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COMBINING INTERPOLATION SCHEMES
AND LAGRANGE INTERPOLATION ON THE UNIT SPHERE IN RNV+1*

KOMBIHYBAHHSI IHTEPHOJISINIAHUX CXEM
TA THTEPIIOJISILIT JIATPAHKA HA OMUHUYHINA COEPI B RV +!

We study Lagrange interpolation in R™ and on the unit sphere in RN+, We show that sequences of unisolvent sets can be
combined to get other sequences of unisolvent sets such that the existence of the limits is preserved. Moreover, the limiting
operators keep the interpolation conditions under the combining process.

Busuaetbest inTepromsmist Jlarpamka 8 RY ta ua ogummaniit cdepi 8 RN 1. Jloeneno, mo mocnizoBrocTi yHiposs’s3amx

MHOKHH MOJKHa CKOMOiIHYBaTH B iHIII MMOCIITOBHOCTI TaKMM YHHOM, IO ICHYBaHHS MEX 30DKHOCTI Oyae 30epexeHo. |
HaBITb OisIblle, Y TakoMy KOMOiHYBaHHI T'paHUYHI OIEPAaTOPH TaKOXK 30€piratoTh yMOBHU IHTEPIIOJSAIIT.

1. Introduction. Let P;(RY) be the vector space of all polynomials of degree at most d in R, It
N +d
is known that the dimension m4(RY) of Pz(R") equals ( ; ) Let E be a nonempty subset of

RY. Then the polynomials in Py(RY), when restricted to FE, form a vector space, say Py(FE). We
denote by mg4(E) the dimension of Py(E). If SV is the unit sphere in RN¥+!, then

ma(SY) = <N; d) + (N +]\cfl 1>.

More generally, if E is an algebraic variety in R, then one can compute mg(E) precisely (see
Subsection 2.2). Since P4(F) is a finite dimensional vector space, any two norms on P4(E) are
equivalent. Hence, the convergence on P4(E) can be understood as the convergence under any norm
on Py(E).

Asubset X = {x1,...,X;,,(g)} of mg(F) distinct points of £ is said to be unisolvent for Py(F)
if, for every function f defined on X, there exists a unique P € Py(F) such that f(x) = P(x)
for all x € X. This function is called the Lagrange interpolation polynomial of f at X on E
and is denoted by Lg[X; f]. When E = RV we write L[X; f] for Lgn[X; f]. Given a basis
B={pi,..-,pm a E)} for Py(E), the (generalized) Vandermonde determinant with respect to 3 and
X is defined by

VDM(B; X)) = det[ps(x;)]1<i j<my(B)-

It is known that X is unisolvent for P;(F) if and only if VDM(B; X) # 0. The Vandermonde
determinant is a polynomial of interpolation points. Hence, it is different from zero for almost
all choices of interpolation points. In other words, a subset A C F of mgy(FE) distinct points is
unisolvent for almost all choices of A. On the other hand, given a set of points on F, it is difficult
to check whether it is unisolvent.

* This research was supported by the Vietnam Ministry of Education and Training (grant number B2021-SPH-16).

© V. M. PHUNG, V. T. NGUYEN, H. L. DINH, 2022
542 ISSN 1027-3190. Yxp. mam. owcypn., 2022, m. 74, Ne 4



COMBINING INTERPOLATION SCHEMES AND LAGRANGE INTERPOLATION ... 543

Roughly speaking, a Hermite interpolation problem is more general than a Lagrange interpolation
problem. More precisely, the problem means to find a polynomial which matches, on a set of distinct
points in F/, values of a function and its partial derivatives. If the interpolation problem has a unique
solution, then we say that the problem is poised. Unlike the univariate Hermite interpolation, the
multivariate Hermite interpolation on E is not always poised. Moreover, it is difficult to check
whether a particular Hermite problem is poised.

We are concerned with the problem of determining the limits of Lagrange interpolation polyno-
mials, which generalizes the problem considered in [10].

Problem. a) Construct unisolvent sets for Pq(E).

b) Let {X,,} be a sequence of unisolvent sets for Pq(E). Find conditions such that the sequence
{Lg[Xy; f]} converges for every suitably defined function f and characterize the limiting operator
H(f).

The problem has been solved in some special cases. It is expected that H(f) is a Hermite type
projector on E. Let us consider the problem in RY. If N = 1 and X, coalesces to some points, then
Theorem 1.4 in [2] points out that {L[X,,; f]} converges to the univariate Hermite interpolation at
the limiting points when f is sufficiently smooth. Bloom and Calvi in [1] gave sufficient conditions
to guarantee the convergence of multivariate Lagrange projectors to the Taylor projector. In a recent
work, Phung [10] showed that the limit of the bivariate Lagrange interpolation polynomials at Bos
configurations distributed on straight lines and circles is a Hermite type interpolation polynomial
when the interpolation points coalesce.

The problem is solved in some cases where F is an algebraic hypersurface. When FE is a circle in
R?, we showed in [11] (Proposition 4.1) that the Lagrange interpolation on E converges to a Taylor
type polynomial when all interpolation points tend to a single point. An extension of this result for
irreducible algebraic curves in C? was given in [7]. It is worth pointing out that analogous result
in [7] also hold when we replace complex curves in C? by real curves in R? (see Example 2.4 for
details). Also in [11], we constructed new Lagrange and Hermite interpolation schemes on 2-sphere
S2. The unisolvent sets for P4(S?) are located on d + 1 circles on S? in which the kth circles
contains 2k — 1 points. Fortunately, we can write the interpolation polynomials into Newton forms
and use them to prove that Lagrange projectors tend to Hermite type projectors on S? (see Example
2.5). In [10], the first author of this paper gave new Lagrange and Hermite interpolation schemes
on the unit sphere S?. More precisely, the unisolvent sets are the images of Bos configurations of
points distributed on straight lines and circles in R? under the trivial parametrizations of the upper
and lower half spheres. Here the special configurations of interpolation points on S? enable us to
reduce the limiting problem on the sphere to a limiting problem in R? which is solvable. As a result,
H(f) is a certain Hermite projector on S2. For details, we refer the readers to [10].

For convenience, we will say that a sequence of unisolvent sets {X,,} C E is normal (resp.,
regular) if F is an algebraic variety in RY (resp., E = R™) and the sequence {Lz[X,; f]} converges
for every suitably defined function f. Precise examples of such sequences are presented in Subsection
2.3. In this paper, we first want to find methods to combine regular and normal sequences to create
similar sequences. In this direction, we prove in Theorem 3.1 that a regular sequence in RY can
combine with a normal sequence on an algebraic variety in R” to form a regular sequence. Moreover,
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the interpolation conditions of the limiting operators preserve under the combining process. In
particular, the union of suitable normal sequences on algebraic varieties in RY is a regular sequence
in which the limiting operator inherits the interpolation conditions from the limiting operators on
algebraic varieties.

We also investigate the problem on the unit sphere SV in RV, We first construct unisolvent
sets on S™V. They are of the form

Xo = R+(A0) UR™ (A()) U R+(B()),
where R* is the trivial parametrizations of the half spheres

RE(x) = (x VI=Tx?), R(x) = (x—VI-[x?), [xl<1,

and Ag, By are unisolvent for P;_1(R"™) and Py (E), respectively. Here E is a hyperplane in RY.
We show in Theorem 4.2 that if {A4,,} is a regular sequence in the unit ball in RY and {B,} is a
normal sequence on a hyperplane, then

X, = R (An) UR™(A,) U R (B,)

is a normal sequence on SV. Furthermore, the limiting operators composed with RT also preserve
the interpolation conditions. Our new theorems generalize results in [10].

Notations and conventions. The points in RY are denoted by bold letters. The Euclidean norms
of x € RY is denoted by ||x||. The symbol SV stand for the unit sphere in RV*!. For a € R" and
r > 0, we denote by B (a, ) the Euclidean ball of centre a and radius r. We write B = BV (0, 1),
the unit ball. Throughout this paper, we denote by F, A the R-algebras of functions defined in RV
that contain the space of all polynomials P(R”). For a closed subset K of RY, we write C™(K)
for the space of all continuously differentiable functions in neighborhoods of K. We always assume
that d is a positive integer.

2. Regular and normal sequences of unisolvent sets. 2.1. Regular sequences of unisolvent
sets in R,

Definition 2.1. Let {A,} be a sequence of unisolvent sets for Py(RY) and F be an algebra of
functions defined in RY . We say the {A,} is F-regular if, for any f € F, the sequence {L[Ay; f]}
is convergent in Pg(RY).

Let {A,} be a F-regular sequence for P;(R"). We can define

A(f):= lim L[A,; f], feF.

n—oo

Then A: F — P4(RY) is linear map. It can be regarded as a Hermite type interpolation operator
in RV,

Lemma 2.1. If {A,} be a F-regular sequence of unisolvent sets for Pq(R™) and A is the limit
of the sequence of Lagrange projectors {L[Ay; |}, then

A(fA(g9)) = A(fg), f.g€F.
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Proof. We first claim that L[A,,; fL[Ay; g]] = L[Ay; fg]. Both sides are polynomials of degree
at most d and agree at any points of A,,,

L[An; fL[An; gll(a) = f(a)L[An; gl(a) = f(a)g(a) = L[Ay; fgl(a), a€ Ay

The desired relation follows from the uniqueness of Lagrange interpolation. Let {p1,...,pn,} be a
m m

basis for Py(RY) with m = mq(RY). We write A(g) = > _¢ip; and L[An;g] = > chi.
1= 1=

By the hypothesis, lim,, .o c}' = ¢;, i =1,...,m. We have

A(fA(g))_ hm L[Anva = lim Zcz Amfpz =

n—o0

hm chL Anafpz] - hm L[ATUfL[ Tl7 H =

n—00
=1

= lim L[Ay; fg] = A(fg).

Here, in the third equation, we use the fact that {L.[A,,; fp;]} is bounded since it converges to A(fp;),
1=1,....,m
Lemma 2.2. Let {A,} be a F-regular sequence for Py(RN). If {P,} C Pi(RYN) converges to
P € Pi(RYN), then
h_{n L{An; fP] = A(fP), feF.

Proof. Let {p1,...,pm} be a basis for Pi(RY) with m = my(RY). We write P = E " | @i
1=
and P, = E m . a;'p;. By the hypothesis, lim, o a]' = a;, ¢ =1,...,m. It follows that
1=

lim L[Ay; fPy] = lim Y af'L[An fpi] = ) aib(fpi) = A(FP),

n—o00 £
=1

where, in the second equation, we use the fact that lim,, oo L[Ay; fpi] = A(fpi), i=1,...,m
2.2. Normal sequences of unisolvent sets on algebraic varieties. Throughout this subsection
we always assume that E is a real algebraic variety in RY such that its ideal

I(E) = {p € P(RY): p is identically zero on E}

is principal, i.e., generated by a single element ¢ € P(R”Y) with degq > 1.

We recall some arguments in [3]. Let ®: Pg(RY) — Py(E) be the continuous surjective linear
map defined by ®(Q) = Q|g. Then ker & = Z(E) N Py(RN). For each Q € ker ®, our assumption
implies that ¢ divides ). This enables us to find ()1 € Pd_degq(RN ) such that @ = ¢@Q;. Hence
ker ® C qPy_degq(RY). The converse inclusion is trivial. It follows that ker ® = qPj_qeg(RY).
Consequently,

ma(E) = dim Py(RY) — dimker ® = mg(RY) — mg_deg o(RY).

Here we make the convention that md_degq(RN ) = 0 when deg ¢ > d.
Next we give an analog of the notion of regular sequences presented in the above subsection.
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Definition 2.2. Let E be an algebraic variety in R such that T(E) is generated by a non-
constant polynomial q. Let {B,} C E be a sequence of unisolvent sets for Py(E) and A be an
algebra of functions defined on E. The sequence {B,} is said to be A-normal if {Lg[By; f|} is
convergent in Py(E) for every f € A.

Let ®: Py(RY) — Py4(FE) be the continuous surjective linear map defined above. Note that
ker & is a subspace of the finite-dimensional vector space Py(R"Y). We now denote by Q the
supplementary space of ker ® in Pg(RY), i.e.,

Pa(RY) = Q @ ker ®.
Then ® restricted on Q is a bijective from Q onto P4(E). Furthermore, the two maps
Plg: Q@ = Py(E) and (D|o) t:Py(E) = Q

are continuous maps between two normed spaces. If P € Py(E), then (®|g)~1(P) € Py(RY) and
(®lo)"(P)|s = P.
If By be a unisolvent set for P;(E), then we define

I[Bo; f] := (®|o) ' (Lg[Bo; f]), f€ A

It is easy to see that I[By;-]: A — Q is a linear map.
Lemma 2.3. The operator 1| By; -] has the following properties:
a) for every f € A, 1|Bo; f] interpolates f at By, i.e., I[By; f](b) = f(b), b € By;
b)if f € A, f =0 on By, then I[By; f] = 0.
Proof. By definition we have

I[Bo; f](b) = Lg[Bo; f](b) = f(b) Vb € Bo.

If f =0 on By, then Lg[Bo; f] = 0. It follows that I[By; f] = (®|g) }(Lg[Bo; f]) = 0.
The following result gives a connection between the above operator and a normal sequence.
Lemma 2.4. Let E be an algebraic variety in RN such that T(E) is generated by a non-
constant polynomial q. Let B,, C E be a unisolvent set for Py(E) and A be an algebra of functions.
Then the sequence { By} is A-normal for Py(E) if and only if the sequence {I[By; f]} is convergent
in Pg(RN) for every f € A, where I[B;-]: A — Q defined by

I[By; f] := (I)_I(LE[BMf])v feA

Proof. We first assume that {B,} is A-normal for P4(E). Since ®~! is continuous and
{Lg[By; f]} is convergent, I[B,; f] is also convergent.

Conversely, the sequence {Lg[By; f]} is convergent, because {I[B,; f]} is convergent and ® is
continuous.

We set

() = lim 1By f], feA

Then IT: A — P4(RY) is a linear map which can be viewed as a Hermite type interpolation operator
on E. Next we investigate some properties of II.
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Lemma 2.5. Let E be an algebraic variety in RN such that T(E) is generated by a non-
constant polynomial q. Let {B,,} C E be an A-normal sequence for Py(E). Then, for any f,g € A,
we have:

a) (¢f) = 0;

b) T1(fTI(g)) = T1(fg); in particular, TI(T1(g)) = TI(g).

Proof. a) Since B,, C E, the function ¢f vanishes on B,. Hence I|B,;qf] = 0 for all n > 1.
It follows that II(qf) = lim, o0 I[By; ¢ f](¢f) = 0.

b) We have fI[B,;g] — fg = 0 on B,,. Hence, by Lemma 2.3, I|B,; fI|B,;g] — fg] = 0. It
follows that

I[By; f1[Bn; g)] = I[By; fg].

We now apply the arguments given in the proof of Lemma 2.1, with L[A,; ] and A replaced by
I[B,; ] and II, respectively, to obtain the desired relation.

Lemma 2.6. Let E be an algebraic variety in RY such that T(E) is generated by a non-
constant polynomial q. Let {B,} be an A-normal sequence for Py(E). If {P,} C Pi(RY) con-
verges to P € Pr(RY), then

lim I[By; fP,] =1I(fP), [€A

n—0o0

Proof. The proof is similar to that of Lemma 2.2. Let {p1,...,pn} be a basis for P (RY) with
m = my(RY). We write P = >, aip; and P, = Y, al'p;. By the hypothesis, lim,, . al' = a;,
1 =1,...,m. It follows that

m

lim I[By; fP,] = lim Za I[By; fpi] = Z;azﬂ(fpi) =1I(fP),
where, in the second equation, we use the fact that lim,, oo I[By; fpi] = I(fpi), i=1,...,m

2.3. Examples.
Example2.1. Let {A,} be a sequence of unisolvent sets for P;(RV) such that, for every multi-
index a with |a| =d + 1,
lim L[A4,;x%] =0.

n—o0

Bloom and Calvi proved in [1] that
lim sup{||x||: x € A,} =0
n—oo

and
lim L[4, f] = To(f) Vf € C™ED71({o)),

where Td( f) stands for the Taylor expansion of f at O to the order d. In other words, {4,} is
Cma(RT)=1(10})-regular. In [1], the authors also gave some examples of {A,,} satisfying the above
assumption.

Example2.2. A set of N hyperplanes H = {hy,...,hy} in RY is said to be in general position
if the intersection of the N hyperplanes is a singleton, that is,

N

() s = {au}.

Jj=1
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More generally, a collection H of d > N hyperplanes in R is said to be in general position if
(1) every H € (%), a subset of N hyperplanes of H, is in general position;
(2) the map

Y N
H e (N> '—>aH:mh]‘
J=1
1S one-to-one.
Let us set

@H:{aH:HE <;’LV‘>}

which is called a natural lattice of degree d — N. It was proved in [8] that @ is unisolvent for
Py_n(RY). Moreover, the corresponding Lagrange interpolation polynomial has a simple formula.

Let d > N and let ©() be a sequence of natural lattices of degree d — N in RV, We assume
that ©(%) is the lattice generated by the family of hyperplanes

HO = (a7, w0} with AP (x) = @ x) Il =1, =1, 4,

where (-, -) is the scalar product in RY. Consider the following two conditions:

(C1) all points of the lattices tend to the origin as s — oo, that is, max{||al: a € ©®)} — 0 as
5 — 00;

(C2) the volumes

Vol(ng-f),...,ng-fv)), 1< <joa<...<jn <d,
of the parallelotope spanned by the vectors n(s), e ,ngf;) are bounded from below, always from 0,

J1
uniformly in s.

We proved in [6] (Theorem 3.1) that if the above two conditions hold, then

lim LOW; f]=TaN(f), fecN({o}).

S5—00

Hence, we can say that {©()} is C*N+1({0})-regular.
d
Example2.3. Let § > 0 and d > 2 be a positive integer. We define m = [2] + 1 and

S ={s1,...,8m} with s =d—2k+2fork=1,...,m. Let A = {aj,...,a,} be m distinct points
in R?. Each point ay, is associated to a sequence of circles {C7'} with CP = {x: ||x — ax|| = rk..}
such that lim,, oo 7%, = 0. For 1 <k <m and n > 1, let X' be a J-separate set of 2s;, + 1 points
on C7, ie.,

|b—c| >drg,, b,ceX;, b#ec.

Then X" := U™ X7 is a unisolvent set for 7;(R?) and is called a Bos configuration on circles.
Let F be the class of all bivariate functions of class C** in neighborhoods of the ay’s. It was proved
in [9] that, for any f € F,

lim L[X"; f] = H[(4, 5); f],

n—oo

where H[(A, S); f] is a Hermite type projector satisfying the relations
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) 9 \* ) 9 \*
( - ) HI(4, 5): fl(ay) = (a - 81,) faw, 1<k<m 0<j<sp
where i is the imaginary unit and x = (1, x2). It follows that { X"} is F-regular. A generalization
of the above result can be found in [10].

Example2.4. Normal sets can be constructed on irreducible algebraic curves in R?. Indeed, let
A — {a(()”), o ,agz)} be distinct points on the circle C(0, p) and b € C(0, p) such that agn) —b
as n — oo. Let g be a real-valued functions in C24(§2), where § is a neighborhood of b in C(0, p).
Proposition 4.1 in [11] asserts that the following limit exists:

lim L) [A™, g]. (2.1)

n—oo

Moreover, the limit depends only on b and ¢ and is denoted by Tdb(g) which satisfies the relations

:(g(pcosa,psina))(k) , k=0,...,2d,

a=a* a=o*

. (k)
(Th(9)(peosa, psina))

where b = (pcosa*, psina*). In other words, {A™} is A-normal on C(0, p), where A is the
algebra of all functions of class C?? in neighborhoods of b on C/(0, p).

More general result also holds when we replace the circle by irreducible algebraic curves in R2.
In [7], we studied the polynomial interpolation on irreducible algebraic curves in C2. However, with
simple adaptions, every result remains true in the real settings. The passage to the real case can be
found in [4].

Let ¢ be an irreducible polynomial in R? such that V := {x € R?: ¢(x) = 0} contains at least
one regular point. In [5], the authors defined the notion of d-Taylorian points on V. Note that all but
finitely many points on V' are d-Taylorian (see [5], Theorem 4.10). Bos and Calvi proved in [4] that,
for every function f of class C™4(Y)=1 on a neighbourhood of a d-Taylorian point a € V, there
exists a unique polynomial P € P4(V') such that, for every local parametrization £ = (0,U, R) of
V at a with R(0) = a, we have

(PoR)D(0) = (foR)D(0), i=0,...,mq(V)—1.

The above interpolation polynomial is called the d-Taylor polynomial of f at a and is denoted by
T2(f). We proved in [7] that it is the limit of Lagrange interpolation on V. More precisely, we
proved in Theorems 4.1 and 4.2 that if A,, C V, n € N is a sequence of unisolvent sets for Py(V')
whose points tend to a d-Taylorian point a, i.e., max{||x —al|: x € A,} — 0 as n — oo, then

Jim Ly [Ay; f]= Ta(f)

for every function f of class C™4(V)~1 on a neighborhood of a in V. Hence every sequence of
unisolvent sets {A,} C V tending to a d-Taylorian point a is normal.

Example2.5. In [11], we give some normal sequences on the unit sphere in R3. Associated with
each point a = (sin @ cos ¢, sin 0 sin ¢, cos §) € S?, we denote R, by the local parametrization of S
at a,

Ry = (R}v R?i’ R§)7

where
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RL(u,v) = (cos @ cos p)u — (sin p)v + (sin  cos ) V1—u2 -2,
R2(u,v) = (cos sin p)u + (cos ¢)v + (sin O sin ) V12— 02,
R3(u,v) = —(sin0)u + (cos 0)v/1 — u2 — v2,

For p € (0, 1], we consider the linear polynomial

a,p(X) = (sinf cos p)x1 + (sinfsin )y + (cos)xz — /1 — p2.

The plane {¢a,, = 0} cuts a small spherical cap off the sphere in which the circle of the base denoted
by C(a, p) is of radius p and the peak point is a.

Let § > 0. Let ag,...,aq be d + 1 distinct points on S?. Each point a; is associated with a
sequence of circles C(aj,pg.")) where pg-n) € (0,1) and lim, s ,ojn) = 0. For each n > 1, let
A}n) be a set of 2(d — j) + 1 distinct points on C(a;, pg-n)) such that Ag-n) is d-separate. Let us set
A = U?:o Ag-n). Let A be the algebra of functions of class C~7) in a neighborhood of a;j in §?,
j=0,...,d. For each f € A, we have

lim Lg2[A™; f] = T (f).

n—oo

Here the right-hand side is a Hermite type interpolation defined in [11] (Theorem 3.4) which satisfies
the relation

(Cfu —ii)k(ﬂ(l)(f) 0 Ra;)(0,0) = ((,fu —g’)k (f o Ra,)(0,0),

j=0,....d, k=0,1...,d—3j.

The above assertion is proved in [11] (Theorem 3.7) and gives an .A-normal sequence.

Another type of normal sequence is constructed in [11] (Theorem 4.4).

Let ag,...,a be d + 1 not necessarily distinct points on S? and po,...,pqs € (0,1]. On each
circle C(aj, pj), we take a point b; which does not lie on C(ay, pi) for j > k. For j = 0,...,d
and n > 1, let A§n) be a set of 2(d — j) + 1 distinct points on C(aj, pj) such that A§n) — bj.
Set A = U?:o Ag.”). Then, for each function f of class C2(@~*) in a neighborhood of by, on S?,
k=0,...,d, we have

lim Lga[A™); f] = TI®)(f), (22)
n—oo
where Ag.") — b; means that all points in Agn) tend to b; as n — oco. Here the right-hand side is a
Hermite type interpolation defined in [11] (Theorem 4.3) which satisfies the relation

(000 gy sy sine))

= ((f © Ra,)(pj cos a, p; sina))(k) ‘

a=q; a=q;

forall j =0,...,dand k =0,...,2(d — j).
Example2.6. Let ¢ be a linear polynomial in RY and V = {x € RV : ¢(x) = 0}. Then V
can be viewed as a (N — 1)-dimensional space. Then any F-regular sequence in V' is a F-normal

sequence on the subset ¥V of R™. Hence Examples 2.1-2.3 give normal sequences on V. This type
of normal sequence is used in Theorem 4.2 below.
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3. Combining interpolation schemes. The aim of this section is to study the behavior of
Lagrange projectors in RY when the interpolation points are collected from regular sequences and
normal sequences. The method is inspired from [3].

Theorem 3.1. Let d, k be non-negative integer with k < d. Let E be an algebraic variety in
RN such that T(E) is generated by a non-constant polynomial q with degq = d—k. Let {B,} C E
be an A-normal sequence for Py(RYN). Let {A,} be a F-regular sequence for Py(RY) such that
AN{qg=0} =@ with A=, | An. Assume that 1/q € F. Then {A,, U By} is (AN F)-regular
for Py(RN). Moreover, if A and 11 are define by

A(f) = Tim L[Ay; f], TI(f) = lim T[By fl, fe€ANF,
then the operator H defined by
H(f) = lim L[A, U By f]

satisfies the relations

AH(S)) = A(f), TI(H(f)) = TL(f).

Proof. We first prove that X,, := A,, U B,, is unisolvent for Py(R"). Since A, N B, = @, we
have

81X = tAn+1By = dim Pp(RY) +dim Py(E) = mp(RY) +ma(RY) —ma_aegq(RY) = ma(RY).

Hence, it suffices to show that P € P4z(R") that vanishes on X, is identically zero. Since P = 0
on B, and B, is unisolvent for P4(F), P = 0 on E. This enables us to find P; € Py_gegq(RY)
such that P = ¢P;. Since {¢ = 0} N A,, = &, P; must vanish on A,,. It follows that P, = 0 since
it belongs to Py (RY). Hence, P = 0.

We next prove a Newton form formula for interpolation polynomials
f=1[Bn; f ]}

3.1)

L[Xn;f] :I[Bn;f] +qL [AnQ p

Indeed, the right-hand side of (3.1) denoted by () is a polynomial of degree at most d in R™V. For
each b € B,, we have ¢(b) = 0. Hence Q(b) = I[B,; f](b) = f(b). On the other hand, for each
a € A,, we have

Q(a) = I[By; fl(a) + g(a)L [An; f‘”fo] (a) =
— 1[B,: f)(a) + q(a) @) ‘ql([f) 7@ _ ).

From what has already been proved, we conclude that () interpolates f at X,,. Therefore, Q =
Next we find the limit of polynomials in (3.1). Note that {I[B,; f]} C P4(R"™) converges to
II(f). Hence, we can use Lemma 2.2, Lemma 2.6 and (3.1) to get

lim L[Xy; f] = lim (I[Bn; f1+ 4L {An; f;] — gL [An; I[B’q“ f]D =

n—oo
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—nh+a(a () -2 () —n o (1),
q q q
It follows that {X,,} is (F U .A)-regular and

HU?ZHU%Hm<f_fU», feAnF.

By using Lemma 2.5, we obtain
me(r) = mian(p) + 11 (n (2= 1)) — o)

To prove the last relation, we use Lemma 2.1 to get

A = aa(n) + 4 (o (F20) ) —aay +4 (L =) < acp)

Theorem is proved.

Theorem 3.2. Let m > 2 be a positive integer. For each 1 < j < m, let E; be an algebraic
variety in RN such that T (E;) is generated by a non-constant polynomial q; with degq; = r;. Let
d € N be such that

Mt ...+rma<d<ri+...+rm.

We define s1, 2, ..., sy by the relation
Slzd, Sj:d—’l“l—...—Tj_l, j:2,,m
Let {Bj,} C Ej be a Aj-normal sequence for Py, (Ej;) such that {q, = 0} N (U,_; Bjn) = @ for
j>kand 1/q; € Ajyq for 1 <i<m—1. Set X,, = U;nzl Bjn for n > 1.
a) In the case d < 11 + ...+ T, the sequence {X,} is (ﬂ;”zl .Aj) -regular. Moreover, the

limiting operator defined
m
Jim LIXo; f]=H(f), fe€ ﬁlAj
]:
satisfies the relation

I;H(f)) =1;(f), 1<j<m, (3.2)

where
IL;(f) = lim I[Bjn; f].

n—oo
b) In the case d =11+ ... + T, if {@mi1.0} is a sequence in RN lying outside UjL,{g; = 0}
and converging to a ¢ \Jj_ {q; = 0}, then the sequence { Xy, U{anm+1,n}} is (C'{a})n N7y Aj)-
regular. Moreover, the limit operator defined

3

lim L[X; f]=H(f), feC’({ah)n[)4
j=1

satisfies (3.2) along with the additional relation H(f)(a) = f(a).
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Proof. We only prove the statement corresponding to the case d < r1 + ... + ry,. Since Bj,
is unisolvent for P (E;), Theorem 3.3 in [3] asserts that | J;”, Bj,, is unisolvent for Py, (RN for
1 <k <m and n > 1. In particular, X,, is unisolvent for P4(R"). The proof is now by induction
in m.

We first assume that m = 2. Then X,, = By, U Ba,,. Since B3, is unisolvent for Py_,, (RN,
L[B2y; f] = I|B2y; f], and hence {Bs ,} is Az-regular,

JLH(;OL[BQ,n;f] =1I(f), fe€ A

By using Theorem 3.1, we get the regularity of {X,,}. Moreover,

Assume that the assertion holds up to m — 1 > 2; we will prove it for m. We set )?n = U;”ZZ Bjnp.

Then X, is unisolvent for P, (RY) and, by the induction hypothesis, {X,,} is (ﬂ;n:2 Aj) -regular.
Furthermore, the limiting operator

H(f):= lim L[X,; f], fe([)A,

n—oo
=2
satisfies the relation
I(E(f) =1L(f), 2<j<m. (3.3)

Applying Theorem 3.1 for {Bj,,} and {X,,}, we conclude that {X,,} is (ﬂ;”zl .Aj) -regular and

H(H(f) = H(f), IL(H(f)) =IL(f),

where
H(f) = lim L[X,; f].

n—o0

Combining the above relation with (3.3), we obtain, for 2 < j < m,
IL(f) = I (H(f)) = 11; (F(H(f))) = I(H(/)).

Here, in the third relation we use (3.3) for H(f) in the place of f. The assertion holds for m.

Theorem is proved.

Remark3.1. From Theorems 3.1 and 3.2, we can use examples in Subsection 2.3 to build new
regular sequences. The details are left to the readers.

4. Polynomial interpolation on the unit sphere. In this section, we construct unisolvent sets
for Py(SV) from unisolvent sets lying in unit ball BY. We also investigate the limit of the Lagrange
interpolation on SV corresponding a regular sequence and a normal sequence in B". We recall the
trivial parametrizations of the half spheres

R (x) = (x, V1o ||xy|2) . R(x) = (x, /1= ||x|\2) . xeBV,
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Theorem 4.1. Let Ay C BY be unisolvent for Py_1(RY). Let E be a hyperplane in RY such
that AgNE = @. Let By C ENBY be unisolvent for Py(E). Then the set

Xo = R+(AQ) UR™ (A4p) U R+(Bo)
is unisolvent for Py(S™). Moreover, if f is a function defined on SV, then

/1 — [[X[*L[Ao; f1](x) + L{(Ao; f2), (Bo; f3)](%)

L~ [Xo; f] o RT(x) = x e BN, (4.1)

2 9
where
foRT(x)— foR (x) _
fix) = = =] , fo(x)=foRT(x)+ foR (x), x € BY,
and

f3(x) =2f o RT(x) — /1 — ||x|2L[Ao; f1](x), x¢€ BN,

Proof. We first prove that X is unisolvent for Py(S"). The proof is motivated by [12] (Theorem
2.1) and is similar to [10] (Theorem 3.1). We take a non-zero affine polynomial ¢ in RY such that
E={xeR": q(x) =0}. We have £ By = dim Py(E) = mg(RY) — mg_1(RY). Hence

8X0 = 2ma_1(RY) + mg(RY) — ma_ 1 (RY) = mg(RYN) + mg_1(RY) = dim Py(SV).
To prove the theorem, it suffices to verify that if P € Py(SY) that vanishes on X, i.e.,
PoR"(a)=PoR (a)=PoR"(b)=0, VYac Ay b < By, 4.2)

then P is identically zero. Let us set

_ POR+(X)—POR_(X).

k) TP

(4.3)

Then P belongs to Py_1(RY). Relation (4.2) implies that P;(a) = 0 for all a € Ag. Since Ag
is unisolvent for Py_1(RY), P, must be identically zero. This enables us to write P o R*(x) =
= P o R~ (x) for every x € BV. Likewise, consider the polynomial P, € P4(R") defined by

Py(x) := Po R"(x)+ Po R™(x). (4.4)
Then P5(x) = 2P o R (x) for every x € B. From (4.2) we see that
Pg(a) = Pg(b) =0 Vaec Ay Vb€ By.

This forces P, = 0, because Ay U By is unisolvent for Py(R™) due to Theorem 3.1. From what has
already been proved, we conclude that

PoR'(x)=PoR (x)=0 VxcB".
It follows that P = 0 on S, and the proof of the first assertion is complete.
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It remains to prove the formulas. For convenience, we set P = Lgn [X; f]. Let P;, P, be defined
as in (4.3) and (4.4). By the interpolation condition, we have

_PoRf(a)—PoR(a) foRMa)—foRT@) _ o0

1 —[laf? V1—lal?

It follows that P, = L[Ap, f1]. Combining this with the setting in (4.3), we get

P1 (a)

PoR™(x)=PoR"(x) — V1 [Ix|PL[4, fi](x), xeB". (4.5)
From (4.4), it follows that
Py(a) = foR"(a)+ fo R (a) = fa(a), ac A. (4.6)

On the other hand, for all b € By, by using (4.5), we obtain
Py(b) = PoR"(b)+ Po R (b) =2f o R"(b) — /1 —[[b|*L[Aq, f1](b) = f3(b). ~ (4.7)
We conclude from (4.6) and (4.7) that P» interpolates fo at Ay and f3 at By. Hence
Py = L[(Ao; f2), (Bo; f3)]-

Consequently,

PoR"(x)— PoR (x)=+/1—|x|2L[Aq, f1](x), eV
Po R*(x)+ PoR™(x) = L[(Ag; fa), (Bo; f3)](x),

Combining the last two relations, we obtain the desired equations in BY. By continuity, we get the
equations in BN.

Theorem is proved.

Theorem 4.2. Let p € (0,1). Let E be a hyperplane in RN generated by an affine polynomial
q. Let {B,} C ENBN(0,p) be an A-normal sequence for Py(E) corresponding to the sequence
of linear maps {I[By;-]}. Let {A,} C BN(0,p) be a F-regular sequence for Py_1(RN) with
A, NE =g, n>1. We define

X, =RY(A,) UR (4,) URT(B,).
Assume that (1 — ||x||>)*/2,1/q € F and (1 — ||x||*)"/? € A. We set
C— {f: SY 5 R|foRE e F, foRt eA}.

Then, for any function [ € C, the following limit exists:

Jim Ly [Xo; f].
Moreover, the limit denoted by Hgn satisfies the relations

AHgnv o RT) =A(foRT), AMHgvoR )=A(foR™), HMHgyoR")=T(foR"),
where A and 11 are defined by
A(g) = lim L[A,;g], g€ F, II(h) = lim I[B,;h|, he A

n—o0 n—oo
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Proof. We first find the limit of the sequence of Lagrange interpolation polynomials. By Theorem
4.1, X,, is unisolvent for Pd(SN). For convenience, we set P, := Lgn[X,,; f]. Then Theorem 4.1
gives

£/ 1 — [X[PL[An; f1](x) + L{(An; f2), (Bn; f3.)](x)

5 , xeBN, (4.8)

P, o R(x) =

where
_foR"(x) - foR (x)

N R

fa(x) = foR*(x) + fo R (x), xe&BY,

and
fan(¥) =2f o R (x) — /1 — |[x[PL[A,; fi](%), xeB".

Analysis similar to that in the proof of Theorem 3.1 shows that

L{(An: f2), (Bus fan)] = 1Bui fon] + L [An; fz‘”fm] _
=1[By; f3n] + ¢ (L [An; ‘ﬂ - L [An; WD : (4.9)
We will find the limit of cach term in (4.9). By hypothesis we have
lim LAy fi] = A(fr), Jim L [An; J;Q] — A ("3) . (4.10)

Hence Lemma 2.6 shows that

lim X[B; fon] = lim (T[Bai2f o R¥] =T |Ba; 1= [XIPL[Aw: fil(%)] ) =
= T1(2f o B*) — 1L (VI = [xPA(f1) (%)) =

=11 (2f o B (x) = V1= [X[PA(f1) (%)) = (/).

By using Lemma 2.2, we obtain

lim L [An;w] :A<<I>(,f))

n—oo
From (4.9), we see that

lim L{(An f2), (Bui fn)] = B(f) + 4 (A (J;?) A (q’(f)» —u(f). @

n—o0 q

Since Py(RY) is a finite dimensional vector space, the convergence on P;z(R”Y) can be understood
as the convergence under any norm on PL(RN ). Hence the convergence in (4.10) and (4.11) can be
regarded as the uniform convergence on BV, because the relation
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p— sup |p(x)|, p e Pa(RY)
xEBN

define a norm on Py(RY). It follows from (4.8) that

1— [x[IPA(A)(x) + () ()

5 uniformly on BN. (4.12)

+
P, o R¥(x) —

Note that A(f1) € Py_1(RY) and ¥(f) € P4(RY). We define

Hox (F)(x, 3 11) = $N+1A(f1)(>2<) + ‘I’(f)(x)' (4.13)

Evidently, Hgn (f) € Pg(RN+1) and

Hgw (/) o RE(x) = ~V1 = ||XH2A(°’;1)(X) LdCPICYNERS 7.3 (4.14)

Combining (4.12) and (4.14), we deduce that {P,} converges to Hgy uniformly on SV.
It remains to prove the desired properties of Hgn (f). From (4.14) we have

Hgn (f) o R7(x) — Hgn (f) 0 R (x)

=A(f)(x), xeBY, 4.15
e (f1)(x) € (4.15)

and
Hg (f) o RY(x) + Hgn (f) 0 R~ (%) = ¥(f)(x), xeBY. (4.16)

It follows from (4.15) that
A (Hg (f) 0 R™(x) = Han (f) 0 R~(x)) = A (VT = [XPA()(x)) =
= A (VI XPAK) = A(fo B ()~ fo R~ (x)). (*.17)
where we use Lemma 2.1 in the second relation. From (4.16) we see that

A (Hgn (f) o RY(x) + Hgn (f) o R™(x)) = A (¥(f)(x)).-

The next goal is to determine A (¥(f)). Using Lemma 2.1 again, we conclude from the definition

of ¥(f) that
A =a@+a (o (L)) -a (o (ML) -

—A@(f) +A (qj;) A (q‘“qf)) — A(f).

Hence
A (Hgv (f) o R*(x) + Hon (f) o R™(x)) = A (fo R (x) + fo R™(x)).  (4.18)
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Combining (4.17) and (4.18), we obtain
AHgn o RT) =A(foR"), AHgvnoR )=A(foR").
From (4.16) we conclude that
I (Hgn (f) o BT (x) + Hgn (f) 0 R (x)) = TL(T(f) (%))

On the other hand,
mw(r) = e+ (an (2)) -1 (o (*2)) ~ i) -

q
=11 (1 (2f 0 B (x) = T = [xIPA()(x) ) ) =
=11 (2f 0 R¥(x) = V1= [XPA(f1) (%)) =
=11 (2f o R*(x) = Hgn (f)  R¥(x) + Hon (f) 0 B~(x)) ,
where we use Lemma 2.5 in the second and forth equations. It follows that
I (H (f) 0 R¥ (x) + Hgx (f) 0 B (x)) =
= T1(2f o R (x) — Hgn (f) 0 R¥(x) + Han (f) o R™(x))
The last relation finally gives
H(Hgy o RY) =TI(f o RT).

Theorem is proved.
Corollary 4.1. Under the assumptions of Theorem 4.2, we have

Hgn (f)(x,2n4+1) = $N+1A(f1)(>2<) + @(f)(x)7
where
= Y (20
\I/(f)—<I>(f)+q<A<q> A( : ))
with
o(f) =11 (2f o RT(x) — /1 ||X||2A(f1)(x)> ‘
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