in B(y,\beta)$. By upper multiplicative condition we can find $\gamma \in P$ such that $X \setminus G \subseteq B(y,\gamma)$. So $B_{P \times \phi}(F,(\gamma,G)) = X$. Hence, $F \in \text{Large}(\mathbb B(B,\phi))$.

470 A. BRZESKA

Corollary 2. For every connected and bounded ballean $\mathbb{B} = (X, P, B)$ with an infinite support X and every free filter ϕ containing $F_{\omega}(X)$ the following equality holds:

$$den(\mathbb{B}(B,\phi)) = \min \left\{ card(F) : F \in \phi \right\}.$$

Proposition 2. Let ϕ be a free filter on an infinite set X containing $\mathcal{F}_{\omega}(X)$ and let $\mathbb{B} = (X, P, B)$ be a bounded ballean. Then

$$den(\mathbb{B}(\phi)) = den(\mathbb{B}(B, \phi)) > den(\mathbb{B}).$$

Proof. Let $Y \in \phi$ and choose $x_0 \in X$ and $\alpha \in P$ such that $B(x_0, \alpha) = X$. We consider two cases:

Case 1: Assume that $x_0 \in Y$. Then Y is large in $\mathbb{B}(B, \phi)$. Indeed, if $x_0 \in Y$, then

$$B_{P\times\phi}(Y,(\alpha,Y\setminus\{x_0\}))=X.$$

Case 2: If $x_0 \notin Y$, then $Y \cup \{x_0\}$ appears large in $\mathbb{B}(B, \phi)$, since

$$B_{P\times\phi}(Y\cup\{x_0\},(\alpha,Y))=Y\cup(B(x_0,(\alpha,Y))\setminus Y)=X.$$

Since $\operatorname{card}(Y) = \operatorname{card}(Y \cup \{x_0\})$, so $\operatorname{den}(\mathbb{B}(B, \phi)) \leq \operatorname{den}(\mathbb{B}(\phi))$. Of course, since $\mathbb{B} = (X, P, B)$ is bounded, we have $\operatorname{den}(\mathbb{B}) = 1$. By Corollary 1 the proof is complete.

Example 5. If d is the Euclidean metric and $\phi = \mathcal{F}_{\omega}(\mathbb{R})$, then $\aleph_0 = \operatorname{den}(\mathbb{B}(\mathbb{R}, d)) < \operatorname{den}(\mathbb{B}(\phi)) = \operatorname{den}(\mathbb{B}(B_d, \phi)) = \operatorname{card}(\mathbb{R})$ although $\mathbb{B}(\mathbb{R}, d)$ is not bounded.

Given a ballean $\mathbb{B}=(X,P,B)$, a set $Y\subseteq X$ has asymptotically isolated α -balls for some $\alpha\in P$ if, for every $\beta>\alpha$, there exists $y\in Y$ satisfing $B(y,\alpha)=B(y,\beta)$. If there exist $\alpha\in P$ and a set $Y\subseteq X$ which has asymptotically isolated α -balls, then we say that \mathbb{B} has asymptotically isolated balls. If $\phi_{\alpha}=\{x\in X:B(x,\alpha)=\{x\}\}$ is nonempty for every $\alpha\in P$, we will say that \mathbb{B} has asymptotically isolated 0-balls.

Example 6. If \mathbb{B} is unbounded and has asymptotically isolated 0-balls, then $\mathcal{B} = \{\phi_{\alpha} : \alpha \in P\}$ is a base for some filter ϕ_0 on X. Then $\mathbb{B} \prec \mathbb{B}(B,\phi_0)$ [2]. So, for every free filter on X such that $\phi_0 \subseteq \phi$, we have

$$\mathbb{B} = \mathbb{B}(B, \phi_0) \prec \mathbb{B}(B, \phi) \prec \mathbb{B}.$$

Hence

$$\operatorname{den} \mathbb{B} = \operatorname{den} \mathbb{B}(B, \phi_0) = \operatorname{den} \mathbb{B}(B, \phi).$$

5. Capacity. The *capacity* of a ballean $\mathbb{B} = (X, P, B)$ is determined by its thick subsets. Namely

 $cap(\mathbb{B}) = sup \{ card(\mathcal{F}) : \mathcal{F} \text{ is a disjoint family of thick subsets of } X \}.$

Recall [4, p. 175], [1] (Theorem 3.1) that $cap(\mathbb{B}) \leq den(\mathbb{B})$ for every ballean \mathbb{B} and $cap(\mathbb{B}) = den(\mathbb{B})$ for every ordinal ballean \mathbb{B} .

Remark 3. Note that Thick($\mathbb{B}(B,\phi)$) $\supseteq \phi \cup \text{Thick}(\mathbb{B})$ and

$$cap(\mathbb{B}) cap(\mathbb{B}(\phi)) \le cap(\mathbb{B}(B,\phi))$$

for every free filter ϕ and every ballean $\mathbb{B} = (X, P, B)$.

Remark 4. Note that if ϕ is a free filter on an infinite X and $\mathbb{B} = (X, \rho, B)$ is ordinal and unbounded and such that $den(\mathbb{B}) = den(\mathbb{B}(B, \phi))$, then

$$\operatorname{cap}(\mathbb{B}) < \operatorname{cap}(\mathbb{B}(B, \phi)) < \operatorname{den}(\mathbb{B}(B, \phi)) = \operatorname{den}(\mathbb{B}) = \operatorname{cap}(\mathbb{B}).$$

Remark 5. If ϕ is a free uniform ultrafilter on an infinite set X of the cardinality κ , then $cap(\mathbb{B}(\phi)) = 1$ and if also $den(\mathbb{B}) < \kappa$, then $cap(\mathbb{B}(B,\phi)) < den(\mathbb{B}(B,\phi)) = \kappa$.

Example 7. Note that if $\phi = \mathcal{F}_{\omega}(\mathbb{R})$, then $\phi \subseteq \operatorname{Thick}(\mathbb{B}(\mathbb{R},d))$. Indeed, if $Y \in \phi$ (and, hence, Y is large in $\mathbb{B}(\phi) = (\mathbb{R}, \phi, B_{\phi})$), then $\mathbb{R} \setminus Y$ is finite. So $\bigcup \{B(y, \epsilon) : y \in R \setminus Y\} \neq \mathbb{R}$ for every $\epsilon > 0$. This means $\mathbb{R} \setminus Y$ cannot be large in $\mathbb{B}(\mathbb{R},d)$. Hence, $Y \in \operatorname{Thick}(\mathbb{B}(\mathbb{R},d))$.

Recall [1] that if $\operatorname{card}(X) = \kappa$ is regular, then, since $\operatorname{Large}(\mathbb{B}(\operatorname{Seq}(\kappa))) = [X]^{\kappa}$, we have

$$1 = \operatorname{cap}(\mathbb{B}(\operatorname{Seq}(\kappa))) < \operatorname{den}(\mathbb{B}(\operatorname{Seq}(\kappa))) = \kappa.$$

Proposition 3. Let X be an uncountably infinite set and let $\kappa < \operatorname{card}(X)$ be a regular cardinal. Then

$$\operatorname{den}(\mathbb{B}(\operatorname{Seq}(\kappa))) = \operatorname{den}(\mathbb{B}(\mathcal{F}_{\kappa})) = \operatorname{den}(\mathbb{B}(B_{\operatorname{Seq}(\kappa)}, \mathcal{F}_{\kappa})) = \operatorname{card}(X)$$

and

$$\operatorname{cap}(\mathbb{B}(\operatorname{Seq}(\kappa))) = \operatorname{cap}(\mathbb{B}(\mathcal{F}_{\kappa})) = \operatorname{cap}(\mathbb{B}(B_{\operatorname{Seq}(\kappa)}, \mathcal{F}_{\kappa})) = 1.$$

Proof. To prove the statement we will note that $\mathbb{B}(\operatorname{Seq}(\kappa)) = \mathbb{B}(\mathcal{F}_{\kappa}) = \mathbb{B}(B, \mathcal{F}_{\kappa})$. Indeed, put $\mathbb{B}_1 = \mathbb{B}(\operatorname{Seq}(\kappa))$, $\mathbb{B}_2 = \mathbb{B}(\mathcal{F}_{\kappa})$ and $\mathbb{B}_3 = \mathbb{B}(B_{\operatorname{Seq}(\kappa)}, \mathcal{F}_{\kappa})$. We will show that the identity mapping is an asymorphism in each of the following three cases.

Case 1: $\mathbb{B}_1 \prec \mathbb{B}_2$. Consider $x \in X$ and $f \in P_{Seq(\kappa)}$ and put

$$F = X \setminus f(x)$$
.

Then $B_1(x, f) = f(x) = B_2(x, F)$.

Case 2: $\mathbb{B}_2 \prec \mathbb{B}_3$. Take $G \in \mathcal{F}_{\kappa}$ and $x \in X$ and put

$$f_F(x) = \begin{cases} \{x\}, & x \in F, \\ X \setminus F, & x \notin F. \end{cases}$$

Then $B_2(x, F) = B_3(x, (f_F, F))$ for every $x \in X$.

Case 3: $\mathbb{B}_3 \prec \mathbb{B}_1$. If $F \in \mathcal{F}_{\kappa}$, $f \in P_{\text{Seq}(\kappa)}$ and $x \in X$, then we define g(x) as follows:

$$g(x) = \begin{cases} \{x\}, & x \in F, \\ f(x) \setminus F, & x \notin F. \end{cases}$$

Then $B_3(x,(f,F)) = B_1(x,g)$. So \mathbb{B}_1 , \mathbb{B}_2 and \mathbb{B}_2 are pairwise asymorphic.

Observe that $den(\mathbb{B}(B, \mathcal{F}_{\kappa})) = \min \{F : F \in \mathcal{F}_{\kappa}\} = card(X).$

To see that $\operatorname{cap}(\mathbb{B}(\operatorname{Seq}(\kappa))) = 1$ suppose $A \in \operatorname{Thick}(\mathbb{B}(\operatorname{Seq}(\kappa)))$. Then $\operatorname{card}(A) = \operatorname{card}(X)$, since otherwise we could find a bijection $f: X \setminus A \to X$ and define $g(x) = \{f(x), x\}$ for every $x \in X$. Then $\mathbb{B}_{\operatorname{Seq}(\kappa)}(X \setminus A, g) = X$ and hence $X \setminus A$ would be large in $\mathbb{B}(\operatorname{Seq}(\kappa))$, so we would get a contradiction.

So there exists a bijection $f: A \to X$ and $g \in P_{\operatorname{Seq}(\kappa)}$ (defined as above) such that $\mathbb{B}_{\operatorname{Seq}(\kappa)}(A,g) = X$. Hence $A \in \operatorname{Large}(\mathbb{B}(\operatorname{Seq}(\kappa)))$. So since $\operatorname{Thick}(\mathbb{B}(\operatorname{Seq}(\kappa))) \subseteq \operatorname{Large}(\mathbb{B}(\operatorname{Seq}(\kappa)))$ we have $\operatorname{cap}(\mathbb{B}(\operatorname{Seq}(\kappa))) = 1$.

472 A. BRZESKA

Example 8. If $\phi = \mathcal{F}_{\omega}(\mathbb{R})$, then density and capacity of $\mathbb{B}(\mathbb{B}(\mathbb{R},d),\phi)$ are equal and uncountable. Indeed, if $A \in \text{Large}(\mathbb{B}(\mathbb{R},d),\phi))$, then $A \in \phi$, so A is uncountable. For estimating the capacity we put $A_x = \{x + k : k \in \mathbb{Z}\}$ for every $x \in \mathbb{R}$. Then $\{A_x : x \in [0,1)\}$ is a family of pairwise disjoint thick subsets of $\mathbb{B}(\mathbb{B}(\mathbb{R},d),\phi)$. Hence

$$\operatorname{cap}\left(\mathbb{B}\left(\mathbb{B}(\mathbb{R},d),\phi\right)\right) = \operatorname{den}\left(\mathbb{B}\left(\mathbb{B}(\mathbb{R},d),\phi\right)\right) > \operatorname{den}\left(\mathbb{B}(\mathbb{R},d)\right) = \aleph_{0}.$$

Recall that $\rho \leq \operatorname{den}(\mathbb{B})$ for every unbounded ordinal ballean $\mathbb{B} = (X, \rho, B)$ [1] (proof of the Theorem 3.1).

Proposition 4. If $\mathbb{B} = (X, \rho, B)$ is an unbounded ordinal ballean and $\operatorname{card}(X) = \kappa > \aleph_0$ is such that $\operatorname{den}(\mathbb{B}) < \kappa$, then

$$\operatorname{cap}(\mathbb{B}(B,\mathcal{F}_{\rho}(X))) = \operatorname{den}(\mathbb{B}(B,\mathcal{F}_{\rho}(X))) = \operatorname{card}(X)$$

and there exists a disjoint family $A \subseteq \text{Thick}(\mathbb{B}(B, \mathcal{F}_{\rho}(X)))$ such that $\text{card}(A) = \kappa$.

Proof. Let $\kappa = \operatorname{card}(X)$ and $\mathcal{P} = \{X_\tau : \tau < \rho\}$ be a disjoint family of sets, such that $\bigcup \mathcal{P} = X$ and $\operatorname{card}(X_\tau) = \kappa$ for every $\tau < \rho$. Let $\{x_\lambda^\tau : \lambda < \kappa\}$ be an enumeration of X_τ for every $\tau < \rho$. Then $Z_\lambda = \{x_\lambda^\tau : \tau < \rho\} \in \operatorname{Thick}(\mathbb{B}(B, \mathcal{F}_\rho(X)))$ for every $\lambda < \kappa$. Indeed, suppose there exist $\lambda < \kappa$, $F \in \mathcal{F}_\rho(X)$ and $\alpha < \rho$ such that $B_{\rho \times \mathcal{F}_\rho(X)}(X \setminus Z_\lambda, (\alpha, F)) = X$. Then $S = F \setminus (X \setminus Z_\lambda) \neq \emptyset$. Hence $B_{\rho \times \mathcal{F}_\rho(X)}(X \setminus Z_\lambda, (\alpha, F)) \subseteq X \setminus S \neq X$, a contradition.

So, $cap(\mathbb{B}(B, \mathcal{F}_{\rho}(X))) = \kappa$.

Theorem 1. Let $\mathbb{B} = (X, \rho, B)$ be an ordinal unbounded ballean with an uncountable support X and let ϕ be a free filter on X containing $\mathcal{F}_{\omega}(X)$ and such that $X \setminus F \in \text{Bound}(\mathbb{B})$ for every $F \in \phi$. Then $\text{cap}(\mathbb{B}(B, \phi)) = \text{den}(\mathbb{B}(B, \phi))$ and there exists a disjoint family $A \subseteq \text{Thick}(\mathbb{B}(B, \mathcal{F}_{\rho}(X)))$ of the cardinality $\text{den}(\mathbb{B}(B, \phi))$.

Proof. Assume that $\kappa = \operatorname{den}(\mathbb{B}(B,\phi))$. Let $F \in \operatorname{Large}(\mathbb{B}(B,\phi))$ be such that $\operatorname{card}(F) = \kappa$. We choose $\alpha_1 < \rho$ and $G \in \phi$ such that $X = B_{\rho \times \phi}(F,(\alpha_1,G))$ and take an arbitrary $x_0 \in X \setminus G$. Since $\rho \leq \operatorname{den}(\mathbb{B})$, we shall consider two cases:

Case 1: $\rho < \operatorname{cf} \kappa$. Inductively assume that, for some $\beta < \rho$, we have just defined a family $\{Y_{\alpha} \subseteq F : \alpha < \beta\}$ and a strictly increasing sequence $\{\gamma_{\alpha} : \alpha < \beta\}$ such that, for each $\alpha < \beta$, the following conditions hold:

- (i) $\operatorname{card}(Y_{\alpha}) = \kappa;$
- (ii) $\gamma_{\alpha} > \alpha$;
- (iii) $Y_{\alpha} \subseteq B(x_0, \gamma_{\alpha}) \setminus B(x_0, \alpha)$.

Consider $\beta = \alpha + 1$ for some $\alpha < \kappa$. Let $Z = F \setminus B(x_0, \gamma_\alpha)$. Observe that $\operatorname{card}(Z) = \kappa$. Indeed, on the contrary $L = Z \cup \{x_0\} \in \operatorname{Large}(\mathbb{B}(B, \phi))$. To see this we use the upper multiplicative condition and find an $\alpha_2 < \rho$ such that $B(B(x, \alpha_0), \alpha_1) \subseteq B(x, \alpha_2)$ for every $x \in X$. So we obtain the following:

$$X = B_{\rho \times \phi}(F, (\alpha_1, G)) \subseteq B_{\rho \times \phi}(Z, (\alpha_1, G)) \cup B_{\rho \times \phi}(B(x_0, \alpha_0), (\alpha_1, G)) \subseteq$$
$$\subseteq B_{\rho \times \phi}(Z, (\alpha_1, G)) \cup B_{\rho \times \phi}(x_0, (\alpha_2, G)) \subseteq$$
$$\subseteq B_{\rho \times \phi}(Z \cup \{x_0\}, (\max(\alpha_2, \alpha_1), G)).$$

So, $Z \cup \{x_0\} \in \text{Large}(\mathbb{B}(B, \phi))$ and its cardinality is smaller then κ . A contradiction.

Since $\rho < \operatorname{cf} \kappa$ we can choose $\gamma_{\beta} > \gamma_{\alpha}$ such that $\operatorname{card}(Z \cap B(x_0, \gamma_{\beta})) = \kappa$. Put $Y_{\beta} = Z \cap B(x_0, \gamma_{\beta})$.

If β is a limit cardinal then, by regularity of ρ , there exists $\gamma < \rho$ such that $\tau > \gamma_{\alpha}$ for each $\alpha < \beta$. Then take $Z = F \setminus B(x_0, \tau)$ and again choose $\gamma_{\tau} > \gamma$ such that $\operatorname{card}(Z \cap B(x, \gamma_{\tau})) = \kappa$ and put $Y_{\beta} = Z \cap B(x, \gamma_{\tau}) \subseteq F$.

Let $\{y_{\alpha}^{\lambda} \colon \lambda < \kappa\}$ be an enumeration of Y_{α} for every $\alpha < \rho$. Then $T_{\lambda} = \{y_{\alpha}^{\lambda} \colon \alpha < \rho\} \not\in \text{Bound}(\mathbb{B})$ for every $\lambda < \kappa$. Indeed, if there exist $x \in X$ and $\alpha_0 < \rho$ such that $T_{\lambda} \subseteq B(x, \alpha_0)$, then by connectedness and upper multiplicative condition we can find $\alpha_1 < \rho$ satisfying $T_{\lambda} \subseteq B(x_0, \alpha_1)$. But $y_{\alpha}^{\lambda} \not\in B(x_0, \alpha_1)$ for $\alpha > \alpha_1$. A contradiction. So, $T_{\lambda} \in \text{Thick}(\mathbb{B}(B, \phi))$ for every $\lambda < \kappa$.

Case 2: Now assume cf $\kappa \leq \rho \leq \operatorname{den}(\mathbb{B})$. Let $g: \rho \to \kappa$ be an injection holding $g(\rho)$ cofinal in κ . Inductively assume that for some $\beta < \rho$ we have already defined a family $\{Y_{\alpha} \subseteq F : \alpha < \beta\}$ and a strictly increasing sequence $\{\gamma_{\alpha} : \alpha < \beta\}$ such that following conditions hold:

- (i) $\gamma_{\alpha} > \alpha$;
- (ii) $Y_{\alpha} \subseteq B(x, \gamma_{\alpha}) \setminus B(x, \alpha);$
- (iii) $\operatorname{card}(Y_{\alpha}) = g(\alpha)$.

Consider $\beta = \alpha + 1$ for some $\alpha < \rho$. Put $Z = F \setminus B(x_0, \gamma_\alpha)$. Since $\operatorname{card}(Z) = \kappa$ (compare with Case 1) and $\rho < \kappa$ there exists a $\gamma_\beta > \gamma_\alpha$ such that $\operatorname{card}(B(x_0, \gamma_\beta) \cap Z) \ge g(\beta)$. We choose $Y_\beta \subseteq B(x_0, \gamma_\beta) \cap Z$ of the cardinality $g(\beta)$.

If β is a limit cardinal then, by regularity of ρ , there exists $\gamma < \rho$ such that $\tau > \gamma_{\alpha}$ for each $\alpha < \beta$. Then take $Z = F \setminus B(x_0, \tau)$ and choose $\gamma_{\tau} > \gamma$ such that $\operatorname{card}(Z \cap B(x, \gamma_{\tau})) = g(\beta)$. Put $Y_{\beta} = Z \cap B(x_0, \gamma_{\tau})$.

Let $\{y_{\alpha}^{\lambda} : \lambda < g(\alpha)\}$ be an enumeration of Y_{α} for every $\alpha < \rho$ and let define

$$T_{\lambda}^{\alpha} = \left\{ y_{\beta}^{\lambda} : \alpha + 1 \le \beta < \rho \right\}$$

for every $\alpha < \rho$ and $\lambda < \kappa$ such that $g(\alpha) < \lambda < g(\alpha + 1)$. Then $X \setminus T_{\lambda}^{\alpha} \notin \operatorname{Bound}(\mathbb{B})$ for every λ and α (compare with Case 1), so $T_{\lambda}^{\alpha} \in \operatorname{Thick}(\mathbb{B}(B,\phi))$. Of course

$$\mathcal{A} = \{ T_{\lambda}^{\alpha} : g(\alpha) < \lambda < g(\alpha + 1) \land \alpha < \rho \}$$

is a disjoint family and thanks to choice of g, $card(A) = \kappa$.

We conclude also that Theorem 3.3 of [1] implies the following statement.

Corollary 3. Let $\mathbb{B} = (X, P, B)$ be a ballean, $\operatorname{card}(X) = \kappa$, $\operatorname{card}(P) \leq \kappa$. Then, for every free filter ϕ on X, there exists a disjoint family $\mathcal{F} \subseteq \operatorname{Thick}(\mathbb{B}(B, \phi))$ such that $\operatorname{card}(\mathcal{F}) = \kappa$ and provided that one of the following conditions is satisfied:

- (i) there exists $\kappa' < \kappa$ such that $\operatorname{card}(B(x, \alpha)) \le \kappa'$ for all $x \in X$ and $\alpha \in P$;
- (ii) $\operatorname{card}(B(x,\alpha)) < \kappa$ for all $x \in X$ and $\alpha \in P$ and κ is regular.

References

- 1. I. V. Protasov, Cellularity and density of balleans, Appl. General Topology, 8, № 2, 283 291 (2007).
- 2. O. V. Petrenko, I. V. Protasov, Balleans and filters, Mat. Stud., 38, № 1, 3 11 (2012).
- 3. I. V. Protasov, Coronas of balleans, Topology and Appl., 149, 149-160 (2005).
- 4. I. Protasov, M. Zarichnyi, General asymptology, Math. Stud. Monogr. Ser., 12, VNTL Publ., Lviv (2007).

Received 18.04.17, after revision -23.02.21