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A NOTE ON VARIATIONAL FORMALISM FOR SLOSHING WITH
ROTATIONAL FLOWS IN A RIGID TANK WITH AN UNPRESCRIBED MOTION*

PO BAPIALIIHUI ®OPMAJII3M JIJISI 3AJIAUI TTPO BUXOPOBI
KOJWBAHHS PIIMHU B ABCOJIOTHO TBEPIOMY BAIII
3A HEBU3HAYEHOCTI HOT'0O PYXY

The Bateman — Luke-type variational formulation of the free-boundary ‘sloshing’ problem is generalized to irrotational flows
and unprescribed tank motions, i.c., to the case where both the tank and liquid motions should be found simultaneously for
a given set of external forces applied to fixed points of the rigid tank body. We prove that the variational equation, which
corresponds to the formulated problem, implies both the dynamic (force and moment) equations of the rigid body and the
free-boundary problem, which describes sloshing in terms of the Clebsch potentials.

Bapiauiiine ¢popmymntoBanus tuny beiitmena —JIroka 1uist 3agadi 3 BiIbHOIO MEXKEIO KOJIMBAHHS PiIMHH y Oalli y3arajJbHEHO
JUTSL BHXOPOBUX TeUill Ta HEBU3HAYCHUX PyXiB Oaka, TOOTO JIJIsl BUIAIKY, KOJIH pyXH Oaka Ta piJIMHY IIOBHHHI OyTH OJJHOYaCHO
3HalneHi A (ikcoBaHOTO HAOOpPY CHUI, SIKI MPHKJIAAEHO 0 33/JaHMX TOYOK TBEpHOTo Tija. JloBemeHo, mo BapiariiiHe
PIBHSIHHS, SIK€ BUIUIMBAE 3 IOTO (hOPMYIIOBAHHS, NPUBOAUTE SIK 10 AWHAMIYHMX (CHJI Ta MOMEHTIB) PIiBHSHB TBEPIOTO
Tijda, TaK i 0 KpaioBoi 33/1a4i 3 BUTBHOIO MEXKEI0, KA ONUCYE TUHAMIKY piinHH y Oalli B TepMiHax moreHmiaiiB Kiebmra.

1. Introduction. Utilising variational approaches to sloshing in a rigid mobile tank is common [1, 2]
for irrotational (potential) flows of an ideal incompressible liquid and prescribed tank motions. Ho-
wever, hydrodynamic force and moment affect the rigid tank motions that causes a great interest to
variational methods for the coupled liquid-tank problem [3 - 6]. Another challenge is an accounting
for the vortical flow component [4, 7, 8]. A Bateman — Luke-type variational formalism for prescribed
tank motions and ideal liquid with rotational flows is announced in [9]; it employs the Clebsch
potentials [10, 11]. The present paper follows analytical technique from Section 2.9 in [2] for
generalising the results to unprescribed tank motions.

2. Variational formulation.  2.1. Main definitions and preliminary remarks. A mobile
rigid tank (body) of the shape ()} is considered partly filled with an inviscid incompressible liquid
as shown in Fig. 1. The liquid admits rotational flows. It occupies the time-dependent domain Q(¢)
confined by the free surface X(¢) and the wetted tank surface S(¢).

The rigid body can move with six degrees of freedom which are associated with translational and
angular motions of a non-inertial tank-fixed coordinate system Oxjxox3 relatively to an absolute
(inertial) coordinate system O’zabah. The three translational degrees of freedom are associated
with scalar components of the radius-vector ro(t) = O’O so that ¥ = 7o + r and r are the
radius-vectors in absolute and body-fixed frames, respectively. Three angular degrees of freedom
could be introduced via the Euler angles but, following Chapter 2 in [1], we consider instead the
instant angular velocity w(t) of the rigid body and, if needed in variational equations, virtual angular
displacement §6. The total virtual displacement of the rigid body reads then as
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Fig. 1. Sketch of a moving rigid tank. Nomenclature.
or' = 6ro +60 x r,

where drp is the translational virtual displacements. The Euler formula introduces the absolute
velocity
Vp =V +wXT

of a fixed point of the rigid body.
If py(z1, 22, 23) and p; = const are the rigid-body and liquid density, then

M, = /pbdQ =const and M;=p / dQ = p;V; = const (1)
Qp Q(t)

are the body and liquid mass, respectively. The body-liquid mechanical system is affected by the
gravity forces whose gravity potential takes the form

U(xy,x0,23,t) = —g-7' =g (ro+7). ()

The free surface () is defined in the tank-fixed coordinate system, implicitly, Z(z1, z2, z3,t) =
= 0 so that its outer normal is n = —VZ/|VZ|. The liquid-mass conservation condition in (1)
implies geometric constraint on Z.

Following [9], the absolute velocity field v(x1, x2, x3,t) = (v1,v2,v3) in Q(t) can be described
by the three Clebsch potentials [10, 11] ¢(z1, x2, x3,t), m(x1,z2, x3,1t), and ¢(z1,x2, x3,t) so that

v=Vp+mVe. 3)

Remark2.1. The three Clebsch potentials in (3) do not provide a unique representation of the
velocity field (substitution m := C'm, ¢ := ¢/C, where C' is a non-zero constant, confirms that).
Alike in [9], the potentials can be assumed being three independent functions in the forthcoming
analysis. Irrotational flows corresponds to either m = 0 or ¢ = const.
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Remark?2.2. As discussed in Chapter 2 of [1], modelling the liquid sloshing deals with absolute
(in the inertial coordinate system O’xz]xz5z%) velocities and other vector and scalar values, which are
defined in the body-fixed coordinate system Oxjxzoxs3. The absolute vector a = (aq,as, a3) (in the
Oz 2973 coordinates) admits, therefore, the time-differentiation rule

. * * . . .
a=a+wxa, a=/ay,az,as).

Furthermore, as remarked in [1, p. 47], the spatial derivatives in the inertial (9}) and non-inertial (9;)
coordinate systems remain the same, but the time-derivatives (9, and 9y, respectively) possess the
rule

0.=0;, 9,=0—vy-V, di=0,+v-V=0+ (v—vy)-V. 4)

2

The coupled body-liquid problem implies finding the rigid tank motions (defined by vo(t) and
w(t)), the free-surface (determined by Z(x1, x2,x3,t)), and the absolute velocity field (the Clebsch
potentials ¢(x1,x2,x3,t), m(x1,x2,x3,t), and ¢(x1,x2,x3,t)) as functions of the prescribed ex-
ternal forces Pi(t), k =1,..., N, applied to the body-fixed points M.

Remark2.3. For irrotational liquid flows [2], Z, vo(t), and w(t) fully determine the liquid
velocity field in Q(t). But this is not true for rotational flows.

Based on the differentiation rules (4) and definitions in [12, p. 164], we introduce the Bateman —
Luke-type Lagrangian

1
BL(QPvm7¢7Z7U07w>T§C): / PdQ:_pl / |:8£(p+maé¢+2|v|2+U:| d@Q =
Q(t) Q(t)

1
=—p / [&ggp+m&g¢—(vo+wxr)v+2|v2+U] dQ (5)
Q1)

as a functional with respect to the independent Clebsch potentials, the translational and instant angular
velocities vp and w and the gravity potential U by (2):

—p1 / UdQ = Mg - TZC = Mg - (ro+ 7).
Q1)

where 7 and r;c are the liquid-mass centre in absolute and body-fixed coordinate systems, respec-
tively;

ric(t) = / rdQ/Vi. ©)
Q(t)

The rigid-body motions are subject of the classical Lagrangian
L(vo,w, 7)) = Ty — 11,
where T} and 11, are the kinetic and potential energy of the rigid body,
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2 2
Qb

1 1 1
Tb:/prQdQ:2Mbv%+Mb(onw)-rbc+w-JO'w,

I, = — /pbg (ro +1)dQ = —Myg - (ro +1ec) = —Mpg - Tjc,
Qb
in which M, is the body mass by (1),

1
= — d
ThC Mb/pbr Q

Qp

is the rigid-body mass centre in the body-fixed coordinate system Oxz1zox3, and JO = {Jg } is the
tensor of inertia at the origin O whose scalar components are computed by the formula

‘]z(]) = (2(52'3' — 1) /pb xﬂ}de,
Qb

where §;; is the Kronecker delta.
Based on BL and L, one can introduce the actions

t2

m(¢7m7¢7z7v07w7T20):/ BL—pU / dQ dt7 (73)
t1 Q)
to to
Wi(v0, w, The) = /Ldt — /(Tb L) dt (7b)
t1 t1

for any fixed instant times t; < t2. The Lagrange multiplier py is a consequence of the liquid-mass
conservation constraint (1). The multiplier implies the ullage (atmospheric) pressure.
The variational principle sounds as

SW, + Wy, + 6'A = 0, (8)

where §’ A is the elementary work of external forces Fb(i) applied to points r;, i = 1,..., N, of the
rigid body and the variations are made by all independent generalised coordinates of the mechanical
system. According to Remark 2.1 and the Bateman—Luke-type variational formalism, the Clebsch
potentials ¢, m, ¢ and the free-surface shape by Z can be adopted as generalised coordinates for
the liquid motions. Because the elementary work reads, by definition, as

N N
§'A=3"F"oro+Y rix F" 56, )
=1 =1
F M,

where Fj, is the resulting (principal) external force, and Mg is the resulting (principal) external
moment.
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Because the actions 1W; and W, formally depend on v, w and 7}, the following formulas from
[2] are useful to compute their variations by ro and 6:

*

dw = (00) +w x 00, dvp = (6rp) +w X drp +vo x 80, or' =6rp+350 x r,  (10)

where the *-time derivative is defined in Remark 2.2.

2.2. Hydrodynamic equations. Only W; depends on the Clebsch potentials ¢, m, ¢ and the free-
surface shape by Z, therefore, the variational principle (8) reduces to §W; = 0 for the hydrodynamic
part. Henceforth, we assume that the Clebsch potentials are smooth functions in Q(¢), which admit,
for any instant time ¢, an analytical continuation through the smooth (provided by admissible Z) free
surface 3(t).

Lemma 2.1. Under the assumption on the smoothness of the Clebsch potentials and the free
surface 3(t), the zero first variation condition

0 ,W; =0 subjectto 0p|i—¢; 1, =0
is equivalent to the continuity equation

Vi(v—v)=V-v=0 in Q) (11)
and the kinematic boundary conditions

oz

(v—v) - n=0 on S(t), (v—v) - n=

implying the normal velocity is defined by that of the rigid wall and the liquid particles are kept on
the free surface 3(t), respectively.

Proof. Derivation of §,W; is similar (but not the same) to that for potential flows (see [1, p. 58,
59]). Consequently, employing the Reynolds transport and divergence theorems, and d¢|¢—¢, 1, = 0
yields the derivation line

sWi=p [ [ (@60)+ (0~ w)- V(50) ddt -
i Q1)

to

d VA
——p/ dt/&pd@—i—/m&odS +
t1 Q(t) %(t)

+ / (v—vp) -ndpdS — /V-(v—vb)dcde dt =
S(H)+2(t) Q(t)

to

:—,0/ /[(U—Ub)-n—i-‘%;]&ods—&-

t1 \2(t)

ISSN 1027-3190. Yxp. mam. ocypn., 2021, m. 73, Ne 10



A NOTE ON VARIATIONAL FORMALISM FOR SLOSHING WITH ROTATIONAL FLOWS ... 1373

—i—/[(v—vb n|dpdS — / (v—vp)]dpdQ | =0,
S(t) Q(t)

which deduces (11) and (12).
Lemma 2.2. Under the assumption on the smoothness of the Clebsch potentials and the free
surface X(t), the zero first variation condition

oW, =0
is equivalent to the governing equation
dop=0,0+v-Vo=0d+ (v—1)-Vo=0 in Q(t), (13)

which indicates that the vortex lines contain the same fluid particles.
Proof. The variation by m derives the variational equality

to
oW = _/3/ / [c%qﬁ + (’U — 'vb) : ng)] om dQdt = 0,
1 Q(t)

which proves the lemma.
Lemma 2.3. Under the assumption on the smoothness of the Clebsch potentials and the free
surface %(t), the zero variation condition

oW1 =0 subjectto 6|t 1, =0 (14)
and the kinematic problem (11), (12) is equivalent to
dm=0m+v-Vm=0m+ (v—v)-Vm=0 in Q(t). (15)

Proof. The variation by ¢ yields the variational equation

SoWi=p [ [ m(@60)+ (- v)- V(66) dQat —
i1 Q1)

to

0z
:—p/ /m&;ﬁd@ /atm&ﬁdQ—i-/NZ‘ mdopdS | +
t1 Q() Q(t) (1)

+ m(v—wvp) -nopdS —
J

- /(5(15(mV-(v—Ub)—i-(v—vb)-Vm)dQ dt =
Q(t)

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 10



1374 I. A. LUKOVSKY, A. N. TIMOKHA

to
:p/ / 3¢ [Om + (v — vp) - Vm| dQ dt = 0, (16)
t1 Q(t)

whose derivation adopted the Reynolds transport and divergence theorems, condition (14) at ¢ = ¢;
and t9, and the kinematic conditions (11), (12). The variational equality (16) proves the lemma.

Remark2.4. Function P in (5) is, generally speaking, not the pressure. One can show that it
turns into the pressure, p = P + f(t) (f(t) is an arbitrary function) when (13) and (15) are satisfied
because the Euler equation

dv = —:) (VP+VU) in Q(t) (17)

is then formally fulfilled. This follows from the left-hand side of (17), i.e.,

d' (Vo +mVe) = [V(0jp) + mV(9,¢) + OmV¢| + v - V(Vy +mVe) =

V-V Votmu-VVe+Veo(Vm-v)

=|V(9;0) + mV(9;¢) + v - VV¢ +mv-VV¢+ Vo(Vm - v)|+ Ve [d'm)]

and the right-hand side (after annihilliating the U-term)
1
v <8£g0 Fmifo+ L w) _ [V(@lg) + mV(2l) + Olovm] +

+v-VVp+mv-VVop+Vm(Veo-v) =

=|V(9j¢) + mV(9,¢) +v-VVp+mv-VV¢+Vo(Vm-v)+ Vm[d ¢,

in which the framed terms are identical but the residual terms vanish as (13) and (15) hold true.

Theorem 2.1. Under the assumption on the smoothness of the Clebsch potentials and the free
surface 3(t), the variational equation

0 Wi+ 0mWi 4 0,Wi +62W; =0

subject to

t1,te = 5¢|t17t2 =0

is equivalent to the free-surface sloshing problem for prescribed tank motions; it includes (11)—(13)
and (15) as well as the dynamic boundary condition

dep

1
p—po:—p(@tgo—kmc’)tqﬁ—vb-v—k2|’U\2+U> —po=0 on 3X(t) (18)

implying the pressure is equal to the ullage pressure py on the free surface. The mass conservation
condition (1) should also be added.

Proof. The assertion follows from Lemmas 2.1, 2.2 and 2.3, Remark 2.4, and the variational
equality
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t2
07
t1 3(¢)

which derives the dynamic boundary condition (18).

2.3. The rigid-body dynamic equations. The both actions W; and W}, in (8) are functions of the
rigid-body motions.

Theorem 2.2. The variational equation

Oro,0Wh + 0rp oW1 + YA=0 subjectto éro=060=0 at t=ty,ts

by the independent generalised coordinates ro,0, where W; and W,y are defined by (7) and the
virtual work is determined by (9) for the prescribed resulting (principal) external force Fy and
moment M(b) leads to the dynamic equations

M, 5O+wxvo+wxrc+wx(wxrc)—g]:Fl+Fb, (19a)

Jo-w+w><(Jo-w)+Mbrc>< éo—kwxvo—g}:Mé)—i—Mg, (19b)

where the hydrodynamic force, F}, and moment with respect to O, M(l), are computed by the
formulas

F,=—-M + Mg, M)=-Go—voxM+Mrgcxg, (20)

in which
M:pl/de and G’O:/rxde
Q(t) Q(t)

are the liquid momentum and angular momentum, respectively, and ric is the liquid mass centre

by (6).
Proof. We consider

0 Wy + (5’00,“:,1'20”/1 =

t2
= / [Mb [vo - (6vo) + ¢ - {(6vo) X w +vo x (dw)} + g - (6ry)] +

t1

+w - JO - (6w) + py / (6vo +déw x 7)-vdQ + Mg - MC] o
Q1)

substitute (10) to deal with the virtual displacements dro, 60 and their *x-time derivatives, integ-
rate by part to exclude the x-derivatives, and use the vector algebra to get ...drp, ...00 in all
expressions. The result is

to
Oro.0Wo + 0rp oW, + 6’ A = /({—Mb [';;o +wXxvo+wXxrec+wx (wxre) —g] —

t1
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—M—i—Mlg—i—Fb}-((Sro)— {Jo-w—i—w X (JO-w)—i—MbrC X [;So—i—w X vo—g|+

+Go+’vo x M — Mir;c ngg} (50)) dt =0,

which is equivalent to (19) because (20) was proven in [1] (see Egs. (2.38) and (7.26)) for arbitrary
inviscid rotational flows.

Remark2.5. Chapter 7 in [1] proves the Lukovsky formula for the resulting (principal) hydro-
dynamic force

F; = Mg — M, Q*JO—FUJX’UO—FUJX(wX’r‘lc)—FwX’rlc—FQwX;‘lc—F?lC

for rotational liquid flows of an ideal liquid. Unfortunately, the Lukovsky formula (see Eq. (7.32) in
[1]) for the resulting hydrodynamic moment holds only true for irrotational flows.

3. Conclusions. Utilising the Bateman-Luke variational formalism for the contained ideal
incompressible liquid with rotational flows makes it possible to derive the full set of governing
equations (11), (13), (15), boundary conditions (12), (18) for the liquid sloshing dynamics as well as
the dynamic equations (19) for the carrying rigid body whose motions are not prescribed but affected
by a set of external forces applied to the body. The generalised Bateman — Luke-type formulation can
be a base for the nonlinear multimodal method.
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