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SEVERAL JENSEN - GRUSS INEQUALITIES
WITH APPLICATIONS IN INFORMATION THEORY

KIIbKA HEPIBHOCTEMW MEHCEHA -T'PFOCCA
TA IX 3ACTOCYBAHHS B TEOPII IHOOPMAIIII

Several integral Jensen — Griiss inequalities are proved together with their refinements. Some new bounds for integral Jensen —
Chebyshev inequality are obtained. The multidimensional integral variants are also presented. In addition, some integral
Jensen — Griiss inequalities for monotone and completely monotone functions are established. Finally, as an application, we
present the refinements for Shannon’s entropy.

JloBesIeHO Kinbka iHTerpaibHUX HepiBHOCTel Mencena—Iprocca Ta ix yrounenHs. OTpUMAaHO AeAKi HOBI OLIHKH s
inTerpansHoi HepisHOCTI Mencena—Uebnmmosa. Takok HaBeaeHO GaraToBHMipHI iHTerpanbHi BapianTi. KpiM Toro, BcTa-
HOBJIGHO JIesKi iHTerpanbHi HepiBHOCTI Mencena—Iprocca U1 MOHOTOHHEX i LIKOM MOHOTOHHHX (yHKiil. Hacamkinens
B SIKOCTI JJOJIaTKa HABE/ICHO YTOYHEHHs, OTpUMaHi juisi entporii IlleHHOHa.

1. Introduction. Jensen inequality is the most notable inequality and many other inequalities can be
deduced from it as its consequences. This inequality has huge impact in solving many optimization
problems, e.g., information theory, probability theory, applied statistics, control theory and computer
sciences. Taking into consideration the tremendous applications of Jensen’s inequality in various
fields of mathematics and other applied sciences, the generalizations and improvements of Jensen’s
inequality has been a topic of supreme interest for the researchers during the last few decades as
evident from a large number of publications on the topic see [4, 7, 10, 11, 19, 21].

Theorem A (classical Jensen’s inequality, see [18]). Let h be an integrable function on a pro-
bability space (2, A, 1) taking values in an interval | C R. Then [ hdp lies in 1. If ¢ is a convex

Q
function on I such that p o h is integrable, then

% /hd,u §/gpohd,u.

Q Q

There are two other important inequalities in mathematical analysis namely Chebyshev inequality
[18, p. 197] or [12, p. 240] and Griiss inequality [8]. To start with, we let ¢, h € L[u,v| and p:
[u,v] — R be Lebesgue integrable functions. Then we consider the following weighted Chebyshev
functional:

e(p.hip) = 5 / POPRC)C — 3 / Odc, / Qe n

where P = /v p(€)d¢
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If p(¢) =1 for all ¢ € [u,v], then we define Chebyshev functional €(p, h) = €(p, h;1).
The renowned Griiss inequality states that

1
where A, A\, ¥, ¢ are real numbers with the property
—0<A<p<A<oo, —o<typ<h<V¥U<oo ae on [u,v]. 3)

In 1934, G. Griiss [8] gives proof without weights however the same proof hold for weighted version
also.
Moreover, we need to mention here the weighted version of Korkine’s identity [12, p. 242]

elouhip) = 5 [ [ pTIC)oLr) 0O AT) — hO)drde. @

We give variety of upper bounds for Jensen’s difference in terms of the Griiss and Chebyshev
inequalities. We also present multidimensional case of Jensen— Griiss inequality and formulate its
bounds in case for monotonic functions. We also point out some applications of such results in
information theory, namely we provide some new upper bounds for the Shannon entropy.

2. Jensen — Griiss inequality.

Theorem 2.1. Let ¢: 1 = [u,v] C R — R be differentiable mapping with continuous first
derivative. Let h: I — I such that h, ¢ o h, ¢ o h € L[u,v|, and suppose that there exist
MA Y, U e R such that

ASKHO <A <)<Y forall (1.

v

Then, for all p(¢) > 0 such that P = / p(C)d¢ > 0 exists, we have the following refinements:

u

5 [ e ©ic— e 5 [ om0 )| <
v v 2 %
<20 5 [rom@ac- | 5 [oonac) | <
<A@y “

Proof. Employing the mean-value theorem for points ¢, d € I, we can write that there exists &,
c < ¢ < d, such that

p(c) — p(d) = ¢'(§)(c — d). (6)
Using (6) for
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—ii= [ PORO)C

and d = h, we conclude that there exists g, h < g < h, such that
p(h) —p(h) = &' (g)(h = h). (7

Now multiplying (7) by p(¢) and integrating over [u, v] yields

(2

Po(h) —/p(C)sD(h(C))dCZ ﬁ/p(C)w’(g(C))dC—/p(C)sﬁ’(g(C))h(C)dC.

u u

Dividing by P, we get

u

- Jroviamon-  fronout [

Now taking modulus on both sides and using weighted Korkine’s identity (4), gives

5 [ O (113 / p(<>h(<)d<) -

u

5 [ O GOmO 5 / Odcp /
= |€(h.¢/(9): )| < 53 / / p(Qp(r)(() — h(r)])x

x(|&'(9(0) = #'(g(r))|)ddr-

Now applying Cauchy —Buniakowsky —Schwartz inequality for double integrals, we can state that
the last expression is less than

5 [ e (]13 / p<<>h<<>d<) <

u u

1 / Opoh)(C de(}D / p<c>h<<>d<)

< €3 (h, h: p)€3 (' (9), ' (9); p)- ®)

Now utilizing weighted Griiss inequality (2) on second term, we obtain

1 1
QE(f%h;PE(‘I’ — ) =
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v v 2 %
| 5 [otm©ic— | 5 [ocmoac) | 55

u u

Now utilizing weighted Griiss inequality (2) on first term, we get

AN
- 4

Theorem 2.1 is proved.

Remark2.1. 1t is important to note that the first inequality in (5) is valid without the bounds of
function h.

We give the following interesting corollaries.

Corollary2.1. Under the assumptions of Theorem 2.1, suppose that ' is Lipschitzian with the
constant L > 0, i.e.,

¢ () — ¢’ (y)| < Lz -y

for all x,y € Range(h), where A < Range(h) < A. Then we have the following refinements:

5 [ 10 en©ic— o 5 [ om0 || <
v v 2 %
A=A
<122 5 [eom©ac— | 5 [oomac)| | <
(A—N)?
=t
Proof. By using (8) and Lipschitzian condition on ¢’, we get
5 [ 10 en©ic— o 5 [ om0 || <

< L€z (b, b p)€3 (id(C), id(C); p),

where id({) = (. Now applying weighted Griiss inequality (2) successively on right-hand side, we
obtain

Corollary2.2. With the assumptions of Corollary 2.1, further suppose that ©" is bounded, that
is, L =|¢"|| and || - || is defined as the sup-norm. Then we get the following refinements:

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 12



1658 S. L. BUTT, b. PECARIC, J. PECARIC

v

5 [p0eom©ds — ¢ 3 [olonac || <

u

<1552 5 [ omoic— | 5 [oonec) | <
(A — \)2

< ¢

3. Jensen — Chebyshev inequality. We need the following lemma of our interest.

Lemma 3.1 [3]. Let h: [u,v] — R be an absolutely continuous function such that (h')* €
€ L{u,v]| and weight p be a positive integrable function such that

z

P(z) = / p(Q)d¢ and P(z) = P(2) / ¢p()d¢ — P / ¢p(C)dC.

u
Then we have the following inequality:

v

e(hhip) < [ PN G)Pd: ©

u

provided that integral on the right-hand side of above inequality exists. Also the inequality in (9) is
sharp.

Theorem 3.1. Let p: 1 = [u,v] C R — R be differentiable mapping with continuous first
derivative. Let h: I — I be absolutely continuous such that h, oo h, ¢’ oh, (h')? € Llu,v], and
suppose that there exist 1, ¥ € R such that

< ()<Y forall (el

v

Then, for all p > 0 such that P = / p(C)dC > 0 exists and P(-) be as given in Lemma 3.1, we
have the following refinements: h

v v 2\ 2
<205 [rem©dc- (5 [ronodc) | <
<50\ [Pomer) (10)

u
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Proof. We have already established in Theorem 2.1 that

v v

5 [ 1O n©ic— o 5 [ a0 || -

v

~ |5 [ HOP ORI - / Qdep / )

1

= [e(h, ¢'(9): )| < €2 (h, 3 )2 (¢'(9), ¢ (9): ).
Now utilizing weighted Griiss inequality (2) on second term, we get
1
<€ (h, by p) (U —v) =

1
v v 2\ 2

— ;/p(oh2(§)d<— ;/p(é)h(é)dC 5

u u

Now utilizing Lemma 3.1 on first term, we obtain

< [ PO ) =5

Theorem 3.1 is proved.

1659

4. Jensen— Chebyshev norm estimates. We start this section by notating the following classes

that we used:

(M;) C(u,v) denote the space of all functions p > 0 continuous on (u,v) such that

v

[ r0yic=p <.

u

(M) W2(u,v) denote the space of all functions h which are locally absolutely continuous on

(u,v), with

v

/ rh'2(¢)d¢ < oo.

u

Define

1
v 2

Ih], = / HOR(C)dC

u

In [13], G. V. Milovanovi¢ and I. Z. Milovanovi¢ gave weighted norm estimates of Chebyshev

functional.
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1
Theorem 4.1. Let p € C(u,v), r(¢) = 0 and h,g € W2(u,v). Then the following inequa-
lity holds:

€(h.g: )] < = |IW], '], (n
If h(¢) = A+ Bsin A(Q), g(¢) = C + Dsin A(C), where

b ¢
T
8O = | 5 [ ot~ [oeat .
¢ a
the equality appears in (11).
Now we are in position to state our results of this section.
Theorem 4.2. Let ¢: 1 = (u,v) C R — R be differentiable mapping with continuous first

derivative. Let h: I — I be such that h € W2(I) and h, p o h, ¢’ o h € L[u,v] and suppose that
there exist ¥, ¥ € R such that

V<P <Y forall (el

Then, for all p € C(u,v), r(¢) =

1
——, we have the following refinements:
p(C)

v v

[pOom©dc | 5 [pOnOK )| <

u u

v v 2 %
< ‘Pﬂ( o - (}3 / p<c>h<<>d<) ) <

\ow

ol =

Yl —

\h’\ (12)

Proof. We have already established in Theorem 2.1 that

Jun

|€(h, ¢ (9); p)| < €2 (h, s )€ (' (9), ' (9); p) < @(hhp)( — ) =

v v 2 %
- (;, [ oora - (;, / p(<>h<<)dc) ) L

u u

Now utilizing Theorem 4.1 on first term, we get

1
P 2U —q)
< <2 IIh’H3> —
T 2

Theorem 4.2 is proved.
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5. Multidimensional Jensen — Griiss inequality. Let (£2,.A, 1) be a space with positive finite
measure. Let L = L1(2, A, ) and for h € L define

- 1
h = /h ¢)du(Q).
@ | Q)
Q
Let U C R" be a convex set, and ¢ be an arbitrary convex function on U. If hy, ho, ..., h, are

functions in class L; (i.e., u-measurable functions), then the following multidimensional version of
Jensen’s integral inequality [18, p. 51] is valid:

#(1) / 2(h1(0), ha(€); -+, hn(€))dpa( ) —
Q
@ | MO gy [ 10y [ ) | 20
Q Q ¢

Inorder to give multidimensional Jensen — Griiss integral version, we denote

h(¢) = (h1(€), h2(C); - -, ha(C))

be n-tuple of functions of class L; and we denote

u(lm / h(C)dp(<)
be the n-tuple
1 1 1
5 J m(Qdu(Q). Q/ ha(C)dn(C), oy hn()dpa(0)

Theorem 5.1. Let ¢: U C R™ — R be differentiable mapping with continuous partial deriva-
tives, where U is a convex point set in R™. Let (2, A, u) be a space with positive finite measure and
L =LA, pn). Also, let h: Q — U C R" such that h;(¢),p o h({), ¢’ oh(¢) € Ly (ie, p-
measurable functions) for all ( € Q and i = 1,2,...,n. Suppose that there exist A, A, 1, ¥ € R"
such that

A < h <A (the order is onsiderd cordinatewise)

and

Y <Ve(C) < forall € dom(p).

Then we have the inequalities

7 [ A0l ) dn(6) -
Q
1 1 1
o ! M), Q/ Od(Q)ove Q/ Q) || <
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1 2
<2‘I’¢( /”h H du(¢ Q/h ¢)du(¢ ) <

Q
1
< A=A =2,

Proof. Employing the mean-value theorem in multidimensional case for points ¢,d € dom(y),
we conclude that there exist a € (0, 1) such that

p(c) —p(d) = (Ve(§),c —d), (13)
where £ = d + a(c — d). Using (13) for

be the n-tuple

h1(Q)du(¢), ——= [ ha(¢)du( oy ——— [ hn(Q)du(
( /1 H Q/2 M Q/ M)
Q Q Q

d =h = (hy,he,...,h,) and € = g = (91,92, .-.,9n), Where g;(¢) € L; (i.e., u-measurable
functions) for all ( € Q and i = 1,2,...,n, we have

¢(h) — p(h) = (Vy(g),h —h).

Integrating over §2 w.r.t. u yields

() () - / ((C))du(C) = / (Vo). B)du(C) - / (Veo(g), h)du(C).

D
2
fe}

1 1 _
- u(mﬂ/<W(g)’h>du(C) - <M()Q/V<p(g(C))d(,h>.

Rest of the proof can be completed by method used to prove multidimensional discrete version, given
in the proof of Theorem 1 from [6].

A multidimensional generalization of Lupas—Ostrowski inequality was given in [20]. For in-
stance, we give the following theorem for two variables.
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Theorem 5.2 [20]. Let

p € Cur,v1), q€Cluz,v2), p>0, q>0,

v1

/p(t)dt =P < o0, /q(t)dt =( < oo.

ul

Let h: (u1,v1) X (u2,v2) = R be a function such that h(-,x2) is locally absolutely continuous on
(u1,v1) for almost every xo € (ua,v2) and h(x1,-) is locally absolutely continuous on (uz,vs) for
almost every x1 € (uy,v1). Suppose that

V1 V2

p(x1)q(z2)h? (21, x0)drdry < 00

2 2
p(z1) ( Ok
<8x1> + a(zs <8x1) ] dz1dzy < 00.

Also let g satisfy the same condition as h, then we have

ul u2

and

I0iEs

up u2

1
|€(h, g; p,9)| < ﬁHVh; P, alls1Vg; p,alls,

where
&(h,g;p,a) = A(h, g; p,q) — A(h; p,a) A(g; p,q), (14)
V1 U1
A(h; p,q PQ // x1)q(z2)h(z1, v2)dr1dXs (15)
Ul Ul
and

Q ple) [ 91\’ ’
<8$1> +F ( )(821?2) ]dlL‘ldIL‘Q . (16)

Theorem 5.3. Let ¢: I C R — R be differentiable mapping with continuous first derivative.
Let h: (u1,v1) X (ug,v2) — I be as defined in Theorem 5.2 such that h, poh, p'oh € L((u1,v1) X
X (ug,v2)), and suppose that there exist 1, U € R such that

V<)<V forall (el

Vh;p,qlly, = //

Ui u2

Then, for

PEC(UhUl)a qu(UQaUQ)v p>07 q>07

v

/p(t)dt — P <o, /q(t)dt ~ Q< o0,

ul
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we have the following refinements:

wal P(Cl)Q(@)(SOOh)(Cl,C2)dC1dC2@(PlQ /] P(Cl)Q(CQ)h(Cl,Cg)d§1d§2) <

Ul u ulr u2

v v2

= \I];¢ plQ//p(Cl)CI(CQ)hQ(CLCz)déld@—
—(;Q /] P(Cl)CI(Cz)h(Cl,Cz)dcldQ) ] g
\I/
Y |Vhspoall

where ||Vh;p,q|, is given in (16).
Proof- Employing the mean-value theorem for points c,d € I, we can write that there exists &,
c < ¢ < d, such that

plc) = p(d) = ¢'(§)(c — d). (17)
Using (17) for
c=h=%5 // (C1)a(C2) h(C1, C2)dC1dCs
and d = h((1,(2), we conclude that there exists g, h < g < h, such that
p(h) —o(h) = ¢'(g)(h = h). (18)

Now multiplying (18) by p(¢1) and q(¢2) and integrating over (uj,v;) and (ug,v2) yields

Qso(PQ / / ()o@, & dgldcz) / / (@)a(G)P(h(Gr, G))drdGs =

ul u2 ul U2

—h// (C1)a(¢2)¢"(9(C1, ¢2) dCldCQ// (¢1)a(G2)¢' (g(Cr, ¢2)) (1, C2)dCrd .

Ul U ulr u2
Dividing by PQ, we get

V1 v

5 | [ PG G-

ul u2

I (plQ//P(Cl)q(CQ)h(CbCz)dcldgg) —

ul u2
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V1 v

- plQ//P(Cl)CI(@)SO/(g(Cl,Cz))h(g‘l,@)dgld@_

ul u2

o [ [ @t eadeps [ [ @ o @ade

Ul U ulr u2

Now taking modulus on both sides and using representation €(h, g; p, q) given in (14), we obtain

vl V2

/ P(C)a(C2)o(h(Crs G2))ACrdCa—

ur u2

PQ

vl U2

—p PlQ / / P(C)a(C2)A(Cr, C2)dCrdG

Ul u2

v v2

PlQ//p(g)q(@)‘PI(Q(Q,CQ))h(Cl,Cz)degg_

up u2

55 | [ ratcon @acde: 5 [ [ dcatce o Gdcdc,

Ul U ulp u2

= |€(h, ¢ (9); p,a)|-

Now applying Cauchy — Schwartz inequality, we can state that the last expression is less than

v V2

o [ [ et et — ¢ | 1 [ [ oacont e | <

Ul U ulr u2
v —
2

Finally, employing Theorem 5.2 on the second expression of (19), we complete the proof of Theo-
rem 5.3.

Remark5.1. 1t is of worth mentioning that using result given in Remark 9 in [20], we can also
give extension for function i with more variables.

6. Jensen — Griiss inequality and monotonic functions. S. Bernstein in [5] introduce the term
absolutely monotonic function on interval [u,v], if h € C¥[u,v] and satisfies

< €3 (1 . )€ (¢! (0), ¢/ (0):pr0) < 3 L € (i ). )

AR(¢) >0, k=0,1,..., € (u,v),
and completely monotonic function if
(—DFA®() >0, k=0,1,..., (€ (u).

G. Griiss in [8] also gave results for monotone functions given as:

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 12
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If ¢ and h are absolutely monotone functions on (0, 1) satisfying (3), then

C(p,p) < % (A= N)? (20)
and
|€(p, h)| < g(A A (¥ —). (21)

The constant 4/45 is best possible both for (20) and (21) and this can been seen by putting p(u) =
= u?. G. Griiss used Bernstein’s polynomial to prove (20) and (21). However, E. Landau [14] gave
an easy proof by using his proposition (see [12, p. 297]). In [15], he also proved that inequalities
(20) and (21) still hold provided that the functions ¢ and h are monotonic of order 4. He also proved
bounds for Chebyshev functional for monotone functions of order k£ = 1,2, 3 respectively as:

€ < A= N =) for k=1, )

]Qﬁ(go,h)lgé(A—)\)(\I/—w) for k=2, 23)
and

S, h)] < 105 (A= N —9) for k=3 o4)

G. Hardy [16] obtained the following result:
Let ¢ and h be totally monotonic function on (0,00) and ¢, h € L(0,v) satisfying (3). Then
the following inequality is valid:

€, h)] < 25 (A= X)(¥ — ). (3)

Now we give several Jensen — Griiss inequalities for monotone functions.

Theorem 6.1. Let p: 1 = (0,1) C R — R be differentiable mapping with continuous first
derivative. Let h: (0,1) — I be absolutely monotone function on (0,1) such that h, poh, ¢'oh €
€ L(0,1), and suppose that there exist A\, A, 1, ¥ € R such that

ASK(O <A, <L T forall (el

Then we have the following refinements:

1

/Wm JdC — @/h e || <

0

1
1 1 2\ 2

yo (A~ N)(T — )
0/ B2(C)dc O/ now| | < E=E=Y
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Proof. Now from the proof of Theorem 2.1 without weights, putting (u,v) = (0,1) and p(¢) =1
for all ¢ € (0,1), we get

1

1
poh)(Q)d¢ —w| [ h(Q)dC || =
-
1 1
- / S (g(O)h(C)dC — / h(C)dc / o (9(0))dc| =
0 0

// 1h(¢) = (M) (|¢'(9(C)) = ¢ (9(7))])dCdr.
0 0

= |e(h, ¢ (9)] =

l\.')\}—t

Now applying Cauchy — Buniakowsky — Schwartz inequality for double integrals, we can state that
the last expression is less than

1

1
/ 0o h)(Q)dC — ¢ / B¢ || < € (h et (H(9). £ (9).
0

0

Now utilizing Griiss inequality (2) without weights on second term, we get

1 L g
<ehnmyv-v) = | [ric- | [row) | 252

2
0 0

Now utilizing Griiss type inequality (20) for & to be absolutely monotone functions on (0, 1) on first

term, we have
2 U —
< | —= (A=A .
- <3\/5( )> 2

The next results entails the bounds of Jensen— Griiss type inequalities for monotonic function of
different orders.

Theorem 6.1 is proved.

Corollary 6.1. Under the assumptions of Theorem 6.1, let h: (0,1) — I be monotonic function
on (0,1) of order k = 1,2,3 such that h, p o h, ¢' o h € L(0,1), and suppose that there exist \,
A, ¥, ¥ € R such that

ANSh(Q <A <P <V forall Cel.

Then we have the following several refinements:

1 1
/(gooh)(g‘)dc—so / nodc || <
0 0
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1 1 2\ 2
< ‘PQ‘”(/hQ(c)dc (/h(@dc) ) <
0

(A= N@-9)

and

IN
S
N
<
R
D\H
>
(3]
>
jo 8
~
|
o\
=
o
jo 8
~
N~ —
I
N~
[V
AN

g%(A—A)(\IJ—w) for k=3 (26)

Proof. We establish the proof, when & is monotonic of order £ = 3. We have already established
in the proof of Theorem 6.1 that

1 1
/ (poW)(Q)dC — ¢ ( / h<<>d<>
0

0

1 N
(h,h)g (¥ — ) = (/h%)dg (/h(<>d<> ) L

0 0

< €3 (h,h)€3 (¢ (9), ¢'(9)) <

N|=

<c

Now utilizing Griiss type inequality (24) for h = ¢ on first term, we get

g(i(A—A))‘I’Q”/’

and (26) is established.
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Other cases when h is monotonic of order £ = 1,2 can be obtained analogously by applying
inequalities (22) and (23), respectively.

Corollary 6.1 is proved.

Now, we give refinements by using Griiss bounds obtained by G. Hardy for completely monotone
functions.

Theorem 6.2. Let p: 1 = (0,v) C R — R be differentiable mapping with continuous first
derivative. Let h: (0,00) — I be completely monotone function on (0,00) such that h, ¢ o h,
¢ oh € L(0,v), and suppose that there exist \, A, 1, ¥ € R such that

A<h()<A and ¢ <¢'()< 0.

Then we have the following refinements:
v

[een@ic—| [ncac)| <
0 0

v v 2\ 3

vy (A~ X)(¥ — )
<550 [ | [aoa) | < B2

0 0

Proof. From the proof of Theorem 2.1 without weights, putting (u,v) = (0,v) and p(¢) = 1 for
all ¢ € (0,v), we obtain

v v

1 1
L eom@dc—o| 3 [nc || =
gy
= |1 [ - 5 [ hcra [ o] -
0 0 0

= [€(h ()] < 51y / / 16(C) — B (| (9(0)) — & (a(r))] dcdr.

Now applying Cauchy — Buniakowsky — Schwartz inequality for double integrals, we can state that
the last expression is less than

s eom@ac—p| ¢ [10c || < Snnel (09, ¢'(0).

0 0

Now utilizing Griiss inequality (2) without weights on second term, we get

< €5, )5(¥ ) =
v v 2 %
T ey Y—v
-5 O/ W(Qdc | 0/ moic| | Y
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Now utilizing Griiss type inequality (25) for h = ¢ to be completely monotone function on first

term, we have
1 U —q)
< | —=A-X))—.
< (7 )%

7. Applications in information theory. Information theory is the study of data which ma-
nages the capacity, measurement and correspondence of data. The subject studies all the theoretical
problems related to information transformation over the communication channels. Being a theoretical
substance, data can’t be measured without any problem. Claude Shannon, who is these days regarded
as the “Father of Information Theory”, presented a theory in order to quantify the communication
of information [22]. Shannon’s theory deals with the problem of how to transmit information most
efficiently through a given channel. It also tackles the issues of communication security. Shannon’s
formula states that we will gain the largest amount of Shannon’s information when dealing with
systems whose individual possible outcomes are equally likely to occur. Shannon’s entropy is a
measure of the potential reduction in uncertainty in the receiver’s knowledge. Shannon’s entropy and
related measures are increasingly used in molecular ecology and population genetics, information
theory, dynamical systems and statistical physics.

Jensen’s integral inequality is importantly used to construct many information inequalities [1, 2,
9]. In this section, we present some important applications in information theory of our main results.

Consider the set of probability density functions

Theorem 6.2 is proved.

v

P={plpi IR p(0) 20 and [ Q) =1

u

For positive probability density function p € P, the Shannon entropy is defined as [17]

(%

H(p) = / p(¢) In p(Q)dC.

u

Theorem 7.1. Under the assumptions of Theorem 2.1 with I = [u,v] C (0,00), suppose that
p € P be positive probability distribution function, defined on I, such that there exist constants
0 < A\, A <1 such that

A<pl) <A forall ¢el.
Then we have the following refinements:

v

Hp) | [0 )| <

u

v v 2 %
A=) A—))?
B2 [r@ac— | [rouc) | < B2

u u

Proof. Substituting ¢(¢) := —1In(¢) and A(¢) = p(¢) in (5), we will obtain our results.
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Theorem 7.2. Under the assumptions of Theorem 3.1 with I = [u,v] C (0,00), suppose that
p € P be positive probability distribution function, defined on I, such that (p')* € L[u,v] and there
exist constants 0 < X\, A < 1 such that

A<p(Q) <A forall (€l.

Then we have the following refinements:

<o | [rolore

u

Proof. Substituting ¢(¢) := —1In(¢) and ~(¢) = p(¢) in (10), we will obtain our results.

Theorem 7.3. Under the assumptions of Theorem 4.2 with I = [u,v] C (0,00), suppose that
p € P be positive probability distribution function, defined on I, such that p € W2(I) and there
exist constants 0 < X\, A < 1 such that

A<p(Q) <A forall ¢el.

Then we have the following refinements:

(%

1)+t [ (0c )| <

u

v v 2 %
A=A
<l [ | [ o) | <
A1 r 1 , 2 :
Sm; /,O(C)['O(O] d¢

u

Proof. Substituting ¢(¢) := —In(¢) and h(¢) = p(¢) in (12), we will obtain our results.

8. Conclusion. In this paper, we use Jensen’n integral difference and give bounds by using
Griiss inequality. We vary bounds by imposing conditions on the un known function h by employing
Chebyshev bounds and Chebyshev norm estimations. We also present multidimensional version of
our results. Some bounds for absolutely monotone and completely monotone functions are also
obtained. Finally, as an application we conclude our paper by giving new bounds for Shannon’s
entropy. Our results will be of general interest for many researchers.
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